ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-01-12
    Description: We investigate the elastic and anelastic structure of the lowermost mantle at the western edge of the Pacific large low shear velocity province (LLSVP) by inverting a collection of S and ScS waveforms. The transverse component data were obtained from F-net for 31 deep earthquakes beneath Tonga and Fiji, filtered between 12.5 and 200 s. We observe a regional variation of S and ScS arrival times and amplitude ratios, according to which we divide our region of interest into three subregions. For each of these subregions, we then perform 1-D (depth-dependent) waveform inversions simultaneously for radial profiles of shear wave velocity ( V S ) and seismic quality factor ( Q ). Models for all three subregions show low V S and low Q structures from 2000 km depth down to the core–mantle boundary. We further find that V S and Q in the central subregion, sampling the Caroline plume, are substantially lower than in the surrounding regions, whatever the depth. In the central subregion, V S -anomalies with respect to PREM (d V S ) and Q are about –2.5 per cent and 216 at a depth of 2850 km, and –0.6 per cent and 263 at a depth of 2000 km. By contrast, in the two other regions, d V S and Q are –2.2 per cent and 261 at a depth of 2850 km, and –0.3 per cent and 291 at a depth of 2000 km. At depths greater than ~2500 km, these differences may indicate lateral variations in temperature of ~100 K within the Pacific LLSVP. At shallower depths, they may be due to the temperature difference between the Caroline plume and its surroundings, and possibly to a small fraction of iron-rich material entrained by the plume.
    Keywords: Seismology
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...