ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-04-05
    Description: We use geophysical data together with a recent subglacial bedrock map (BEDMACHINE model) to obtain and investigate a new three-layer sediment model for Antarctica that locally improves the global sediment model. We provide a combined, continuous, sediment model for Antarctica and surrounding oceans by joining such improved continental sedimentary model with an existing global one (GlobSed). Our results reveal large differences between sedimentary basins for Antarctica due to their age and origin. The maximum thickness of sediments is reached under Filchner-Ronne Ice Shelf and off the Weddell Sea coast (10–12 km); further offshore, towards the ocean, the thickness of sediments drops to 4–5 km. We divide the sediment cover into three layers to distinguish material with different velocities. The lower sediment layer (deeper than 7 km) with high P-wave velocities (4.0–4.9 km/s) is found only for Lambert Rift and Filchner-Ronne basin. The middle layer (2–7 km) has large variations for different sedimentary basins: 3.5–3.7 km/s for Lambert Basin; 4.0–4.3 km/s for Ross, Byrd and Bentley basins; 3.3–4.0 km/s for Filchner-Ronne Basin. The upper sediment layer (0–2 km) has large velocity variations, from 2.0 km/s for Ross and Lambert basins (young sediments) to 4.7 km/s for Dronning Maud Land basins. We suggest that P-wave velocities larger than 4 km/s represent old, compacted sediments which belong to the Beacon Supergroup; about 3 km/s refer to Mesozoic (rifted?) sediments; and less than 3 km/s relate to young Cenozoic sediments. According to this criterion, Dronning Maud Land, Bentley and Byrd basins belong to the Beacon Supergroup, while more complex and thicker Ross, Lambert and Filchner-Ronne basins contain sediments from Beacon Supergroup in the middle or lower layer, respectively. Other sedimentary basins with more moderate velocities possibly belong to the East Antarctic Rift System which formed later during Gondwana breakup.
    Description: Published
    Description: 229662
    Description: OST1 Alla ricerca dei Motori Geodinamici
    Description: JCR Journal
    Keywords: 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...