ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Astrophysics and space science 128 (1986), S. 341-354 
    ISSN: 1572-946X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The standard classical expressions for the thermal synchrotron (TS) radiation from an optically thin thermal plasma are shown to be inapplicable at photon energiesE≳kT since they neglect quantum effects. Quantum relationships are obtained for the TS spectral emissivity, opacity, and polarization. The quantum TS spectra are much softer atE≳kT than the classical ones. The TS radiation exhibits strong linear polarization in the classical domain, whereas the quantum effects reduce the polarization at highE. Expressions for the classical TS luminosity are obtained with quantum corrections which turn out to be significant for (B/B c )(kT/mc 2)≳10−2(B c =4.41×1013 G). Fitting the gamma-ray burst (GRB) spectra by the classical TS law (see, e.g., Lianget al., 1983) is incorrect in cases wherekT is less than the maximum detected photon energy. The continua of the GRB spectra in the rangeE∼20 keV-2 MeV (Mazetset al., 1981a; Andreevet al., 1983) can be fitted satisfactorily by the quantum TS spectra. The results of this fitting may suggest the existence of temperatures much higher (up to ∼10 MeV), and of magnetic fields much lower (down to ∼109 G) than those usually accepted. Under these conditions the thickness of the TS sources (∼103–104 cm) could be comparable with their transverse dimensions (in contrast to sources with ordinary temperatures and fields), if they lie within a few kpc. The quantum TS spectra are too soft to account for the hard components (up to tens of MeV) of the GRB spectra detected by the Solar Maximum Mission (Nolanet al., 1984), unless the temperatures are unreasonably high. A straightforward TS interpretation of the GRB spectra seems to be unrealistic. Most probably, the continuum radiation escapes from an optically thick, strongly magnetized, highly non-stationary, hot plasma near the surface of a neutron star.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...