ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-08-27
    Description: A large (greater than 4.5 x 7 x 4 mm), igneous-textured clast in the Bovedy (L3) chondrite is notable for its high bulk SiO2 content (is approximately equal to 57.5 wt%). The clast consists of normally zoned orthopyroxene (83.8 vol%), tridymite (6.2%), an intergrowth of feldspar (5.8%) and sodic glass (3.1%), pigeonite (1.0%), and small amounts of chromite (0.2%), augite, and Fe,Ni-metal; it is best described as a silica-rich orthopyroxenite. The oxygen-isotopic composition of the clast is similar, but not identical, to Bovedy and other ordinary chondrites. The clast has a superchondritic Si/Mg ratio, but has Mg/(Mg + Fe) and Fe/Mn ratios that are similar to ordinary chondrite silicate. The closest chemical analogues to the clast are radial-pyroxene chondrules, diogenites, pyroxene-silica objects in ordinary chondrites, and silicates in the IIE iron meteorite Weekeroo Station. The clast crystallized from a siliceous melt that cooled fast enough to prevent complete attainment of equilibrium but slow enough to allow nearly complete crystallization. The texture, form, size and composition of the clast suggestion that it is an igneous differentiate from an asteroid or planetesimal that formed in the vicinity of ordinary chondrites. The melt probably cooled in the near-surface region of the parent object. It appears that in the source region of the clast, metallic and silicate partial melt were largely-to-completely lost during a relatively low degree of melting, and that during a higher degree of melting, olivine and low-Ca pyroxene separated from the remaining liquid, which ultimately solidified to form the clast. While these fractionation steps could not have all occurred at the same temperature, they could have been accomplished in a single melting episode, possibly as a result of heating by radionuclides or by electromagnetic induction. Fractionated magmas can also account for other Si-rich objects in chondrites.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Meteoritics (ISSN 0026-1114); 30; 1; p. 57-70
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...