ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Journal cover
    Unknown
    Springer | Clay Minerals Society | GeoScienceWorld
    Online: 45.1997 –
    Online: 45.1997 –
    Formerly as: Clays and Clay Technology  (1952–1952)
    Publisher: Springer , Clay Minerals Society , GeoScienceWorld
    Corporation: Clay Minerals Society , National Conference on Clays and Clay Minerals , National Academy of Sciences 〈Washington, DC〉
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Keywords: mineralogy
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-08-01
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
  • 5
    Publication Date: 2015-10-27
    Description: The pyroclastic sediments studied here contained varied amounts of zeolite and were formed in the saline alkaline Tuzgölü Basin following the alteration of dacitic volcanic materials during the Early to Late Miocene. The present study focused on the geological-geochemical properties of the zeolites and describes their formation. Mineralogical and chemical compositions were determined by X-ray diffraction, scanning electron microscopy, optical microscopy, and inductively coupled plasma mass spectrometry. Results indicated that the zeolitic tuffs consisted mainly of heulandite/clinoptilolite (Hul/Cpt), chabazite, erionite, and analcime associated with smectite. Smectite, calcite, and dolomite are abundant in the clay and carbonate layers which alternate with the zeolitic tuffs. K-feldspar, gypsum, and hexahydrite (MgSO 4 ·6H 2 O) were also found in some altered tuffs and clay-marl layers as accessory minerals. The zeolite and other authigenic minerals showed weak stratigraphic zonation. Some vitric tuff layers contained no zeolite minerals and others were found to consist of almost pure Hul/Cpt and chabazite layers with economic potential. The rare earth elements ( REE ), large ion lithophile elements (LILE), and high-field strength elements (HFSE) in the Hul/Cpt-rich tuffs and vitric tuffs were enriched or depleted relative to the precursor rock, while many major elements were slightly or significantly depleted in all zeolitic tuffs. The amounts of REE in the chabazite- and erionite-rich tuffs were generally smaller than those in the precursor rock. The middle and heavy REE ( MREE and HREE , respectively) were abundant in the Hul/Cpt-rich tuffs, tuffs, and smectitic bentonites. Chondrite-normalized REE values of the sample groups are characterized by sub-parallel patterns with enrichment in LREE relative to HREE . The mineral assemblages and geological setting indicated that zeolite diagenesis occurred in a saline-alkaline basin. The 18 O and D compositions of the Hul/Cpt, chabazite, and smectite indicated that the minerals formed at low to moderate temperatures and that some of the zeolitization occurred due to diagenetic alteration under closed-system conditions that varied according to the nature of the basin and with the composition and physical properties of the volcanic materials.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-10-27
    Description: Serpentinites, which contain high concentrations of Cr and Ni, weather easily into layer silicates and are therefore a possible source of metal contamination in soils. In the present study three soil profiles formed on serpentinites in a paddy field in eastern Taiwan were investigated to understand pedogenic clay-mineral transformations and to determine the relationship between the mineralogical characteristics and labile Cr and Ni in the soil. To this end, physicochemical analyses, micromorphology, X-ray diffraction, and Fourier transform infrared spectroscopy were employed. Serpentine and chlorite were the dominant minerals in the soil parent material, with smaller amounts of pyroxene, amphibole, and talc. Progressive weathering and the release of cations from the parent material resulted in the pedogenic formation of smectite, vermiculite, and interstratified chlorite-vermiculite, demonstrated by their presence in all Ap and AC horizons but their absence from the C horizons. Serpentine, pyroxene, amphibole, and talc are proposed to be transformed to low-charge smectite, while chlorite transformed to vermiculite through an interstratified chlorite-vermiculite phase. The surface soils were enriched in oxalate-extractable Fe relative to the subsoils, which was probably generated by the artificial flooding and draining of the paddy soils. The artificial flooding, which typically releases Fe, may also drive the observed partial hydroxyl interlayering of smectite and incomplete interlayer OH sheets of chlorite. Labile Cr and Ni (extracted with 0.1 N HCl) ranging from 4.7 to 26.8 mg kg –1 and from 56 to 365 mg kg –1 , respectively, increased significantly toward the surface soil, consistent with weathering. The heavy metals released may pose a threat to the environment as well as to human health by entering the food chain.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-10-27
    Description: Imogolite is usually formed by means of a three-step process involving the use of large amounts of water with long crystallization times and low yields, preventing large-scale synthesis. These drawbacks can be overcome by synthesis in the presence of fluoride, an approach which has been demonstrated to be suitable for the synthesis of other phyllosilicates. In the present study, the nature of the Al and Si sources, the Al/Si molar ratio, the volume of H 2 O for the redispersion of the gel after desalination, the F/Si molar ratio, as well as the crystallization temperature and time have been varied to investigate their role in the crystallization of imogolite. The structural properties of the as-synthesized samples were characterized by X-ray diffraction, infrared spectroscopy, and 29 Si, 27 Al, and 19 F magic angle spinning nuclear magnetic resonance spectroscopy. The results show that the imogolite nanotubes can be prepared with high yields (〉55%) from AlCl 3 ·6H 2 O and Na 4 SiO 4 aqueous solutions with an Al/Si molar ratio of 2.5, addition of HF for a F/Si molar ratio of 0.1–0.2, and 4 days of crystallization at 98°C.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-08-06
    Description: At present, no production of zeolites is ongoing in Colombia; thus, because of the high demand in the industrial sector, ~2500 tons is imported annually from other countries such as Cuba, Ecuador, Mexico, and the United States. In order minimize the need for these costly imports, the present study sought to evaluate the viability of producing low-silica zeolites through the hydrothermal synthesis of a Colombian kaolin, which contains quartz (40%) and iron-oxide impurities. The kaolin was subjected to a milling process to reduce the particle size to the order of 11 μm, and was heat treated to transform it to metakaolin. Optimization of the synthesis variables (Na 2 O/SiO 2 and H 2 O/Al 2 O 3 ratios, time, and temperature) was accomplished by applying an experimental design based on the ‘Response Surface Methodology’ technique. The degree of crystallinity and the cation exchange capacity (CEC) were used as response variables. The CEC was determined from the NTC 5167 standard. In addition, the mineralogical composition and the zeolite microstructure were evaluated using techniques such as scanning electron microscopy, X-ray diffraction, and solid state nuclear magnetic resonance spectroscopy. The results indicated that synthetic type A zeolites with a CEC value of 442 cmol(+)/kg can be obtained from the Colombian kaolin, with the following optimal processing conditions: Na 2 O/SiO 2 molar ratio of 2.7, H 2 O/Al 2 O 3 molar ratio of 150, temperature = 66ºC, and processing time = 8 h. Note that this value (442 cmol(+)/kg) is greater than that reported for an imported commercial zeolite (408 cmol(+)/kg) of the same type, which is currently being used in industry in Colombia. The nationwide availability of the raw material and the quality of the final product present opportunities to make this material available to the Colombian market.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-08-06
    Description: In order to elucidate the process of mineralization of clay minerals in fault gouge and its spatial-temporal relationship with fault-zone evolution and hydrothermal alteration, X-ray diffraction (XRD) analysis and K-Ar dating were performed on clay samples from the Kojaku Granite of central Japan, including fault gouge along an active fault. The area studied is suitable for understanding thermal constraints on clay mineralization because the wall rock is homogeneous and its thermal history well defined. The results from XRD indicated that the clay minerals in the gouge samples are dioctahedral smectite, kaolinite, and 1 Md illite, whereas clay fillings in fractures and joints in the intact granite (clay vein) include 2 M 1 illite in addition to dioctahedral smectite and 1 Md illite. The evolution of clay mineralization is reconstructed as follows: (1) high-temperature hydrothermal alteration of feldspar and biotite produced 2 M 1 illite in clay veins; and (2) alteration accompanied by shearing at a lower temperature resulted in the formation of 1 Md illite in the gouges. This scenario is consistent with the cooling history of the granite constrained by fission-track, U-Pb, and K-Ar dating methods. K-Ar dating of the clay samples separated into multiple particle-size fractions indicated that the low-temperature alteration leading to the production of 1 Md illite was dated to ~40 Ma. Based on the cooling history of the granite, the 1 Md illite formed at temperatures of 60–120°C. This temperature range was at the lower limit of the range reported in previous studies for faults. The spatial and geometrical relation of the faults studied and their K-Ar ages infer evolution which can be described as extensive development of small-scale faults at ~ 40 Ma followed by coalescence of the small-scale faults to form a larger, recently reactivated, active fault. The K-Ar ages have not been reset by the recent near-surface fault activity.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-08-06
    Description: Accidental discharges of the hazardous nuclear fission products 137 Cs + and 90 Sr 2+ into the environment, such as during the Fukushima Dai-ichi nuclear accident, have occurred repeatedly throughout the ‘nuclear age.’ Numerous studies of the fate and transport of 137 Cs + and 90 Sr 2+ in soils and sediments have demonstrated their strong and selective binding to phyllosilicate clay minerals, primarily by means of cation exchange into interlayer sites. The locally concentrated amounts of these radioactive beta-emitters that can be found in these host minerals raise important questions regarding the long-term interplay and durability of radioisotope–clay associations, which is not well known. The present study goes beyond the usual short-term focus to address the permanence of radioisotope retention in clay minerals, by developing a general theoretical understanding of their resistance to the creation of defects. The present study reports ab initio molecular dynamics (AIMD) calculations of the threshold displacement energy (TDE) of each symmetry-unique atomic species comprising the unit cell of model vermiculite. The TDE values determined are material specific, radiation independent, and can be used to estimate the probability of Frenkel-pair creation by direct electron–ion collision, as could be induced by the passage of a high-energy electron emitted during the beta-decay of 137 Cs, 90 Sr, and daughter 90 Y. For 137 Cs and 90 Sr, the calculated probability is ~36%, while for 90 Y the probability is much greater at ~89%. The long-term retention picture that emerges is that decay will progressively alter the clay interlayer structure and charge, probably leading to delamination of the clay, and re-release of residual parent isotopes. Further work examining the effect of Frenkel defect accumulation on the binding energy of parent and daughter radionuclides in the interlayer is thus justified and potentially important for accurate long-term forecasting of radionuclide transport in the environment.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2016-08-06
