ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Boundary layer meteorology 77 (1996), S. 285-304 
    ISSN: 1573-1472
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Observations have been made of the windspeed, wind direction, and tree movement at the edge and 20 m within a stand of Scots pine (Pinus sylvestris L.) close to 11 m in height. The spectra of windspeed near canopy top, together with the output of accelerometers and video observations of tree movement at mid-crown, were compared in the same stand prior and two years after first thinning. Furthermore, the transfer of wind energy into tree movement was investigated by calculating the mechanical transfer function (H m 2 ) between the wind spectrum (S uu) and the tree's response (S yy), i.e. H m 2 = Syy/Suu. Trees were found to behave like damped harmonic oscillators. They reacted to sudden increases in windspeed, reached their greatest displacement during the first cycle, and then returned to their rest position under the influence of damping. The spectral peak frequencies in S yy and in H m 2coincided with the estimated natural sway frequency of trees. Response in the second mode was, however, also evident, especially within the unthinned stand. The periodogram plots showed a consistent trend of a marked decrease in the response of the tree to increase in frequency. Almost no difference in the wind energy transfer, i.e. peak frequencies and peak width, and damping of the system was found between Scot pine at 2700 and 1500 stems per hectare. However, along the stand edge tree movement was greater than within the stand indicating greater wind energy transfer and damping of the system along the stand edge than within the stand.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...