ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-14
    Description: Energies, Vol. 11, Pages 1543: Three-Stage Anaerobic Sequencing Batch Reactor (ASBR) for Maximum Methane Production: Effects of COD Loading Rate and Reactor Volumetric Ratio Energies doi: 10.3390/en11061543 Authors: Achiraya Jiraprasertwong Kornpong Vichaitanapat Malinee Leethochawalit Sumaeth Chavadej A three-stage anaerobic sequencing batch reactor system was developed as a new anaerobic process with an emphasis on methane production from ethanol wastewater. The three-stage anaerobic sequencing batch reactor system consisted of three bioreactors connected in series. It was operated at 37 °C with a fixed recycle ratio of 1:1 (final effluent flow rate to feed flow rate) and the washout sludge from the third bioreactor present in the final effluent was allowed to be recycled to the first bioreactor. The pH of the first bioreactor was controlled at 5.5, while the pH values of the other two bioreactors were not controlled. Under the optimum chemical oxygen demand loading rate of 18 kg/m3d (based on the feed chemical oxygen demand load and total volume of the three bioreactors) with a bioreactor volumetric ratio of 5:5:20, the system provided the highest gas production performance in terms of yields of both hydrogen and methane and the highest overall chemical oxygen demand removal. Interestingly, the three-stage anaerobic sequencing batch reactor system gave a much higher energy production rate and a higher optimum chemical oxygen demand loading rate than previously reported anaerobic systems since it was able to maintain very high microbial concentrations in all bioreactors with very high values of both alkalinity and solution pH, especially in the third bioreactor, resulting in sufficient levels of micronutrients for anaerobic digestion.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...