ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-04-12
    Description: Purpose Microwave (MW) heating has been identified as a potential cost-effective technique to remediate hydrocarbon-polluted soils; however, the soil texture and properties could have a great impact on its full-scale treatment. In addition, very limited energy and economical data on MW treatment are available, and this lack makes its real application very limited. In this work, a first experimental phase was performed simulating a MW of several hydrocarbon-polluted soils. Obtained data were elaborated for a techno-economic analysis. Materials and methods Four soil textures, corresponding to medium, fine silica sand (at different soil moistures), silt as silica flour and clay as kaolin, were artificially contaminated with diesel fuel and irradiated by MWs using a bench scale apparatus. Soil samples were treated applying four specific power values at different times. At the end, soil temperature was measured, whereas residual contaminant concentrations were measured and fitted considering and exponential decay kinetic model. Temperature data, as well as kinetic parameters obtained, were used for the techno-economic analysis. The changing of the internal electric field was calculated for all the soils and operating conditions, then considering initial contamination values ranging from 750 to 5000 mg kg −1 , the minimal remediation time, specific energy and costs for the remediation were assessed. Results and discussion At low powers, MW effectiveness is limited by low soil moistures or fine soil textures due to a limitation of the electric field penetration, whereas when high powers are used soil properties have a limited effect. Remediation time, as a function of the initial contamination level, follows a linear trend, except for dry soils, for which an exponential trend was observed. For powers higher than 30 kW Kg −1 , remediation times lower than about 100 min are needed, for all the moisturized soils, in order to treat a contamination of 5000 mg kg −1 . The variation of soil moisture or soil texture results in the range 20–160 € ton −1 , and doubled costs are required for the treatment of clayey soils respect to sandy soils. Conclusions The analysis performed suggests that soil layers lower than 70 cm should be considered for ex situ remediation. MW has been shown as a quick technique also for high hydrocarbon concentrations; however, for energy saving, the application of some powers should be avoid. Unmoisturized or fine texture soil treatment results in higher costs; however, a maximum cost of 160 € ton −1 generally makes MW heating a quick and cost-effective ex situ technique.
    Print ISSN: 1439-0108
    Electronic ISSN: 1614-7480
    Topics: Geosciences
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...