ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-05-12
    Description: Remote Sensing, Vol. 10, Pages 745: Hyperspectral Anomaly Detection via Discriminative Feature Learning with Multiple-Dictionary Sparse Representation Remote Sensing doi: 10.3390/rs10050745 Authors: Dandan Ma Yuan Yuan Qi Wang Most hyperspectral anomaly detection methods directly utilize all the original spectra to recognize anomalies. However, the inherent characteristics of high spectral dimension and complex spectral correlation commonly make their detection performance unsatisfactory. Therefore, an effective feature extraction technique is necessary. To this end, this paper proposes a novel anomaly detection method via discriminative feature learning with multiple-dictionary sparse representation. Firstly, a new spectral feature selection framework based on sparse presentation is designed, which is closely guided by the anomaly detection task. Then, the representative spectra which can significantly enlarge anomaly’s deviation from background are picked out by minimizing residues between background spectrum reconstruction error and anomaly spectrum recovery error. Finally, through comprehensively considering the virtues of different groups of representative features selected from multiple dictionaries, a global multiple-view detection strategy is presented to improve the detection accuracy. The proposed method is compared with ten state-of-the-art methods including LRX, SRD, CRD, LSMAD, RSAD, BACON, BACON-target, GRX, GKRX, and PCA-GRX on three real-world hyperspectral images. Corresponding to each competitor, it has the average detection performance improvement of about 9.9 % , 7.4 % , 24.2 % , 10.1 % , 26.2 % , 20.1 % , 5.1 % , 19.3 % , 10.7 % , and 2.0 % respectively. Extensive experiments demonstrate its superior performance in effectiveness and efficiency.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...