ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 36 (1998), S. 1873-1884 
    ISSN: 0887-624X
    Keywords: polycarbonate ; poly(methyl methacrylate) ; blends ; exchange reactions ; mass spectrometry ; thermal degradation ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The chemical reactions occurring in the thermal treatment of bisphenol-A polycarbonate (PC) and poly(methyl methacrylate) (PMMA) blends have been investigated by nuclear magnetic resonance (NMR), mass spectrometry (MS), size exclusion chromatography (SEC), and thermogravimetry (TG). Our results suggest that in the melt-mixing of PC/PMMA blends, at 230°C, no exchange reactions occur and that only the depolymerization reaction of PMMA has been observed. In the presence of an ester-exchange catalyst (SnOBu2), an exchange reaction was found to occur at 230°C, but no trace of PC/PMMA graft copolymer has been observed. Instead, an exchange reaction between the monomer methyl methacrylate (MMA), generated in the unzipping of PMMA chains, and the carbonate groups of PC has been suggested. This is due to the diffusion of MMA at the interface or even into the PC domains, where it can react with PC producing low molar mass PC oligomers bearing methacrylate and methyl carbonate chain ends and leaving the undecomposed PMMA chains unaffected. The TG curves of PC/PMMA blends prepared by mechanical mixing and by casting from THF show two separated degradation steps corresponding to that of homopolymers. This behavior is different from that of a transparent film of PC/PMMA blend, obtained by solvent casting from DCB/CHCl3, which shows a single degradation step indicating that the degradation rate of PC is increased by the presence of PMMA in the blend. The thermal degradation products obtained by DPMS of this blend consist of methyl methacrylate (MMA), cyclic carbonates arising from the degradation of PMMA and PC, respectively, and a series of open chain bisphenol-A carbonate oligomers with methacrylate and methyl carbonate terminal groups. The presence of the latter compounds suggests a thermally activated exchange reaction occurring above 300°C between MMA and PC. The presence of bisphenol-A carbonate oligomers bearing methyl ether end groups, generated by a thermally activated decarboxylation of the methyl carbonate end groups of PC, has also been observed among the pyrolysis products. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1873-1884, 1998
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...