ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019
    Description: Abstract Opening‐mode fractures, such as joints, veins and dykes, frequently exhibit power‐law aperture‐to‐length scaling, with scaling exponents typically ranging from 0.5 to 2. However, published high quality outcrop data and continuum based numerical models indicate that fracture aperture‐to‐length scaling may be non‐universal, with scaling being superlinear for short fractures and sublinear for long fractures. Here we revisit these published results by means of a particle‐based lattice solid model, which is validated using predictions from linear elasticity and linear elastic fracture mechanics. The triangular lattice model comprised of breakable elastic beams, with strengths drawn from a Weibull distribution, is used to investigate the fracture aperture‐to‐length scaling that emerges in a plate subjected to extension. The modeled fracture system evolution is characterized by two stages which are separated by the strain at which peak‐stress occurs. During the pre‐peak‐stress stage aperture‐to‐length scaling is universal with a power‐law exponent of about one. Shortly after the material has attained its maximum load bearing capacity, which coincides with the formation of a multiple‐segment fracture zone, aperture‐to‐length scaling becomes non‐universal, with power‐law exponents being consistent with earlier studies. The results presented here confirm that deviation from universal scaling laws are a consequence of fracture interaction. More specifically, the onset of non‐universal aperture‐to‐length scaling coincides with the formation of a multiple‐segment fracture zone.
    Print ISSN: 2169-9313
    Electronic ISSN: 2169-9356
    Topics: Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...