ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author, 2007. This is the author's version of the work. It is posted here by permission of American Institute of Physics for personal use, not for redistribution. The definitive version was published in Physics of Fluids 19 (2007): 026601, doi:10.1063/1.2472509.
    Description: The effect of rotation on the propagation of internal solitary waves is examined. Wave evolution is followed using a new rotating extension of a fully-nonlinear, weakly nonhydrostatic theory for waves in a two-layer system. When a solitary wave solution of the non-rotating equations is used as the initial condition the wave initially decays by radiation of longer inertia-gravity waves. The radiated inertia-gravity wave always steepens, leading to the formation a secondary solitary-like wave. This decay and re-emergence process then repeats. Eventually a nearly localized wavepacket emerges. It consists of a longwave envelope and shorter, faster solitary-like waves that propagate through the envelope. The radiation from this mature state is very weak, leading to a robust, long-lived structure that may contain as much as 50% of the energy in the initial solitary wave. Interacting packets may either pass through one another, or merge to form a longer packet. The packets appear to be modulated, fully-nonlinear versions of the steadily translating quasi-cnoidal waves.
    Description: This work was supported by a Woods Hole Oceanographic Institution Mellon Independent Study Award and ONR Grant N000140610798.
    Keywords: Nonlinear internal waves ; Solitary waves ; Rotation
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Annual Reviews
    Publication Date: 2022-05-25
    Description: Author Posting. © Annual Reviews, 2006. This article is posted here by permission of Annual Reviews for personal use, not for redistribution. The definitive version was published in Annual Review of Fluid Mechanics 38 (2006): 395-425, doi:10.1146/annurev.fluid.38.050304.092129.
    Description: Over the past four decades, the combination of in situ and remote sensing observations has demonstrated that long nonlinear internal solitary-like waves are ubiquitous features of coastal oceans. The following provides an overview of the properties of steady internal solitary waves and the transient processes of wave generation and evolution, primarily from the point of view of weakly nonlinear theory, of which the Korteweg-de Vries equation is the most frequently used example. However, the oceanographically important processes of wave instability and breaking, generally inaccessible with these models, are also discussed. Furthermore, observations often show strongly nonlinear waves whose properties can only be explained with fully nonlinear models.
    Description: KRH acknowledges support from NSF and ONR and an Independent Study Award from the Woods Hole Oceanographic Institution. WKM acknowledges support from NSF and ONR, which has made his work in this area possible, in close collaboration with former graduate students at Scripps Institution of Oceanography and MIT.
    Keywords: Solitary waves ; Nonlinear waves ; Stratified flow ; Physical Oceanography
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 1034976 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © IEEE, 2004. This article is posted here by permission of IEEE for personal use, not for redistribution. The definitive version was published in IEEE Journal of Oceanic Engineering 29 (2004): 1105-1130, doi:10.1109/JOE.2004.836998.
    Description: A field program to measure acoustic propagation characteristics and physical oceanography was undertaken in April and May 2001 in the northern South China Sea. Fluctuating ocean properties were measured with 21 moorings in water of 350- to 71-m depth near the continental slope. The sea floor at the site is gradually sloped at depths less than 90 m, but the deeper area is steppy, having gradual slopes over large areas that are near critical for diurnal internal waves and steep steps between those areas that account for much of the depth change. Large-amplitude nonlinear internal gravity waves incident on the site from the east were observed to change amplitude, horizontal length scale, and energy when shoaling. Beginning as relatively narrow solitary waves of depression, these waves continued onto the shelf much broadened in horizontal scale, where they were trailed by numerous waves of elevation (alternatively described as oscillations) that first appeared in the continental slope region. Internal gravity waves of both diurnal and semidiurnal tidal frequencies (internal tides) were also observed to propagate into shallow water from deeper water, with the diurnal waves dominating. The internal tides were at times sufficiently nonlinear to break down into bores and groups of high-frequency nonlinear internal waves.
    Description: This work was supported in part by grants from the U.S. Office of Naval Research, Physical Oceanography and Ocean Acoustics Programs, and by the National Science Council of Taiwan.
    Keywords: Baroclinic tides ; Internal waves ; Nonlinear waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 2146895 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © Elsevier B.V., 2006. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Dynamics of Atmospheres and Oceans 41 (2006): 149-171, doi:10.1016/j.dynatmoce.2006.02.001.
