ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-01-30
    Description: Disentangling the processes that shape the organization of ecological assemblages and its implications for species coexistence is one of the foremost challenges of ecology. Although insightful advances have recently related community composition and structure with species coexistence in mutualistic and antagonistic networks, little is known regarding other species assemblages, such as those of scavengers exploiting carrion. Here we studied seven assemblages of scavengers feeding on ungulate carcasses in mainland Spain. We used dynamical models to investigate if community composition, species richness and structure (nestedness) affect species coexistence at carcasses. Scavenging networks showed a nested pattern in sites where highly efficient, obligate scavengers (i.e., vultures) were present and a non-nested pattern everywhere else. Griffon Vulture ( Gyps fulvus ) and certain meso-facultative mammalian scavengers (i.e., red fox, Vulpes vulpes , and stone marten, Martes foina ) were the main species contributing to nestedness. Assemblages with vultures were also the richest ones in species. Nested species-rich assemblages with vulture presence were associated with high carcass consumption rates, indicating higher interspecific competition at the local scale. However, the proportion of species stopping the consumption of carrion (as derived from the competitive dynamic model) stabilized at high richness and nestedness levels. This suggests that high species richness and nestedness may characterize scavenging networks that are robust to high levels of interspecific competition for carrion. Some facilitative interactions driven by vultures and major facultative scavengers could be behind these observations. Our findings are relevant for understanding species’ coexistence in highly competitive systems.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...