    Description: Focus here is placed on the pharmaceutical and biomedical applications of novel clay-drug hybrid materials categorized by methods of administration. Clay minerals have been used for many years as pharmaceutical and medicinal ingredients for therapeutic purposes. A number of studies have attempted to explore clay-drug hybrid materials for biomedical applications with desired functions, such as sustained release, increased solubility, enhanced adsorption, mucoadhesion, biocompatibility, targeting, etc . The present review attempts not only to summarize the state-of-the-art of clay-drug hybrid materials and their advantages, depending on the methods of administration, but also to deal with challenges and future perspectives of clay mineral-based hybrids for biomedical applications.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2016-08-06
    Description: The structures of Fe-rich chlorite and berthierine and the formation mechanisms of 7 Å – 14 Å interstratified minerals were not previously fully understood owing to the difficulties in analyzing them by X-ray diffraction (XRD). The present study characterizes Fe-rich chlorites in quartz veins of epithermal to xenothermal vein-type ore deposits without later structural modifications, based on high-resolution transmission electron microscopy (HRTEM) along with XRD examination and chemical analysis. Samples have a wide range of Fe/(Fe+Mg) ratios from 0.38 to 0.98 and tetrahedral Al substitution for Si from 0.94 to 1.44 atoms per formula unit (apfu). The variation in Fe content nearly parallels the tetrahedral Al content. The formation temperatures estimated by chlorite geothermometry range from 190°C to 320°C. In HRTEM, most of the samples showed interstratification between 7 Å, 14 Å, and/or (in some samples) smectite layers. Chlorites with relatively low Fe contents (Fe/(Fe+Mg) 0.4) were characterized by mostly 14 Å periodicity with the polytype II bb . In contrast, interstratification of 7 Å and 14 Å layers predominated with increasing Fe content and the proportion of 7 Å layers exceeds 80% in Fe-rich samples with Fe/(Fe+Mg) 〉 0.9. The 7 Å component layer approximated Fe-rich berthierine based on the chemical composition. Layer stacking structures in the Fe-rich samples were complex, and characterized by disorder of 7 Å and 14 Å layers, differences in the polarity of the tetrahedral sheets, variations of the slant of the octahedral sheets, and positional disorder between octahedral and tetrahedral sheets involving the hydrogen bonding, as indicated from HRTEM observations along the Y i directions of the phyllosilicates. The complex stacking structures observed in Fe-rich samples suggest that irregularity was controlled by neither the Fe/(Fe+Mg) ratio nor the formation temperature; stacking was controlled by kinetic factors in the process of mineral precipitation under disequilibrium conditions.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2016-08-06
    Description: Sepiolite and palygorskite are common as layers and nodules in the Neogene lacustrine sediments of the Eskişehir area. This study aims to determine their mineralogical and geochemical characteristics, plus the distribution of these economically important sepiolite and palygorskite deposits within the lacustrine environment. Using these data the research goes on to discuss the environmental conditions for their formation. Sepiolite and palygorskite layers are associated with dolomite, marlstone, and argillaceous limestone. The sepiolite nodules (meerschaum), which are former magnesite gravels, are observed in the Upper Miocene reddish-brown fluvial deposits derived from the ophiolite and its fracture-infills at the northern margin of the basin. Sepiolite and palygorskite are only sparsely associated with dolomite and accessory magnesite, quartz, feldspar, and amphibole. Sepiolite and palygorskite fibers formed as oriented platy fan, interwoven, and knitted aggregates in the absence of dolomite indicated precipitation from supersaturated solution. Sepiolite and palygorskite fibers edging dolomite crystals postdate dolomite and formed through precipitation in a vadose environment under semi-arid to arid climatic conditions. High values of Mg+Fe+Ni and enrichment of light rare earth elements ( LREE ) relative to middle rare earth elements ( MREE ) and heavy rare earth elements ( HREE ), Sr content, depletion of Rb+Ba and K, and negligible negative Eu anomalies all reflect the derivation from the Paleozoic metamorphic and Upper Cretaceous ophiolitic rocks. Locally, Upper Miocene to Lower Pliocene volcanic, volcanoclastic, and fluvio-lacustrine sedimentary rocks supplied the required Si, Mg, Al, and Fe for precipitation of Al-sepiolite and Mg-palygorskite with average structural formulae of Si 11.91 Al 0.09 O 30 Mg 6.60 Al 0.78 Fe 0.13 (OH) 4 Na 0.12 K 0.06 (OH 2 ) 4 ·nH 2 O and Si 7.74 Al 0.26 O 20 Mg 2.52 Al 1.13 Fe 0.38 (OH) 2 (OH 2 ) 4 Na 0.32 K 0.14 Ca 0.12 · n H 2 O, respectively. In contrast to the layered sepiolites, the absence of Al and high Ni content in sepiolite nodules suggest formation through replacement of magnesite gravels at shallow burial in an alkaline environment. The calculated meerschaum sepiolite chemical formula is: Si 12.02 O 30 Mg 7.87 Fe 0.01 (OH) 4 Na 0.13 K 0.03 (OH 2 ) 4 ·nH 2 O.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2016-08-06
    Description: Reflectance spectroscopy is a rapid and non-destructive method that can be used to detect organic compounds in geologic samples over a wide range of spatial scales that includes outcrops, hand samples, drill cores, and planetary surfaces. In order to assess the viability of this technique for quantification of organics and aliphatic compounds in particular, the present study examines how clay mineralogy, water content, and albedo influence the strength of organic absorptions in near-infrared (NIR) reflectance spectra. The effects of clay structure and water content are evaluated using kaolinite, smectite (montmorillonite), and a mixed-layer illite-smectite as starting materials. Absorption strengths for C–H absorptions are compared to known total organic carbon (TOC) values using both reflectance spectra and single scattering albedo (SSA) spectra derived from a Hapke radiative transfer model. A linear relationship was observed between band depth and TOC for each sample suite, but strong albedo variation led to non-unique trends when band depths were calculated from reflectance spectra. These effects were minimized by conversion to SSA, for which band depth-TOC trends were similar for all mixture suites regardless of albedo or hydration level, indicating that this approach may be more broadly applicable for clay and organic-bearing samples. Extrapolation of band depth-TOC trends for the synthetic mixtures suggested a very conservative lower limit of detection of 〈1 wt.% TOC, but preliminary results for natural organic-bearing shales indicated that detection limits may be an order of magnitude lower.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    Clay Minerals Society
    Publication Date: 2016-08-06
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    Clay Minerals Society
    Publication Date: 2016-08-06
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2015-05-15
    Description: The benefits of using kaolin as a source of aluminosilicate in zeolite synthesis to obtain lower-cost catalysts, adsorbents, or ion exchangers are widely known. Previous attempts to produce zeolite from natural Iranian kaolin resulted in the formation of zeolites A, X, and HS. Zeolite Y plays an important role in the petrochemical industry due to its application in the area of fluidized catalytic cracking; ~40% of gasoline production is obtained using this process. In the present study, different methods were used to prepare pure zeolite NaY from the Iranian kaolin available. The effects of different parameters such as aging time, crystallization time, kaolin calcination and crystallization temperature, and starting-material composition were investigated in order to obtain improved properties and maximize phase purity. In all cases, the crystal structure and microstructure were studied using X-ray diffraction and scanning electron microscopy. Among different synthesis approaches, the ‘guide-agent method’ resulted in the formation of zeolite NaY. The synthesis was generally sensitive to changes in kaolin calcination temperature and in hydrothermal synthesis parameters. The optimum parameters to prepare pure zeolite NaY were: kaolin calcination temperature = 680°C, aging time of guide agent = 48 h without an overall gel aging step, and crystallization at 90°C for 36 h.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2015-05-15
    Description: Clays are used widely as facial masks to remove excess sebum, an oily substance released onto the skin. Smectite, illite, kaolinite, and in some cases, chlorite, are the dominant phyllosilicates in most commonly used clay facial masks. To date, the adsorption of human sebum has been proved only on smectite clays; in the present study the adsorption of two organic compounds found in human sebum by illitic, kaolinitic, and chloritic phyllosilicates was investigated. Illitic clays are often used in cosmetic clay masks, but usually contain some fine-grained non-clay minerals. The presence of carbonate, for example, can cause skin irritation because of its alkaline nature, and iron oxides and hydroxides reduce the adsorption properties of clays. The influence of the removal of these compounds on the adsorption properties of illitic clays was also investigated. The amounts of both compounds adsorbed were established by UV-VIS spectrophotometry. All samples were characterized by mineralogical composition, particle-size distribution, specific surface area, and cation exchange capacity (CEC). Oleic acid and squalene were adsorbed on all clay samples, but illitic and chloritic phyllosilicates showed the greatest adsorption capacity. After purification, the sizes of the particles decreased and the CEC values increased. Nevertheless, the dissolution of carbonates essentially had no influence on the adsorption properties, whereas the removal of iron oxides and hydroxides increased significantly the amounts adsorbed of both oleic acid and squalene.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2015-05-15