    Description: The nonlinear evolution of a localized layer of buoyant, uniform potential vorticity fluid of uniform depth H, width w0 and length L released adjacent to a wall in a rotating system is studied using reduced-gravity shallow-water theory and numerical modeling. In the interior, far from the two ends of the layer, the initial adjustment gives, after ignoring inertia-gravity waves, a geostrophic flow of width w∞ and layer velocities parallel to the wall directed in the downstream direction (defined by Kelvin wave propagation). This steady geostrophic flow serves as the initial condition for a semigeostrophic solution using the method of characteristics. At the downstream end, the theory shows that the fluid intrudes along the wall as rarefaction terminating at a nose of vanishing width and depth. However, in a real fluid the presence of the lower layer leads to a blunt gravity current head. The theory is amended by introducing a gravity current head condition that has a blunt bore joined to the rarefaction by a uniform gravity current. The upstream termination of the initial layer produces a Kelvin rarefaction that propagates downstream, decreasing the layer depth along the wall, and initiating upstream flow adjacent to the wall. The theoretical solution compares favorably to numerical solutions of the reduced-gravity shallow-water equations. The agreement between theory and numerical solutions occurs regardless of whether the numerical runs are initiated with an adjusted geostrophic solution or with the release of a stagnant layer. The latter case excites inertia-gravity waves that, despite their large amplitude and breaking, do not significantly affect the evolution of the geostrophic flow. At times beyond the validity of the semigeostrophic theory, the numerical solutions evolve into a stationary arrays of vortices. The vortex formation can be interpreted as the finite-amplitude manifestation of a linear instability of the new flow established by the passage of the Kelvin wave. The Kelvin wave ultimately reduces the flux into the downstream gravity current and the vortices retain buoyant in the neighborhood of the initial layer.
    Description: This work was supported by NSF Grant OCE-0325102.
    Keywords: Geostrophic adjustment ; Gravity currents ; Kelvin waves ; Nonlinear waves ; Vortices
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: 515555 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: A workshop entitled "Internal Solitary Waves in the Ocean: Their Physics and Implications for Acoustics, Biology, and Geology" was held during October, 1998 in Sydney, British Columbia, Canada. It was jointly organized by the Woods Hole Oceanographic Institution (MA, USA), the Institute of Ocean Sciences, (Sydney, BC, Canada), and the U. S. Office of Naval Research. More than 60 scientists from seven countries attended. Participants contributed papers prior to the meeting which were published on the internet at the Woods Hole web site. Those papers are reproduced here.
    Description: Funding was provided by the Office of Naval Research under Contract Nos. N00014-95-1-0633 and N00014-99-1-0126.
    Keywords: Solitary waves ; Internal waves ; Wave workshop
    Repository Name: Woods Hole Open Access Server
    Type: Technical Report
    Format: 14709571 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: Author Posting. © IEEE, 2004. This article is posted here by permission of IEEE for personal use, not for redistribution. The definitive version was published in IEEE Journal of Oceanic Engineering 29 (2004): 118-125, doi:10.1109/JOE.2003.822975.
    Description: A computational case study of coupled-mode 400-Hz acoustic propagation over the distance 27 km on the continental shelf is presented. The mode coupling reported here is caused by lateral gradients of sound-speed within packets of nonlinear internal waves, often referred to as solitary wave packets. In a waveguide having unequal attenuation of modes, directional exchange of energy between low- and high-loss modes, via mode coupling, can become time dependent by the movement of waves and can cause temporally variable loss of acoustic energy into the bottom. Here, that bottom interaction effect is shown to be sensitive to stratification conditions, which determine waveguide properties and, in turn, determine modal attenuation coefficients. In particular, time-dependent energy loss due to the presence of moving internal wave packets is compared for waveguides with and without a frontal feature similar to that found at the shelfbreak south of New England. The mean and variability of acoustic energy level 27 km distant from a source are shown to be altered in a first order way by the presence of the frontal feature. The effects of the front are also shown to be functions of source depth.
    Description: This work was supported by the Office of Naval Research Grants N00014-99-1-2074 and N00014-01-1-0772.
    Keywords: Continental shelf ; Internal waves ; Mode coupling ; Shallow water ; Shelfbreak front ; Solitary waves ; Sound propagation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 611088 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...