ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-07-22
    Description: The relationship between synaptic excitation and inhibition (E/I ratio), two opposing forces in the mammalian cerebral cortex, affects many cortical functions such as feature selectivity and gain. Individual pyramidal cells show stable E/I ratios in time despite fluctuating cortical activity levels. This is because when excitation increases, inhibition increases proportionally through the increased recruitment of inhibitory neurons, a phenomenon referred to as excitation-inhibition balance. However, little is known about the distribution of E/I ratios across pyramidal cells. Through their highly divergent axons, inhibitory neurons indiscriminately contact most neighbouring pyramidal cells. Is inhibition homogeneously distributed or is it individually matched to the different amounts of excitation received by distinct pyramidal cells? Here we discover that pyramidal cells in layer 2/3 of mouse primary visual cortex each receive inhibition in a similar proportion to their excitation. As a consequence, E/I ratios are equalized across pyramidal cells. This matched inhibition is mediated by parvalbumin-expressing but not somatostatin-expressing inhibitory cells and results from the independent adjustment of synapses originating from individual parvalbumin-expressing cells targeting different pyramidal cells. Furthermore, this match is activity-dependent as it is disrupted by perturbing pyramidal cell activity. Thus, the equalization of E/I ratios across pyramidal cells reveals an unexpected degree of order in the spatial distribution of synaptic strengths and indicates that the relationship between the cortex's two opposing forces is stabilized not only in time but also in space.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117808/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117808/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Xue, Mingshan -- Atallah, Bassam V -- Scanziani, Massimo -- P30 NS047101/NS/NINDS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Jul 31;511(7511):596-600. doi: 10.1038/nature13321. Epub 2014 Jun 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Neurobiology Section, Division of Biological Sciences, Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, California 92093-0634, USA [2] Department of Neuroscience, University of California, San Diego, La Jolla, California 92093-0634, USA [3] Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA, and Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas 77030, USA. ; Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal. ; 1] Neurobiology Section, Division of Biological Sciences, Center for Neural Circuits and Behavior, University of California, San Diego, La Jolla, California 92093-0634, USA [2] Department of Neuroscience, University of California, San Diego, La Jolla, California 92093-0634, USA [3] Howard Hughes Medical Institute, University of California, San Diego, La Jolla, California 92093-0634, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043046" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Female ; HEK293 Cells ; Humans ; Male ; Mice ; Neural Inhibition/physiology ; Neurons/*physiology ; Pyramidal Cells/physiology ; Synapses/physiology ; Visual Cortex/*cytology/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...