    Description: A new model is proposed for analysis of the source clays used to create ceramics, based on geographic, petrographic, mineralogical, mineral-chemistry, and geochemical criteria. The development of this model became feasible after the discovery of a Pliocene volcanic clay horizon on NW Aegina Island, Greece. The volcanic clay contains smectite, mixed-layer chloritesmectite, biotite, and palygorskite and has greater feldspar content than the underlying Pliocene marls, which contain R0 mixed-layer illitesmectite, mica, dolomite, serpentine, talc and gypsum, and, in some places, palygorskite. The two units have distinct geochemical characteristics. In general the Pliocene volcanic clay is richer in SiO 2 , Al 2 O 3 , and Fe 2 O 3 and poorer in Na 2 O, MgO, and P 2 O 5 than the Pliocene marls. The Nb, Zr, Hf, Th, and rare earth element ( REE ) contents are also significantly greater in the Pliocene volcanic clay and comparable to those of the dacitic rocks of the island, reflecting the volcanic origin of the clay. The proposed model was used to identify the source-clay materials that were used for the production of ceramics on the island of Aegina (Aeginetan Ware). All five criteria should be considered in any provenance study. The use of individual criteria on their own can lead to ambiguous conclusions. In the present study the geochemical criterion was particularly helpful. It provided robust evidence for the nature of the source clay. The Pliocene volcanic clay horizon and the underlying Pliocene marls are the candidate raw materials for Aeginetan Ware. Although the Pliocene marls have been invoked as raw materials for Greek Bronze Age (~3000–1100 BC) Aeginetan ceramics and are used as raw materials by modern Aeginetan ceramists, the geochemical characteristics of a large set of Bronze Age Greek Aeginetan sherds with fine and coarse fabrics coincide with those of the Pliocene volcanic clay. This comparative and cumulative evidence suggests that the Pliocene volcanic clay was the main source clay for ancient Aeginetan ceramics, regardless of the fabric (coarse or fine) and that admixture of different sources might not be necessary for fine-grained ceramics.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    Clay Minerals Society
    Publication Date: 2015-05-15
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    Clay Minerals Society
    Publication Date: 2015-05-15
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2015-05-15
    Description: The Güzelyurt kaolinite deposit is an important source of raw material for the ceramics industry in Turkey. No detailed mineralogical or geochemical characterizations of this deposit have been undertaken previously and these were the goals of the present study. The Güzelyurt alunite-bearing kaolinite occurs along a fault zone in the Late Miocene Gördeles ignimbrite, which consists of dacitic and andesitic tuffs. Horizontal and vertical mineralogical zonations with gradual transitions were observed within the alteration zone. The inner kaolinite, alunite, and 7 Å halloysite zones progress horizontally outward to a smectite zone; and native sulfur- and cinnabar-bearing alunite with 7 Å halloysite and porous silica zones increase as one progresses up through the profile. Fe-(oxyhydr)oxide phases associated with native sulfur and cinnabar demonstrate that multiple hydrothermal-alteration processes resulted in kaolinization and alunitization of the deposit. The kaolinization of feldspar, Fe-(oxyhydr)oxidation of hornblende and mica, the presence of kaolinite as stacked and, locally, book-like forms, and of 7 Å halloysite tubes, and smectite flakes as a blanket on altered volcanic relicts indicate an authigenic origin for this deposit. The leaching of Si + Mg + K and Ba + Rb, the retention of Sr, the enrichment of light rare earth elements relative to the heavy rare earth elements, and the negative Eu anomalies suggest that fractionation of plagioclase and hornblende occurred within the volcanics. The oxygen- and hydrogen-isotopic values of the kaolinite, 7 Å halloysite, smectite, and smectite + kaolinite fractions reflect a steam-heated environment at temperatures in excess of 100°C. An increase in the D and 18 O values of 7 Å halloysite relative to kaolinite suggests its formation under steam-heated magmatic water, the mixing of steam and meteoric water near the surface, and evaporation. The oxygen- and sulfur-isotopic compositions of alunite suggest the direct influence of steam-derived sulfur. The Güzelyurt alunite-bearing kaolinite deposit is inferred to have formed after an increase in the (Al±Fe)/Si ratio and the leaching of alkali elements, which are driven by the sulfur-bearing low-temperature hydrothermal alteration of feldspar, hornblende, and volcanic glass under acidic conditions within the Neogene dacitic and andesitic tuffs.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2015-05-15
    Description: The geochemistry of minerals in intermediate to deep sedimentary rocks (2–10 km depth) is not known sufficiently well to predict accurately the effect of human activities, such as carbon dioxide sequestration or fracking. To carry out real-time experiments, a high-pressure environmental chamber (HPEC) was constructed for in situ X-ray diffraction (XRD) studies to 1000 bars and to 200°C. In the HPEC, a liquid, e.g. a brine, plus sample in suspension, is pressurized by gas, e.g. CH 4 or CO 2 , or liquid, e.g. supercritical CO 2 . The unique aspect of this chamber is that the sample + liquid (~2 mL) form a dynamic system, and particles can move freely in the liquid while being illuminated by the X-ray beam. Several HPECs were constructed of Ti alloy, stainless steel, or carbon-fiber polyether ketone to be resistant to corrosion under basic or acidic conditions. These HPECs are compatible with standard transmission-mode diffractometers with sealed-tube X-ray sources (Mo radiation is being used at the University of Illinois at Chicago – UIC) or with brilliant X-ray sources. In addition, to allow long-duration studies or, for example, to study the effect of micro-organisms on these mineral reactions, a large-bore (~25 mL) reaction vessel system was devised that could be examined regularly at appropriate P/T conditions or off-line. Calibration of the HPEC and XRD pattern processing is discussed and illustrated. The potential significance of these devices goes beyond understanding the deep sedimentary environment, because materials and reactions can be studied while using nearly any liquid as an immersion agent. As an example, experimental results are given for the d 001 values of montmorillonite clay vs. temperatures to 150°C at P (CO 2 ) = 500 bars in a NaCl-rich brine.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2015-10-27
    Description: Transformation of kaolinite to dickite is a common diagenetic reaction. The present report is part of a wider study to investigate the pathways of this polytype change. Fourier-transform infrared spectroscopy (FTIR) was used to attempt quantification of the relative proportions of kaolinite and dickite, validated by X-ray diffraction (XRD) results, in order to link mineral and structural features during the mineralogical changes. A group of kaolinite and dickite samples was investigated: 13 samples from the Frøy and Rind oil fields (North Sea), three kaolinite specimens with different crystal order and particle size (KGa-2, kaolinite API 17, Keokuk kaolinite), and two dickite-rich samples (Natural History Museum collection). Six FTIR spectral features were analyzed: (1) intensity ratio of the minima at 3675 and 3635 cm –1 ; (2) position of the band at ~1115 cm –1 ; (3) difference between the frequency of the bands at ~1030 and ~1000 cm –1 ; (4) intensity ratio of the bands generating shoulders at ~922 and ~900 cm –1 ; (5) position of the band at ~370 cm –1 ; and (6) intensity of the band at ~268 cm –1 . Correlation of the features above with polytype relative proportions derived from XRD showed non-linear behavior, with maximum curvature at the dickite end, which precludes kaolinite-dickite quantification. Increasing kaolin particle size is known to cause decreased intensity of the FTIR spectra. A model was developed to test whether this effect is consistent with the non-linear progression of the IR features. The relative intensity of kaolinite and dickite IR features were calculated in a series of kaolinite-to-dickite transformations, where the size of particles increases with dickite proportion, and where dickite-dominated particles reach a larger size than kaolinite-dominated particles. The results indicated that the differential particle size increase is possibly the cause of the lack of linearity between IR- and XRD-measured dickite proportions.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2015-10-27
    Description: Catanionic surfactant systems are used as drug-delivery vehicles and as nanocompartments in the formation of biomaterials and nanosized particles. Clay minerals are compatible with organic tissues and also have biomedical applications. The aim of the present study was to combine the properties of catanionic surfactants and clay minerals to obtain new materials with potential uses in medicine, waste-water treatment, and antibacterial applications. The surfactants chosen to make the catanionic surfactant were cetylpyridinium (CP) and lauroyl sarcosinate (SR), which interact strongly in aqueous media and cause specific aggregations such as ion-pair amphiphiles and needle- and leaf-like structures. Aside from the aqueous solution, new ternary systems are formed with different structures and properties through the addition of montmorillonite (Mnt). The surface and interlayer structures of the different Mnt-CP-SR samples prepared by using CP and SR in amounts equal to various ratios of cationic exchange capacity of the clay mineral were studied. They were also compared with the structured surfactant aggregates formed in aqueous media. The Mnt-CP-SR samples were subjected to X-ray diffraction (XRD), thermogravimetric analyses, and zeta-potential measurements to elucidate the interlayer- and external-surface structures. The XRD analyses showed the formation of a compact structure in the interlayer region resulting from the interaction between randomly oriented pyridinium and negatively charged SR head groups. The triple interactions among the Mnt surface, CP, and SR were more complex than the double interactions between the Mnt and cationic surfactant, and the CP played a dominant role in the formation of external and interlayer surface structures regardless of the amount and order of the addition of SR. The new findings support new applications for organoclays in the fields of biomedicine, remediation of polluted water, and nanocomposite materials.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2011-06-01
    Description: The swelling property of smectite is dominated by the hydration of exchangeable cations in the interlayer spacing ( interlayer hydration'). By investigating systematically the swelling behavior of various exchangeable cations with different valences and ionic radii, the interlayer hydration of smectite was explored. The swelling behavior of Li+-, K+-, Rb+-, Cs+-, Mg2+-, Sr2+-, Ba2+-, and La3+-montmorillonites in undersaturated conditions was measured precisely over the range 50-150{degrees}C by in situ X-ray diffraction (XRD) analyses. The systematic swelling behavior of ten homocationic montmorillonites, the aforementioned eight homoionic montmorillonites, plus Na+ and Ca2+ from a previous study, and the cation hydration energies were analysed by studying the changes occurring in the basal spacing and the 001 peak width. With decreasing cation hydration energy, swelling curves (i.e. plots of basal spacing vs. relative humidity (RH)) change from continuous (Mg2+, La3+, and Ca2+) to stepwise (Sr2+, Li+, Ba2+, and Na+) to one-layer only (K+, Rb+, and Cs+). For the first two groups, the RH at the midpoint between the one- and two-layer hydration states increased as the cation hydration energy decreased. Under low RH, with increasing temperature, the basal spacings of Mg-, La-, Ca-, Sr-, Li-, and Ba-montmorillonites decreased continuously to the zero-layer hydration state, whereas Na-, K-, Rb-, and Cs-montmorillonites swelled from the zero-layer hydration state even at the lowest temperature (50{degrees}C). A decrease in the basal spacing at the same RH but at different temperatures suggests the existence of metastable states or that the layer-stacking structure changes with temperature. The systematics of the swelling behavior of various homocationic montmorillonites as functions of RH and temperature (
