ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-07-01
    Description: Measurements of volatile abundances in igneous apatites can provide information regarding the abundances and evolution of volatiles in magmas, with applications to terrestrial volcanism and planetary evolution. But measurement of volatiles in apatite (especially H) is challenging, and the most commonly utilized method—the electron probe—is often inadequate in precision and accuracy. Secondary ion mass spectrometry (SIMS) measurements can produce accurate and precise measurements of H and other volatiles in many materials including apatite. SIMS standardization generally makes use of empirical linear transfer functions that relate measured ion ratios (i.e., of an element of interest normalized to a reference element) to independently known concentrations or abundance ratios. However, this approach is often limited by the lack of compositionally diverse, well-characterized, homogeneous standards.In general, SIMS calibrations are developed for minor and trace elements, and any two calibrations are treated as independent of one another. However, in crystalline materials, additional stoichiometric constraints may apply. In the case of apatite, the sum of concentrations of abundant volatile elements (H, Cl, and F) must closely approach 100% occupancy of their collective structural site (recognizing the possibility of trace substitutions or vacancies and other elemental species). Here we propose and document the efficacy of a method for standardizing SIMS analyses of abundant volatiles in apatites that takes advantage of this stoichiometric constraint. The principle advantage of this method is that it requires no independently known homogeneous reference standards, and under specific conditions it is effectively self-standardizing.We define a system of independent linear equations relating measured ion ratios (OH−/P−, Cl−/P−, F−/P−) and unknown calibration slopes (i.e., the empirical transfer functions described above). Given sufficient range in the concentrations of the different elements among apatites measured in a single analytical session, solving this system of equations allows for the calibration slope for each element to be determined without standards, using only blank-corrected ion ratios. In the case that a data set of this kind lacks sufficient range in measured compositions of one or more of the relevant ion ratios, one can employ measurements of additional apatites of a variety of compositions to increase the statistical range and make the inversion more accurate and precise. These additional non-standard apatites need only be wide-ranging in composition. They need not be homogenous nor have known H, F, or Cl concentrations.Tests utilizing synthetic data and data generated in the laboratory indicate that this method should yield satisfactory results for a wide range of compositions provided apatites have “halogen” sites dominated by OH, F, and Cl. The inversion method is able to reproduce conventional calibration curves to within
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...