ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of metamorphic geology 5 (1987), S. 0 
    ISSN: 1525-1314
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: Abstract New isotopic (Rb–Sr, U–Pb zircon and Sm–Nd) and petrological data are presented for part of an extensive Proterozoic mobile belt (locally known as the Rayner Complex) in East Antarctica. Much of the belt is the product of Mid-Proterozoic (∼ 1800–2000 Ma) juvenile crustal formation. Melting of this crust at about 1500 Ma ago produced the felsic magmas from which the dominant orthogneisses of this terrain were subsequently derived. Deformation and transitional granulite-amphibolite facies conditions (which peaked at 750 ± 50°C and 7–8 kbar (0.7–0.8 GPa) produced open to tight folding about E–W axes and syn-tectonic granitoids about 960 Ma ago. Subsequent felsic magmatism occurred at about 770 Ma and not, as has been widely advocated, at 500–550 Ma, which appears to have been a time of widespread upper greenschist facies (400–500°C) metamorphism, localized shearing and faulting.Sm-Nd model ages of 1.65–2.18 Ga disprove a previously favoured hypothesis that the Rayner Complex mostly represents reworked Archaean rocks from the neighbouring craton (Napier Complex). Models that involve rehydration of the Napier Complex are no longer required, since the Rayner Complex was its own source of water. Two episodes of Proterozoic crustal growth are identified, the later of which occurred between about 1200 Ma and 1000 Ma, and was relatively minor. Sedimentation took place only shortly before Late Proterozoic orogenesis.The multiphase history of the Rayner Complex has resulted in complex isotopic behaviour. Three temporally discrete episodes of Pb loss from zircon have been identified, the earliest two of which are responses to the c. 960 Ma and 540 Ma tectonothermal events. Fluid leaching was operative during the later event for there is a good correlation between degree of isotopic discordance and secondary mineral growth. Pb loss during the high-grade event was probably governed by the same process or by lattice annealing. Some zircon suites also document recent Pb loss. Most lower concordia intercepts have no direct geological meaning and are explicable as mixed ages produced by incomplete Pb loss during two or more secondary events. Whereas all zircon separates from the orthogneisses produce U–Pb isotopic alignments, zircons from the only analysed paragneiss produce scattered data, in part reflecting a range of provenance. The 960 Ma event was also associated with the growth of a characteristically low U zircon (∼ 300 μg/g) in rocks of inferred high Zr content.There is ubiquitous evidence for the resetting of Rb–Sr total-rock isochrons. Even samples separated by up to 10 km fail to produce igneous crystallization ages. Minor mineralogical changes produced by the 540 Ma upper greenschist-facies metamorphism were sufficient to almost completely reset some Rb–Sr isochrons and to produce open system conditions on outcrop scale, at least in one location.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...