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2011-06-01
    Description: Electron energy-loss spectroscopy (EELS), energy-filtered transmission electron microscopy (EFTEM), and high-resolution transmission electron microscopy (HRTEM) have been applied in mineralogy and materials research to determine the oxidation states of various metals at high spatial resolution. Such information is critical in understanding the kinetics and mechanisms of mineral-microbe interactions. To date, the aforementioned techniques have not been applied widely in the study of such interactions. In the present study, the three techniques above were employed to investigate mineral transformations associated with microbial Fe(III) reduction in magnetite. Shewanella putrefaciens strain CN32, a dissimilatory metal-reducing bacterium, was incubated with magnetite as the sole electron acceptor and lactate as the electron donor for 14 days under anoxic conditions in bicarbonate buffer. The extent of bioreduction was determined by wet chemistry and mineral solids were investigated by HRTEM, EFTEM, and EELS. Magnetite was partially reduced and biogenic siderite formed. The elemental maps of Fe, O, and C and red-green-blue (RGB) composite map for residual magnetite and newly formed siderite were contrasted by the EFTEM technique. The HRTEM revealed nm-sized magnetite crystals coating bacterial cells. The Fe oxidation state in residual magnetite and biogenic siderite was determined using the EELS technique (the integral ratio of L3 to L2). The integral ratio of L3 to L2 for magnetite (6.29) and siderite (2.71) corresponded to 71% of Fe(III) in magnetite, and 24% of Fe(III) in siderite, respectively. A chemical shift (~1.9 eV) in the Fe-L3 edge of magnetite and siderite indicated a difference in the oxidation state of Fe between these two minerals. Furthermore, the EELS images of magnetite (709 eV) and siderite (707 eV) were extracted from the electron energy-loss spectra collected, ranging from 675 to 755 eV, displaying different oxidation states of Fe in the magnetite and siderite phases. The results demonstrate that EELS is a powerful technique for studying the Fe oxidation-state change as a result of microbial interaction with Fe-containing minerals.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2011-06-01
    Description: Magnetite (Fe3O4) is a key economically valuable component in iron ore and is extracted by dissolution processes, but among the Fe (oxyhydr)oxides its solubility behavior is one of the least understood. The objective of this study was to improve understanding of magnetite dissolution mechanisms leading to thermodynamic equilibrium by comparing the dissolution of two solid samples, one synthetic and one industrial, using oxalic, sulfuric, and nitric acids at varying concentrations and temperatures. Of the three solid-liquid systems investigated, only the system consisting of magnetite and oxalic acid reached an equilibrium state within the duration of an individual experiment (6 h). In this system, increasing the acid concentration resulted in a significant increase in the equilibrium concentration of dissolved Fe. When dissolving synthetic and industrial magnetite, increasing the temperature not only increased the rate of reaction but also affected the concentration of dissolved Fe. Significant effects were observed when increasing the temperature from 15 to 35{degrees}C, but only slight differences were seen on further increases in temperature. Observations regarding the equilibrium state of the sulfuric and nitric acid systems could not be made because equilibrium was not reached. The most important individual observation regarding the equilibrium state of the nitric- and sulfuric-acid systems seems to be that in future studies a much longer reaction time is necessary, due to slow kinetics of the dissolution mechanism. A proton-based mechanism has been hypothesized as the one governing the dissolution of magnetite by these two acids, but only the dissolution of the industrial sample yielded results that were similar for these two acids and consistent with that hypothesis.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2011-06-01
    Description: Mesoporous materials with pore diameters in the range 2-50 nm forming tubular or fibrous structures are of great interest due to their unique properties. Because they are commonly used as sorbents and catalyst carriers, knowledge of their surface area and porosity is critical. A modified intercalation/ deintercalation method was used to increase the efficiency of nanotube formation from kaolin-group minerals which differ in terms of their degree of structural order. Unlike previous experiments, in the procedure adopted in the present study, methanol was used instead of 1,3-butanediol for grafting reactions and octadecylamine intercalation was also performed. The samples were examined using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and transmission electron microscopy (TEM). The specific surface area and porosity of previously described and newly formed materials were investigated by N2 adsorption/desorption. Compared to results described earlier, the percent yield of nanotubes obtained in the present study was significantly greater only in the case of Maria III' kaolinite, which has high structural order. This increase was obtained mainly by the grafting reaction with methanol. Highly ordered stacking of kaolinite-methanol intercalates was noticed and, thus, the amine intercalation was more efficient. In particular, the use of long-chain octadecylamine significantly increased the nanotube yield. The grafting reaction with methanol procedure yielded fewer nanotubes, however, when applied to poorly ordered samples ( Jaroszow' kaolinite and Dunino' halloysite). In the case of the Maria III' kaolinite, the diameter of the rolled layers observed by TEM was ~30 nm and corresponded to average diameters of newly formed pores (DmN) determined using N2 adsorption/desorption, confirming that nanotubes contributed to an increase in surface area and total pore volume. In the case of Jaroszow' kaolinite and Dunino' halloysite mainly macropores (DmN 〉 100 nm) and mesopores (20 nm 〉 DmN 〉 40 nm) were formed. The pores were attributed to interparticle and interaggregate spaces in the stacks of platy particles and to the small relative number of nanotubes.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2011-06-01
    Description: Clay processes, mineral reactions, and element budgets in oceans continue to be important topics for scientific investigation, particularly with respect to understanding better the roles of chemistry, formation mechanism, and input from hydrothermal fluids, seawater, and non-hydrothermal mineral phases. To that end, the present study was undertaken. Three samples of submarine metalliferous sediments of hydrothermal origin were studied to investigate the formation of smectite, usually Fe-rich, which takes place in such environments. The samples are from the historical collection returned by the British HMS Challenger expedition (1872-1876) and kept at the Natural History Museum in London. The samples were collected from the vicinity of the Pacific-Antarctic Ridge and the Chile Ridge. The samples were analyzed by means of X-ray diffraction (XRD), chemical analysis, scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), infrared (IR), and transmission electron microscopy-analytical electron microscopy (TEM-AEM). After removal of biogenic calcite the samples appeared to consist mainly of two low-crystallinity phases mixed intimately: Fe/Mn (oxyhydr)oxides and a Si-Al-Mg-Fe phase of similar chemical characteristics to smectite and with variable proportions of the above elements, as indicated by XRD, IR, and SEM-EDX. In particular, analysis by XRD revealed the presence of highly disordered {delta}-MnO2. The TEM-AEM analysis showed that Fe/MnOOH particles have Fe/Mn ratios in the range 25-0.2 and textures changing from granular to veil-like as the proportion of Mn increased. The smectite-like material has the morphology and chemistry of smectite, as well as 10-15 A lattice fringes. Selected area electron diffraction (SAED) patterns indicated a very poorly crystalline material: in some cases distances between diffraction rings corresponded to d values of smectite. The smectite composition indicated a main Fe-rich dioctahedral component with a substantial Mg-rich trioctahedral component (total octahedral occupancy between 2.02 and 2.51 atoms per O10[OH]2). The (proto-) smectite is interpreted to have formed within the metalliferous sediment, as a slow reaction between Fe/MnOOH, seawater (providing Mg), detrital silicates from the continent (providing Si and Al), and X-ray amorphous silica of hydrothermal origin that adsorbed on Fe/MnOOH phases and deposited with them. This material is possibly in the process of maturation into well crystallized smectite.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2011-06-01
    Description: Contaminant-transport modeling requires information about the charge of subsurface particle surfaces. Because values are commonly reused many times in a single simulation, small errors can be magnified greatly. Goethite ({alpha}-FeOOH) and pyrolusite ({beta}-MnO2) are ubiquitous mineral phases that are especially contaminant reactive. The objective of the present study was to measure and compare the point of zero charge (PZC) using different methods. The pyrolusite PZC was measured with three methods: mass titration (MT) (PZC = 5.9{+/-}0.1), powder addition (PA) (PZC = 5.98{+/-}0.08), and isoelectric point, IEP (PZC = 4.4{+/-}0.1). The IEP measurement was in agreement with literature values. However, MT and PA resulted in a statistically larger PZC than the IEP measurement. The surface area of pyrolusite, 2.2 m2g-1, was too small to permit PZC determination by the potentiometric titration (PT) method. Goethite PZC values were measured using MT (7.5{+/-}0.1), PT (7.46{+/-}0.09), and PA (7.20{+/-}0.08). The present work presents the first reported instance where MT and PA have been applied to measure the point of zero charge of either pyrolusite or goethite. The results illustrate the importance of using multiple, complementary techniques to measure PZC values accurately.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2011-06-15
