ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-03-05
    Description: Epithelial folding mediated by apical constriction converts flat epithelial sheets into multilayered, complex tissue structures and is used throughout development in most animals. Little is known, however, about how forces produced near the apical surface of the tissue are transmitted within individual cells to generate the global changes in cell shape that characterize tissue deformation. Here we apply particle tracking velocimetry in gastrulating Drosophila embryos to measure the movement of cytoplasm and plasma membrane during ventral furrow formation. We find that cytoplasmic redistribution during the lengthening phase of ventral furrow formation can be precisely described by viscous flows that quantitatively match the predictions of hydrodynamics. Cell membranes move with the ambient cytoplasm, with little resistance to, or driving force on, the flow. Strikingly, apical constriction produces similar flow patterns in mutant embryos that fail to form cells before gastrulation ('acellular' embryos), such that the global redistribution of cytoplasm mirrors the summed redistribution occurring in individual cells of wild-type embryos. Our results indicate that during the lengthening phase of ventral furrow formation, hydrodynamic behaviour of the cytoplasm provides the predominant mechanism transmitting apically generated forces deep into the tissue and that cell individualization is dispensable.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4111109/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4111109/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉He, Bing -- Doubrovinski, Konstantin -- Polyakov, Oleg -- Wieschaus, Eric -- 5R37HD15587/HD/NICHD NIH HHS/ -- P50 GM 071508/GM/NIGMS NIH HHS/ -- R01 HD015587/HD/NICHD NIH HHS/ -- R37 HD015587/HD/NICHD NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Apr 17;508(7496):392-6. doi: 10.1038/nature13070. Epub 2014 Mar 2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA [2]. ; Department of Physics, Princeton University, Princeton, New Jersey 08544, USA. ; 1] Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA [2] Howard Hughes Medical Institute, Princeton University, Princeton, New Jersey 08544, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24590071" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Membrane/metabolism ; *Cell Polarity ; *Cell Shape ; Cytoplasm/metabolism ; Drosophila melanogaster/*cytology/*embryology ; Female ; Gastrulation ; Hydrodynamics ; Male ; Mesoderm/cytology/metabolism ; *Morphogenesis ; Movement
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...