ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-08-28
    Description: Primitive meteorites contain a few parts per million (ppm) of pristine interstellar grains that provide information on nuclear and chemical processes in stars. Their interstellar origin is proven by highly anomalous isotopic ratios, varying more than 1000-fold for elements such as C and N. Most grains isolated thus far are stable only under highly reducing conditions (C/O greater than 1), and apparently are 'stardust' formed in stellar atmospheres. Microdiamonds, of median size about 10 A, are most abundant (about 400-1800 ppm) but least understood. They contain anomalous noble gases including Xe-HL, which shows the signature of the r- and p-processes. Silicon carbide, of grain size 0.2-10 microns and abundance about 6 ppm, shows the signature of the s-process and apparently comes mainly from red giant carbon (AGB) stars of 1-3 solar masses. Some grains appear to be not less than 10 exp 9 a older than the solar system. Graphite spherules of grain size 0.8-7 microns and abundance less than 2 ppm contain highly anomalous C and noble gases, as well as large amounts of fossil Mg-26 from the decay of extinct Al-26. They seem to come from at least three sources, probably AGB stars, novae, and Wolf-Rayet stars.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Meteoritics (ISSN 0026-1114); 28; 4; p. 490-514.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...