    Description: The use of waste materials from mineral ore processing has much potential for immobilizing pollutants such as arsenic (As) in natural soils and waters. The purpose of the present study was to investigate red mud (RM, a finely textured bauxite-ore residue) as a sequestering agent for arsenate and phosphate, including characterization of the types of surface complexes formed. The mineralogical and structural changes occurring in RM were investigated after exchange with arsenate [As(V)-RM] and phosphate [P(V)-RM] anions at pH 4.0, 7.0, and 10.0. Eight different phases were present in the untreated red mud (RMnt), though 80 wt.% of the crystalline phase consisted of sodalite, hematite, gibbsite, and boehmite. The X-ray diffraction (XRD) data for As(V)-RM revealed an anion-promoted dissolution of the gibbsite, suggesting that this phase was the most active for As(V) sequestration. In addition, the lattice parameters of cancrinite were different in As(V)-RM at pH 7.0 and 10.0 from those in RMnt. The changes may be related to the incorporation of arsenate in the cancrinite cages. X-ray diffraction patterns of P(V)-RM at pH 4.0 and 7.0 revealed the dissolution of sodalite, hematite, and gibbsite, and the formation of a novel phase, berlinite [({alpha},{beta})AlPO4]. The new phases detected through XRD and thermal (TG/DTG) analysis in P(V)-RM probably originated through an initial phosphate-promoted dissolution of some RM phases, followed by a precipitation reaction between the phosphate and Al/Fe ions. The results obtained suggest that phosphate and arsenate, though with different reactivities, were strongly bound to some RM phases, such as gibbsite, cancrinite, sodalite, and hematite through mechanisms such as chemical sorption and coprecipitation reactions. The knowledge acquired will be helpful in selecting alternative materials such as red muds, which currently pose critical economic and environmental challenges related to their disposal, for the decontamination of soils and waters polluted with As.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2015-02-14
    Description: Bentonites are candidate materials for high-level radioactive waste (HLRW) repositories and, therefore, are investigated with respect to long-term stability. In order to identify possible bentonite alteration processes, long-term in situ tests are conducted in rock laboratories. The prototype repository in situ experiment (PR) is one of the best examples of this kind of test due to the size of the installation as well as the duration. In the present study, chemical and mineralogical alteration processes of the bentonite MX 80 after an 8 y heating period were investigated. The water content of all samples increased following inflowing Na-Ca-Cl-type granitic groundwater causing cation exchange in the bentonite buffer materials. Exchangeable magnesium was desorbed in the buffer and MgO concentration increased at the bentonite–Cu canister interface; the Mg sink could not be detected, however. CaO also accumulated at this interface mainly as Ca carbonate and Ca sulfate. Cu corrosion products were identified at the bentonite–canister interface by chemical analysis, scanning electron microscopy equipped with energy dispersive X-ray spectroscopy (SEM-EDX), and differential thermal analysis. Up to 0.5 mm into the bentonites Cu could be detected by SEM-EDX. No cristobalite dissolution was observed in contrast to other in situ tests in which iron heaters were used. The corrosion products and the lubricant which was added during manufacturing of the bentonite blocks were mixed with the bentonite at the bentonite–canister interface. A quantitative measure of that mixture was the decrease in the cation exchange capacity (CEC). The CEC also reduced in all other samples, however, compared to the CECs of the reference samples, particularly in the warmer deposition hole 5 compared to the colder deposition hole 6. Overall, the PR in situ experiment proved that cation exchange reactions occurred in full-scale bentonite buffer experiments in all bentonite blocks but structural degradation of smectite could not be identified.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2015-02-14
    Description: A major issue for the oil sand industry is the settling of thin fine tailings (TFT) which are a byproduct of the oil sand extraction process. These tailings are deposited in large ponds and settling takes decades. The aim of the present study was to increase understanding of the role of specific ion types (monovalent/divalent) present in the water in flocculation behavior, and hence the settling of flotation fine tailings of the Athabasca oil sands (which consist predominantly of kaolinite). In this study, two series of measurements were conducted and compared: one with TFT and with varying pH and salinity, and another with kaolinite suspensions with varying pH, salinity, and volume fraction. The volume fraction of kaolinite and TFT used was in the range 0.01–1% volume fraction for any ionic strength or ion. In this range the electrophoretic mobility was constant indicating that there were no particle–particle interactions, a required condition for electrophoretic mobility measurements. Electrokinetic measurements were made as a function of concentration of salt added and pH. The flocculation behavior of both TFT and kaolinite can be linked to the electrokinetic mobility at high ionic strength. The electrophoretic mobility values and therefore the electrokinetic charge of the particles were smaller for divalent salt than for monovalent salt. As a consequence, both kaolinite and fine tailings should and do flocculate more quickly in the presence of a divalent electrolyte during settling-column experiments. The electrophoretic mobility of kaolinite and tailings in electrolytes containing a majority of monovalent ions (NaCl) decreased in absolute values with decreasing pH while their electrophoretic mobility in electrolytes containing a majority of divalent ions (MgCl 2 ) did not depend on pH. The flocculation of the fine tailings in an electrolyte where divalent ions are predominant is therefore not expected to be influenced by pH.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2015-02-14
    Description: The presence of nitrate and other redox-active anionic contaminants in terrestrial ecosystems poses a significant risk to humans and other forms of life on Earth. The purpose of the present study was to test a potential in situ system, using poly-(D) glucosamine (chitosan) adsorbed to mineral surfaces under redox-active conditions in order to degrade nitrate to lower oxidation states. Chitosan is a linear polysaccharide derived from the chitin found in the shells of shrimp and other shellfish. Five different loadings of chitosan (0, 0.075, 0.25, 0.50, and 1.0 g/L; labeled C0, C1, C2, C3, and C4, respectively) were adsorbed to ferruginous smectite (SWa-1) to form chitosan-SWa-1 composites (CSC) in the pH range 5.8–4. The CSC was then reduced by Na 2 S 2 O 4 in a citrate-bicarbonate buffered dispersion and washed free of excess salts under inert-atmosphere conditions. Upon addition of the nitrate, the solution pH remained slightly acidic, ranging from 5.5 to 4.7. Samples were analyzed for Fe(II) content, reacted with a NaNO 3 solution, and then re-analyzed for structural Fe(II) content. Supernatant solutions were analyzed for nitrate, nitrite, and ammonium. In samples C1 to C4, extensive concentrations of nitrite were observed in the supernatants with a corresponding increase in the reoxidation of structural Fe(II), proving that a coupled redox reaction had occurred between the nitrate and the structural Fe in the clay mineral. The most efficient loading, defined as the largest percentage of adsorbed nitrate reduced to nitrite, occurred in sample C1. The total amount of nitrate reduced and Fe(II) reoxidized followed the trend 0 = C0 〈 C2 〈 C3 〈 C4 C1. Chitosan showed the potential to reverse the surface charge of constituent clay minerals, thereby enabling the CSC to remove nitrate anions from aqueous mineral systems via redox reactions with structural Fe(II) in clay minerals.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2015-02-14
    Description: In the present study, acid-modified attapulgite was used, as an adsorbent, to remove as much Cd 2+ as possible from aqueous solution. Static adsorption experiments using powdered acid-modified attapulgite, and dynamic adsorption using granular acid-modifed attapulgite, were conducted to explore the practical application of modified attapulgite in the adsorption of Cd 2+ . The modified attapulgite had a larger specific surface area and thinner fibrous crystals than the unmodified version. No obvious differences were noted, in terms of the crystal structure, between the natural attapulgite and the modified version. The effects of initial concentration, pH, contact time, and ionic strength on the adsorption of Cd 2+ were investigated, and the results showed that the adsorption capacity of the modified attapulgite was increased with increasing pH and the initial Cd 2+ concentration. The adsorption properties were analyzed by means of dynamic adsorption tests with respect to various Cd 2+ concentrations and flow rates. The maximum adsorption capacity of 8.83 mg/g occurred at a flow rate of 1 mL/min and at an initial concentration of 75 mg/L. Because there was better accord between the data and a pseudo-second order model than a pseudo-first-order model, external mass transfer is suggested to be the rate-controlling process. The experimental data were also fitted for the intraparticle diffusion model, implying that the intraparticle diffusion of Cd 2+ onto the modified attapulgite was also important for controlling the adsorption process. The Bohart-Adams model was more suitable than the Thomas model for describing the dynamic behavior with respect to the flow rate and the initial Cd 2+ concentration. This research provided the theoretical basis for the dynamic adsorption of Cd 2+ on the modified attapulgite. Compared to the powdered modified attapulgite, the dynamic adsorption by granular modified attapulgite appeared more favorable in terms of practical application.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2015-02-14
    Description: A version of thermoporometry dedicated to analyzing the pore network of expanding clays is proposed here. The blurred, wide Differential Scanning Calorimetry (DSC) peak obtained upon the melting of a frozen clay sample is processed by means of a deconvolution analysis based on searching for such a temperature distribution of "pulse-like heat events" which, convolved with the apparatus function, gives a minimal deviation from the observed heat flux function, i.e. the calorimetric signal. As a result, a sharp thermogram was obtained which can be transformed easily into the pore-size distribution curve. Results obtained for samples of two Clay Minerals Society Source Clays (montmorillonites SWy-2 from Wyoming and STx-1b from Texas) at different water contents indicate a greater resolution and sensitivity than that achieved by classical thermoporometry using the unprocessed DSC signal. Phenomena corresponding to the evolution of the pore network as a function of the water content have been detected in samples with large water contents subjected to free drying prior to the experiments.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2015-02-14
