ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: During the later stages of the auroral substorm the luminosity distribution frequently resembles a double oval, one oval lying poleward of the normal or main UV auroral oval. We interpret the double oval morphology as being due to the plasma sheet boundary layer becoming active in the later stages of the substorm process. If the disturbance engulfs the nightside low-latitude boundary layers, then the double oval configuration extends into the dayside ionospheric region. The main UV oval is associated with the inner portion of the central plasma sheet and can rapidly change its auroral character from being diffuse to discrete. This transition is associated with the substorm process and is fundamental to understanding the near-Earth character of substorm onset. On the other hand, the poleward arc system in the nightside ionosphere occurs adjacent to or near the open-closed field line boundary. This system activates at the end of the optical expansion phase and is a part of the recovery phase configuration in substorms where it occurs. These two source regions for nightside discrete auroral arcs are important in resolving the controversy concerning the mapping of arcs to the magnetosphere. The dayside extension of this double oval configuration is also investigated and shows particle signatures which differ considerably from those on the nightside giving clues to the magnetospheric source regions of the aurora in the two local time sectors. Near-Earth substorm onsets are shown to be coupled to processes occurring much further tailward and indicate the importance of understanding the temporal development of features within the double oval. Using 'variance images,' a new technqiue for the investigation of these dynamics is outlined.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; A7; p. 12,075-12,092
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...