ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 16 (1990), S. 80-87 
    ISSN: 0886-1544
    Keywords: cytoskeleton ; chemotaxis ; polymerization ; motility ; nucleation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Definition of the kinetics of ligand-activated actin polymerization in the neutrophil is important for ultimately understanding the mechanisms utilized for regulation of actin polymerization in this non-muscle cell. To better define the kinetics of formyl peptide (fMLP) -induced actin polymerization in neutrophils we determined F-actin content at 5 second intervals after activation of human neutrophils with a range (10-11-10-9M) of fMLP concentrations. The state of actin polymerization was monitored by quantifying F-actin content with NBD phallacidin binding in both flow cytometric and extraction assays. Results demonstrate three successive kinetic periods of fMLP-induced actin polymerization in neutrophils, a lag period, a 5 second period when rate of polymerization is maximal, and a period of declining rate of actin polymerization as F-actin content approaches a maximum. The duration of the lag period, the maximum rate of polymerization, and the maximum extent of polymerization all depend upon the fMLP concentration. The lag period varies from 0 to 12 seconds and is followed in 5-10 seconds by a 5 second burst of actin polymerization when the rate is as great as 9% increase in F-actin content per second. After the 5 second burst of polymerization, the rate of polymerization rapidly declines. The study defines three distinct kinetic periods of fMLP-induced actin polymerization during which important rate-limiting biochemical events occur. The mechanistic and motile implications of kinetic periods are discussed.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...