    Description: Because of their isolating capacity, smectite-rich clays have been proposed as buffer and backfill materials in high-level radioactive waste repositories. These repositories have to guarantee long-term safety for ~1 million years. Thermodynamics and kinetics of possible alteration processes of bentonite determine its long-term performance as a barrier material. Smectites in 25 different clays and bentonites were investigated in order to identify possible differences in their rates of alteration. These samples were saturated for 30 days in 1 M NaCl solution and deionized water, and then overhead rotated at speeds of 20 rpm and 60 rpm. Depending on the octahedral and interlayer composition, each of the smectites studied had specific rate of alteration, a so-called specific dissolution potential of smectite. The bentonites were classed as ‘slow-reacting bentonite’, ‘moderate-reacting bentonite’, or ‘fast-reacting bentonite’ corresponding to a relatively low ( P – specific dissolution potential –〈–5%), moderate (–5% 〈 P 〈–20%), or high specific dissolution potential ( P 〉 –20%), respectively. The larger the amount of octahedral Fe and Mg compared to octahedral Al, the greater the specific dissolution potential. The present study found that the interlayer composition has a discernible impact on the rate of alteration. In experiments with rotation speeds of 60 rpm and a 1 M NaCl solution, Na + was found to be the stabilizing cation in the interlayers of all the smectites. The Na-stabilizing mechanism was identified in only some of the smectites (type A) in experiments with 20 rpm (1 M NaCl solution). A second stabilization mechanism (by interlayer cations; Ca and Mg) was identified for other smectites (type B). Each bentonite has a specific rate of alteration. ‘Slow-reacting bentonite’ and clay with smectite-illite interstratifications are recommended as potential clay barriers in HLW repositories. The experimental and analytical procedures described here could be applied to potential barrier materials to identify ‘slow-reacting bentonite’.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2011-10-05
    Description: Toxic dyes must be removed from waste water coming from the textile and paint industries. Adsorption is one possible method of removing dyes under soft' conditions, without the generation of secondary hazardous materials. The present study used the carbonate-containing layered double hydroxides (LDH), Mg-Al and Mg-Zn-Al (with a M2+/M3+ ratio of 3), as adsorbents to remove two industrial colorants, Astrazon Remazol Brilliant Blue and Direct Red, present in low concentrations in aqueous solutions. The physicochemical properties of adsorbents at the surfaces of LDH, as well as the properties of the solutions containing the dyes control how the colorants are removed. Both fresh and calcined LDH were effective in the removal experiments, with effectiveness ranging from 50 to 100%. Analysis of kinetic data demonstrated that the adsorption process fitted the pseudo-second-order model better than the pseudo-first order model, information which is useful for system design in the treatment of wastes from the textile industry. Parameters such as pH of solutions and concentration of dye in solution influenced mainly the initial adsorption rate.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2011-10-05
    Description: The naturally occurring layered double hydroxides (LDH, or anionic clays) are of particular interest in environmental geochemistry because of their ability to retain hazardous cations and especially anions. However, incorporation of these minerals into predictive models of water-rock interaction in contaminant environments, including radioactive-waste repositories, is hampered by a lack of thermodynamic and stability data. To fill part of this gap the present authors have derived properties of one of the complex multicomponent solid solutions within the LDH family: the hydrotalcite-pyroaurite series, Mg3(Al1-xFex)(OH)8(CO3)0.5{middle dot}2.5H2O. Members of the hydrotalcite-pyroaurite series with fixed MgII/(AlIII+FeIII) = 3 and various FeIII/(FeIII+AlIII) ratios were synthesized by co-precipitation and dissolved in long-term experiments at 23{+/-}2{degrees}C and pH = 11.40{+/-}0.03. The chemical compositions of co-existing solid and aqueous phases were determined by inductively coupled plasma-optical emission spectroscopy, thermogravimetric analysis, and liquid scintillation counting of 55Fe tracers; X-ray diffraction and Raman were used to characterize the solids. Based on good evidence for reversible equilibrium in the experiments, the thermodynamic properties of the solid solution were examined using total-scale Lippmann solubility products, {sum}{Pi}T. No significant difference was observed between values of {sum}{Pi}T from co-precipitation and from dissolution experiments throughout the whole range of Fe/Al ratios. A simple ideal solid-solution model with similar end-member {sum}{Pi}T values (a regular model with 0 〈 WG 〈 2 kJ mol-1) was sufficient to describe the full range of intermediate mineral compositions. In turn, this yielded the first estimate of the standard Gibbs free energy of the pyroaurite end member, Go298,Pyr = -3882.60{+/-}2.00 kJ/mol, consistent with Go298,Htlc = -4339.85 kJ/mol of the hydrotalcite end member, and with the whole range of solubilities of the mixed phases. The molar volumes of the solid-solution at standard conditions were derived from X-ray data. Finally, Helgeson's method was used to extend the estimates of standard molar entropy and heat capacity of the end members over the pressure-temperature range 0-70{degrees}C and 1-100 bar.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    Clay Minerals Society
    Publication Date: 2011-11-10
    Description: Even the most casual observer will recognize that rocks transform to clay minerals over time on Earth, and clay minerals have played a particularly important role in the geologic evolution of our planet as well as the evolution of human civilization. Clay minerals, however, have also played an important role elsewhere in our Solar System, and they provide some of the best evidence of aqueous processes during time periods not accessible in Earth’s rock record. The wealth of new data acquired using a variety of remote sensing techniques on planetary missions, coupled with detailed laboratory studies of meteorites, have increased awareness of this fact over the past several decades. The recent renewed interest in clay minerals formed beyond Earth led to a session on new developments in the study of extraterrestrial clay minerals during the 14th International Clay Conference in Castellaneta Marina, Italy, in 2009, and this issue of Clays and Clay Minerals presents several papers that resulted from that session. The number and variety of minerals have increased during the history of our Solar System, yet clay minerals clearly have existed since at least the time of planetary accretion...
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2011-11-10
    Description: The Al-clay-rich rock units at Mawrth Vallis, Mars, have been identified as mixtures of multiple components based on their spectral reflectance properties and the known spectral character of pure clay minerals. In particular, the spectral characteristics associated with the ~2.2 m feature in Martian reflectance spectra indicate that mixtures of AlOH- and SiOH-bearing minerals are present. The present study investigated the spectral reflectance properties of the following binary mixtures to aid in the interpretation of remotely acquired reflectance spectra of rocks at Mawrth Vallis: kaolinite-opal-A, kaolinite-montmorillonite, montmorillonite-obsidian, montmorillonite-hydrated silica (opal), and glass-illite-smectite (where glass was hydrothermally altered to mixed-layer illite-smectite). The best spectral matches with Martian data from the present study's laboratory experiments are mixtures of montmorillonite and obsidian having ~50% montmorillonite or mixtures of kaolinite and montmorillonite with ~30% kaolinite. For both of these mixtures the maximum inflection point on the long wavelength side of the 2.21 m absorption feature is shifted to longer wavelengths, and in the case of the kaolinite-montmorillonite mixtures the 2.17 m absorption found in kaolinite is of similar relative magnitude to that feature as observed in CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) data. The reflectance spectra of clay mixed with opal and of hydrothermally altered glass-illite-smectite did not represent the Martian spectra observed in this region as well. A spectral comparison of linear vs. intimate mixtures of kaolinite and montmorillonite indicated that for these sieved samples, the intimate mixtures are very similar to the linear mixtures with the exception of the altered glass-illite-smectite samples. However, the 2.17 m kaolinite absorption is stronger in the intimate mixtures than in the equivalent linear mixture. Modified Gaussian Modeling of absorption features observed in reflectance spectra of the kaolinite-montmorillonite mixtures indicated a strong correlation between percent kaolinite in the mixture and the ratio of the area of the 2.16 m band found in kaolinite to the area of the 2.20 m band found in montmorillonite.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2011-11-10
    Description: The discovery of phyllosilicates in terrains of Noachian age (〉3.5 Ga) on Mars implies a period in the planet's history that was characterized by wetter, warmer conditions that may have been more hospitable for life than the cold and dry conditions prevalent today. More specific information about the original locations and mechanisms of clay mineral formation on Mars is not as well constrained, however, in part because the origin of particular clay minerals is often non-unique. For example, Fe and Mg smectite-bearing deposits on Mars may have formed in various environments, including the weathering profiles of basic volcanic rocks, impact-induced hydrothermal sites, or in bodies of standing water. The identification of lacustrine deposits on Mars is of great interest due to their potential for the preservation of organic material, but identifying any given suite of sedimentary rocks as such is difficult when limited to mineralogy and morphology derived from orbital data. Here, the processes and conditions leading to clay mineral formation in lakes and evaporative marine basins on Earth are reviewed, with a focus on the spatial and stratigraphic distribution of clays in these settings. The goal is to provide criteria to determine if certain Martian clay deposits are consistent with such an origin, which in turn will aid in the identification of possible ancient habitable environments on Mars.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2011-11-10
