ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Unknown
    Berlin ; Heidelberg : Springer
    Description / Table of Contents: Biolaminated deposits, produced by microbial communities, were studied in modern peritidal environments and in the rock record. The term microbial, mat refers to modern, the term stromatolite to ancient analogs. The term biolaminated deposits was used to encompass both microbial mats and stromatolites. Microbial mat environments studied are the Gavish Sabkha, the Solar Lake, both hypersaline back-barrier systems at the Gulf of Aqaba, Sinai Peninsula, and the "Farbstreifen-Sandwatt" (versicolored sandy tidal flats) on Mellum, an island in the estuary embayment of the southern North Sea coast. Three facies-relevant categories were distinguished: (i) the mat-forming microbiota, (2) environmental conditions controlling mat types and lithology, (3) bioturbation and grazing. Cyanobacteria account for biogenic sediment accretion in all cases studied. Three major groups occur: filamentous cyanobacteria, coccoid unicells with binary fission and those with multiple fission. In the presence of these groups the following mat types evolve: (i) continuously flat (stratiform) L~-laminae (occur in all environments studied); (2) translucent, vertically extended Lv-laminae (only Gavish Sabkha and Solar Lake); (3) nodular granules (only Gavish Sabkha). Basically, the development of mats is controlled by moisture. Thus high-lying parts where the groundwater table runs more than 40 cm below surface are bare of mats. These are: The circular slope and elevated center of the Gavish Sabkha, the shorelines of the Solar Lake and the episodically flooded upper supratidal zone of Mellum Island. The following situations of water supply were found to stimulate mat growth: (i) Capillary movement of groundwater to exposed surfaces, (2) shallowest calm water, both realized in the Gavish Sabkha and the Solar Lake. On Mellum Island, mats form in the lower supratidal zone, which is flooded in the spring tide cycle and wetted during low tide by capillary groundwater. Salinity is almost that of normal seawater, whereas in the Solar Lake, it ranges from 45 °/oo to 180 °/oo and in the Gavish Sabkha, it reaches more than 300 °/oo. Salinity increase is correlated with rising concentrations of magnesium and sulfate ions. In the Gavish Sabkha, episodic sheetfloods cause high-rate sedimentation which is accidental to the living mats. Episodic low-rate sedimentation stimulates the mats to grow through the freshly deposited sediment layer. This occurs predominantly on Mellum Island due to eolian transport. Within the Gavish Sabkha, mineralogy of sediments, community structures, standing crops, redox potentials and pH are highly correlative to the increasing evenness in moisture supply which is realized by the inclination of the system below mean sea level. These conditions bring about a lateral sequence of facies types which include (I) siliciclastic biolaminites at the coastal bar base, (2) nodular to biolaminoid carbonates at saline mud flats, (3) regularly stratified stromatolitic carbonates with ooids and oncoids within the hypersaline lagoon, (4) biolaminated sulfate towardthe elevated center. High-magnesium calcite in facies type 3 precipitates around decaying organic matter and forms also the ooids and oncoids. These occur predominantly within hydroplastic Lv-laminae which provide numerous nucleation centers. Within the Solar Lake, facies type 3 (stromatolitic carbonates with ooids and oncoids) is most important, and grows to extraordinary thickness at the lake's shelf. The regular alternation of dark and light laminae results from seasonally oscillating water depths. These conditions couple back over changing light and salinity intensities to changing dominance structures of mat-building communities. Increasing salinity correlates with decreasing water depth and accounts for the relative abundance of coccoid unicells and diatoms, both active producers of extracellular slimes (Lv-laminae). Water depths locally or temporarily increased favor surface colonization by Mic~ocoleu8 chthonoplastes (Lh-laminae). The biolaminated deposits of the versicolored tidal flats on Mellum Island are similar to facies type 1 of the Gavish Sabkha (siliciclastic biolaminites). Differences exist in the lithology: Sediments upon or through which the mats on Mellum Island grow are made up of clean sand. The grains originate predominantly from re-worked glacial sediments and are rounded to well rounded. By contrast, the strong angularity of siliciclastic grains in the Gavish Sabkha clearly shows their status as primary weathering products. In all environments studied, insects play a significant role. Mainly salt beetles contribute to the lebensspuren spectrum. There is no indication that burrowing and grazing beetles and dipterans are detrimental to the growing mat systems. According to the marine fauna, two distributional barriers exist: (i) physical and (2) biogeochemical factors. Physical barriers are (a) hypersalinity and barrier-closing, which restrict the marine fauna in the Gavish Sabkha and the Solar Lake to a few species, mainly meiofaunal elements such as ostracods and copepods. Only in the Gavish Sabkha, one marine gastropod species occurs which colonizes mud flats of lower salinity. A salinity barrier of about 70 °/oo separates the gastropod habitats from the zones of growing mats. Under reduced salinity, the snails are able to destroy the microbial mats completely. (b) Decreasing regularity of flooding in the microbial mat environment of Mellum Island excludes intertidal deformative burrowers such as cockles and lugworms. However, locally the mats are pierced by numerous dwelling traces. These stem from small polychaetes and amphipod crustaceans which are able to spread over the intertidal-supratidal boundary and settle up to the MHWS-Ievel. Biogeochemical barriers are oxygen depletion within the sediments, high ammonia and sulfide contents, which generate through bacterial break-down of organic matter. Within the highly productive mats of Mic~ocoleu8 chthonoplastes on Mellum Island, dwelling traces of marine polychaetes and amphipod crustaceans disappear due to these conditions. The name of the mat-forming species, Microcoleus chthonoplastes, indicates its capacity to form "soils" (Greek chthonos). While lithology is not altered, the presence of Mic~ocoleu8 mats leads to a habitat change which excludes trace-making "arenophile" invertebrate species and favors "chthonophile" species which do not leave traces. Stromatolitic microstructures studied in rock specimens were interpreted using modern analogs: Microcolumnar buildups in Precambrian stromatolites, ooids and oncoids were compared with those of modern microbial mats. The nodular to biolaminoid facies type found in the Gavish Sabkha was suggested to be an analog to the Plattendolomite facies of Permian Zechstein, North Poland. Studies of the Lower Jurassic ironstone of Lorraine clearly indicate that fungi have been involved in the formation of stromatolites, ooids and oncoids. In conclusion, the comparative study of microstructures in microbial mats and stromatolites reveals a better understanding in both fields. In many cases, it was geology which first revealed the similarity of recent forms to those ancient ones and consequently encouraged research into them.
    Pages: Online-Ressource (183 Seiten)
    ISBN: 9783540179375
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...