ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Publikationsdatum: 2020
    Beschreibung: 〈p〉Publication date: Available online 25 January 2020〈/p〉 〈p〉〈b〉Source:〈/b〉 Estuarine, Coastal and Shelf Science〈/p〉 〈p〉Author(s): Almir Nunes, Magnus Larson, Carlos Ruberto Fragoso〈/p〉 〈div xml:lang="en"〉 〈h5〉Abstract〈/h5〉 〈div〉〈p〉In the present study, a morphological model based on the main governing processes of inlet channels was developed for application in long-term simulations, requiring minimum data on forcing and only key information on the inlet geometry. The model considers the balance between the inlet sand transport due to tides and river flows and the longshore transport due to breaking waves. The resulting equations were numerically implemented and validated first through schematic simulations and then through an application to a real inlet. For the schematic simulations, the sediment transport rates in the inlet and alongshore were maintained constant and the behavior during evolution towards equilibrium was investigated and qualitatively assessed. Then, the model was applied to Mundaú Lagoon inlet (Brazil), a natural inlet sheltered by reefs and with a marked seasonality in river runoff. Thus, the model performance was validated for a complex setting over time scales of decades through comparisons with the observed inlet evolution determined from satellite images. The calculated results of inlet channel morphological evolution exhibited satisfactory agreement with observations. The computational efforts were low making the model suitable for long-term simulations where many alternative scenarios may be explored in a probabilistic manner. In conclusion, the developed model yielded robust and reliable simulation results having the potential for use in the assessment of long-term inlet channel evolution.〈/p〉〈/div〉 〈/div〉
    Print ISSN: 0272-7714
    Digitale ISSN: 1096-0015
    Thema: Biologie , Geographie , Geologie und Paläontologie
    Publiziert von Elsevier
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...