    Description: Outer main-belt asteroids are predominantly of the C-type (carbonaceous), suggesting that they are likely parent bodies of carbonaceous chondrites. Abundant phyllosilicates in some classes of carbonaceous chondrites have chemical compositions, mineral associations, and textures that preserve direct evidence of the processes by which carbonaceous chondrites and their parent asteroids originated and evolved to their present state. Serpentine is the dominant hydroxyl-bearing mineral in the most abundant (CM) group of carbonaceous chondrites. Serpentine may have formed as a direct nebular condensate during cooling of the solar nebula, or by aqueous alteration of anhydrous Mg,Fe-silicate precursors. Such alteration of anhydrous precursors may have occurred in the solar nebula prior to assembly of the meteorites' parent bodies or on the parent bodies. The relative proportions of Fe and Mg in fine-grained CM2 serpentines have been used to compare the degree of aqueous alteration of different CM2 chondrites with one another. The Mg content of serpentine increases with increasing overall degree of aqueous alteration, so CM2 chondrites with Mg-rich serpentines experienced a more advanced degree of aqueous alteration than CM2 chondrites with Fe-rich serpentines. Attempts to quantify aqueous alteration of CM chondrites by interpreting electron microprobe analyses in terms of charge-balance and site-occupancy constraints from serpentine stoichiometry have met with mixed success. Despite its imperfections, one widely used alteration index based on serpentine stoichiometry is strongly correlated with the elapsed time since the fall and recovery of witnessed CM chondrite falls. Additionally, volatile organic contaminants introduced during sample processing in the laboratory are associated with serpentine and other matrix phyllosilicates. Together, these post-recovery changes in scientifically important sample attributes imply that oxidation-reduction and other types of weathering and contamination affect these meteorites even during curatorial storage and laboratory processing. The same phyllosilicates that make their carbonaceous-chondritic host rocks scientifically important research targets also render those same rocks extraordinarily vulnerable to terrestrial contamination of some of their most scientifically important attributes. This has possible implications for reconstructing pre-terrestrial (parent body) aqueous alteration phenomena from carbonaceous chondritic meteorites and eventually from samples returned by future missions to asteroids with spectral reflectance properties similar to carbonaceous chondrites.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    Clay Minerals Society
    Publication Date: 2012-12-11
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    Clay Minerals Society
    Publication Date: 2012-12-11
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2012-10-19
    Description: Using first-principles molecular-dynamics simulations, probable inner-sphere complexes of Fe2+ adsorbed on the edge surfaces of clay minerals were investigated. Ferrous ions are important reductants in natural processes and their properties can be altered significantly by complexation on edge surfaces of clay minerals. However, the microscopic picture of adsorption sites and structures of Fe2+ is difficult to reveal with modern experimental techniques and, therefore, remains unclear. From the results of first-principles molecular-dynamics simulations, evidence has been provided that complexes on ≡Si–O sites were the most stable forms, which should be responsible for the experimentally observed pH-dependent uptake. Such complexation was found to be strong enough to distort the local coordination structures of Si-O tetrahedra in the substrate. Analyses showed that Fe2+–Owater coordination structures were dominated by the solvent with surface groups participating in the complexes via H bonding. The present study provided a microscopic basis for understanding the chemical processes involving surface-complexed Fe2+ ions.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2012-10-19
    Description: The increasing exploration and exploitation of hydrocarbon resources hosted by oil and gas shales demands the correct measurement of certain properties of sedimentary rocks rich in organic matter (OM). Two essential properties of OM-rich shales, the total specific surface area (TSSA) and cation exchange capacity (CEC), are primarily controlled by the rock’s clay mineral content (i.e. the type and quantity). This paper presents the limitations of two commonly used methods of measuring bulk-rock TSSA and CEC, ethylene glycol monoethyl ether (EGME) retention and visible light spectrometry of Co(III)-hexamine, in OM-rich rocks. The limitations were investigated using a suite of OM-rich shales and mudstones that vary in origin, age, clay mineral content, and thermal maturity.Ethylene glycol monoethyl ether reacted strongly with and was retained by natural OM, producing excess TSSA if calculated using commonly applied adsorption coefficients. Although the intensity of the reaction seems to depend on thermal maturity, OM in all the samples analyzed reacted with EGME to an extent that made TSSA values unreliable; therefore, EGME is not recommended for TSSA measurements on samples containing 〉3% OM.Some evidence indicated that drying at ≥200ºC may influence bulk-rock CEC values by altering OM in early mature rocks. In light of this evidence, drying at 110ºC is recommended as a more suitable pre-treatment for CEC measurements in OM-rich shales. When using visible light spectrometry for CEC determination, leachable sample components contributed to the absorbance of the measured wavelength (470 nm), decreasing the calculated bulk rock CEC value. A test of sample-derived excess absorbance with zero-absorbance solutions (i.e. NaCl) and the introduction of corrections to the CEC calculation are recommended.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2012-10-19
    Description: Using bentonites to adsorb aflatoxin is an effective method of minimizing the toxicity of aflatoxin to animals and humans. Early studies indicated a more than 10-fold difference in aflatoxin adsorption capacity among different bentonites. The determining mineralogical and chemical properties of the clays in aflatoxin adsorption are still poorly understood. The objective of this study was to test the hypothesis that a bentonite’s selectivity and adsorption capacity for aflatoxin is mainly determined by the ‘size matching’ requirement, on a nm scale, between the non-polar interlayer surface domains and the aflatoxin molecules. The non-polar surface domain size of smectites was varied by (1) selecting smectites with different charge densities; and (2) changing the valence and the size of exchange cations to control the amount of water in the hydration shells of the cations. Infrared spectroscopy and X-ray diffraction were also used to characterize the aflatoxin-smectite complexes to investigate if layer-charge density would affect the bonding strength between aflatoxin and the minerals. A large aflatoxin adsorption capacity and high selectivity for aflatoxin were achieved by selecting smectites that had low charge density as represented by their
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2012-10-19
    Description: The conformational behavior of polymers in clay-polymer nanocomposites (CPN) is not fully understood because of the many factors involved. The purpose of the present study was to investigate the conformational behavior of a polymer at the micro- and meso-scales in order to predict the behavior of tunable CPN. The study used a pH-responsive polymer, polyacrylamide, which has time-dependent hydrolysis response properties, to examine micro-scale conformational behavior of the polymer adsorbed on representative clay-mineral surfaces, SiO2 and Al2O3. A nanocomposite and a microcomposite were used to link meso-scale CPN behavior to micro-scale polymer conformation. The conformational behavior was characterized using in situ, real-time spectroscopic ellipsometry. The contracted coil conformation of polyacrylamide was observed at pH = 3, while extended conformation was observed at pH = 11.5 on both SiO2 and Al2O3 surfaces. At pH = 11.5, the polymer conformation changed from expanded coil to extended conformation over time. The polymer conformation changed more rapidly with the Al2O3 surface due to mineral dissolution at pH = 3 and 11.5. Swelling tests were conducted as functions of pH and time to link the micro-scale phenomena to meso-scale CPN behavior. The results indicated that the swelling potential of CPN corresponded to the conformation of adsorbed polyacrylamide, which varied with pH and time. The swelling potential of CPN was maximized at pH = 11.5 and decreased with decreasing pH, corresponding to the observed micro-scale conformational behavior.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2015-12-09
    Description: Atomistic simulations of 2:1 clay minerals based on parameterized forcefields have been applied successfully to provide a detailed description of the interfacial structure and dynamics of basal planes and interlayers, but have made limited progress in exploring the edge surfaces of these ubiquitous layer-type aluminosilicates. In the present study, molecular dynamics simulations and energy-minimization calculations of the edge surfaces using the fully flexible CLAYFF forcefield are reported. Pyrophyllite provides an ideal prototype for the 2:1 clay-mineral edge surface because it possesses no structural charge, thus rendering the basal planes inert, while crystal-growth theory can be applied to identify two major candidates for the structure of the edge surfaces. Models based on these candidate structures reproduced bulk crystal bond distances accurately when compared to X-ray data and ab initio molecular simulations, and the predicted edge surface bond distances were in agreement with those determined via ab initio simulation. The calculated surface free energy and surface stress led to an accurate prediction of pyrophyllite nanoparticle morphology, while surface excess energies calculated for the edge surfaces were always negative. These results are consistent with the observed pyrophyllite nanoparticle morphology, with the concept of negative interfacial energies, and conditions that may give rise to them including a role in the stabilization of layer-type nanoparticulate minerals. Molecular dynamics simulations of hydrated nanoparticle edge surfaces indicated five reactive surface oxygen sites on the dominant candidate edge, in agreement with a recent model of proton titration data for 2:1 clay minerals. These promising results illustrate the potential for classical mechanical atomistic simulations that explore edge surface phenomena at much greater length- and times-scales than are currently possible with computationally expensive ab initio methods.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2015-12-09
    Description: Because of their geochemical properties, the Çakmaktepe (Uşak) kaolin deposits have been considered as primary. New sedimentological, mineralogical, and geochemical data suggest that the Çakmaktepe kaolins are secondary deposits of sedimentary processes after hydrothermal alteration of the source rocks. The kaolins in the Çakmaktepe deposit were formed from the hydrothermal alteration of calcalkaline Karaboldere volcanics (KBV). The kaolinized materials were then reworked and accumulated in a lacustrine basin. The argillic alteration zones were associated with faults, and lateral zonation of minerals was observed in the KBV. Smectite was the major phyllosilicate in the ‘outer zone’. The alteration mineralogy of the ‘inner zone’ was similar to that of the Çakmaktepe kaolins and consisted mainly of kaolinite with minor amounts of smectite and alunite. The trace-element abundances in the kaolinized volcanics and the Çakmaktepe kaolins indicated hypogene conditions. The 18 O values of the Çakmaktepe kaolins ranged from 0.2 to 5.92%, which indicated that the Çakmaktepe kaolinites were formed at temperatures between 92 and 156°C, and the D values ranged from –91.68 to –109.45%. The irregular edge-to-face morphology, the variation in grain-size, a few broken crystals of kaolinite, the deficiency of dissolution-replacement and crystallization mechanisms, and the the low sphericity, very angular, and poorly sorted quartz crystals in the kaolins all result from transport processes. The sedimentary structures, including trough cross-lamination, tool marks, and load casts, indicate transportation by turbulent waters and deposition of kaolin layers in a shallow lake.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2015-12-09
    Description: In order to better understand the possible interactions between steel canisters and a claystone host rock, in this case the Callovo-Oxfordian rock (COx), the present study investigated in detail, under conditions relevant to high-level radioactive waste repositories (anoxic conditions, temperature of 90°C), the reactions between metallic iron and: (1) COx; (2) the clay fraction extracted from COx (CF); and (3) mixtures of CF with quartz, calcite, or pyrite. Batch experiments were then carried out in the presence of NaCl-CaCl 2 background electrolyte, for durations of 1, 3, and 9 months. Solid and liquid end-products were characterized by a combination of techniques including liquid analyses, transmission and scanning electron microscopies, X-ray diffraction, N 2 adsorption at 77 K, and Mössbauer spectroscopy. The interaction between CF and metallic iron appeared to proceed by means of pathways similar to those illustrated in previous studies on interactions between metallic iron and purified clays. In spite of the many similarities with previous studies, significant differences were observed between the behavior of COx and CF, particularly in terms of pH and Eh evolution, iron consumption, chemical composition of the neoformed particles, and textural evolution. Such differences demonstrate the important role played by non-clay minerals in reaction pathways. The addition of carbonates or pyrite to CF did not lead to significant change in reactivity. In contrast, under the conditions used in the present study, i.e . for relatively low iron:clay ratios, the presence of quartz strongly influenced reaction pathways. In the presence of quartz, magnetite was observed only in trace abundances whereas the amounts of magnetite were significant in experiments without quartz. Furthermore, filamentous serpentine particles with a small Al:Si ratio appeared which could develop from an FeSiAl gel that only forms in the presence of quartz. Considering that most clay rocks currently being considered for radioactive waste disposal contain significant amounts of quartz, the results obtained in the present study may be of significant interest for predicting the long-term behavior of clay barriers in such sites.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2015-11-29
    Description: The application of ceramic membranes is limited by the high cost of raw materials and the sintering process at high temperatures. To overcome these drawbacks, the present study investigated both the preparation of ceramic membranes using cost-effective raw materials and the possibility of recycling the membranes for the treatment of oily wastewater. Ceramic membranes with a pore size of 0.29–0.67 μm were prepared successfully at temperatures as low as 1000–1100°C by a simple pressing route using low-cost base materials including diatomite, kaolin, bentonite, talc, sodium borate, and barium carbonate. The typical steady-state flux, fouling resistance, and oil-rejection rate of the low-cost virgin membranes sintered at 1000°C were 2.5 x 10 –5 m 3 m –2 s –1 at 303 kPa, 63.5%, and 84.1%, respectively, with a feed oil concentration of 600 mg/L. A simple burn-out process of the used membranes at 600°C in air resulted in 〉95% recovery of the specific surface area (SSA) of the virgin membranes, a significantly increased steady-state flux, decreased fouling resistance, and increased oil-rejection rate. The typical steady-state flux, fouling resistance, and oil-rejection rate of the low-cost ceramic membrane sintered at 1000°C and subsequently heat treated at 600°C for 1 h in air after the first filtration were 5.4 x 10 –5 m 3 m –2 s –1 at 303 kPa, 27.1%, and 92.9%, respectively, with a feed oil concentration of 600 mg/L. The present results suggest that the low-cost ceramic membranes used for oily wastewater filtration can be recycled by simple heat-treatment at 600°C in air. As the fouling resistance of the low-cost ceramic membranes decreased with a decrease in pore size, the preferred pore size of the membranes for oily wastewater filtration is 〈0.4 μm.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2015-11-29
    Description: Bentonites are commonly used as chemical containment barriers to minimize liquid flow and contaminant transport. However, chemicals can adversely affect bentonite performance to the extent that modified bentonites have been developed to improve chemical resistance relative to traditional (unmodified) bentonites. The present study focused on the diffusion of potassium chloride (KCl) through a bentonite-polymer composite, or BPC, that was known to behave as a semipermeable membrane. Specifically, the effective diffusion coefficients, D * , for chloride (Cl – ) and potassium (K + ) were measured and correlated with previously measured membrane efficiency coefficients, , for the BPC. The values of D * at steady-state for chloride $$({D}_{\hbox{ ss },{\hbox{ Cl }}^{-}}^{*})$$ and potassium $$({D}_{\hbox{ ss },{\mathrm{K}}^{+}}^{*})$$ decreased as the values increased. The decrease in $${D}_{\hbox{ ss },{\hbox{ Cl }}^{-}}^{*}$$ and $${D}_{\hbox{ ss },{\mathrm{K}}^{+}}^{*}$$ was approximately a linear function of (1 – ), which is consistent with previous research performed on unmodified Na-bentonite contained within a geosynthetic clay liner (GCL). In contrast to the previous GCL tests, however, $${D}_{\hbox{ ss },{\hbox{ Cl }}^{-}}^{*}$$ values for the BPC generally were greater than the $${D}_{\hbox{ ss },{\mathrm{K}}^{+}}^{*}$$ values, and the differences between $${D}_{\hbox{ ss },{\hbox{ Cl }}^{-}}^{*}$$ and $${D}_{\hbox{ ss },{\mathrm{K}}^{+}}^{*}$$ decreased as KCl concentration increased. The apparent discrepancy between $${D}_{\hbox{ ss },{\hbox{ Cl }}^{-}}^{*}$$ and $${D}_{\hbox{ ss },{\mathrm{K}}^{+}}^{*}$$ is consistent with excess sodium (Na + ) in the BPC prior to testing and the requirement for electroneutrality during testing. Also, despite an apparent linear trend in diffusive mass flux for K + , lack of agreement between the ratio of the diffusive mass flux of K + relative to that for Cl – as required on the basis of electroneutrality at steady state suggested that steady-state diffusive mass flux for K + had probably not been achieved due to continual K + -for-Na + cation exchange. Nonetheless, the excess Na + and bentonite modification did not affect the fundamental correlation between D * and , which requires that D * approaches zero as approaches unity ( D * -〉 0 as -〉 1).
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2015-12-09
    Description: Talc is an important industrial mineral with a broad range of applications. Particle size and crystal structure have a significant influence on the potential uses. The present study examined the influence of grinding and ultrasound treatment on talc from a new deposit, Gemerská Poloma, in Slovakia. The general knowledge that grinding produces progressive structural disorder leading to amorphization, whereas sonication has a negligible effect on the talc crystal structure, was confirmed by X-ray diffraction (XRD), infrared (IR) spectroscopy, and transmission electron microscopy (TEM). Partial reduction of particle size along with delamination was observed by XRD after sonication, low-angle laser light scattering (LALLS), scanning electron microscopy (SEM), and TEM. The specific surface area (SSA) increased slightly after prolonged sonication, but grinding initially caused a rapid increase in SSA followed by a drastic decrease after prolonged grinding time of up to 120 min which was attributed to the aggregation of amorphized talc. Sonication and grinding had different influences on the thermal behavior of the talc studied. Sonication decreased slightly the dehydroxylation temperature, whereas grinding added a significant mass loss at low temperature, arising from the dehydration of hydrated Mg cations released from the talc structure during amorphization. The initial high whiteness value of talc decreased slightly after grinding or sonication. Thermogravimetry was suggested as a useful tool to track and predict changes in the talc structure upon sonication and grinding.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2015-12-09
    Description: The conventional methods of direct bromination of organic compounds with elemental bromine have several major drawbacks such as handling difficulty, corrosive effect, and toxicity, in addition to over-bromination and problems with isolation of products from the reaction mixture. Supported catalysts and reagents have become popular in the synthesis of organic chemicals over recent decades because they have overcome almost all of the drawbacks noted above. In the present study, a new clay polymer nanocomposite (CPN)-supported brominating agent was prepared from montmorillonite (Mnt) and styrene- co -vinyl pyridinium polymer. The reagent was obtained by the direct interaction of a two-fold excess of poly(styrene- co - N -methyl-4-vinylpyridinium) bromide with Na-montmorillonite (NaMnt) through ion exchange between Na + of the NaMnt and pyridinium ions in the copolymer to provide CPN3 with free methylpyridinium bromide side chains. The structure of the CPN3 prepared was characterized by infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Treatment of the CPN3 with bromine using the bromide ions which remained led to the perbromide-supported reagent, CPN4. The activity of the resulting CPN4 brominating reagent was examined through direct bromination of some alkenes, arenes, and carbonyl compounds and compared with the effectiveness of a crosslinked polymeric perbromide reagent. The yields obtained from application of the reagent were moderate to excellent. The advantages of this reagent, such as stability at room temperature, ease of regeneration from the polymeric by-product, and the yields of the brominated products, confirm the viability of using a CPN-supported brominating agent as a reactive reagent in organic chemistry synthesis.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2015-12-09
    Description: During recent decades, the search for possible repositories for high-level nuclear waste has yielded large amounts of sorption data for actinides on different minerals. Clays and clay minerals are of special interest as potential host-rock formations and backfill materials, by virtue of their good retardation properties. Neptunium (Np) is one of the actinides which is considered in long-term scenarios due to its long-lived nuclide 237 Np ( t 1/2 = 2.1 x 10 6 y). Because neptunium sorption is heavily dependent on the experimental conditions, comparison of sorption data from different experiments is challenging. Normalizing reported data with respect to the surface area of the sorbent enables conversion of conventional distribution coefficients (K d ) to normalized (K a ) values, which improves comparability among the results of different experiments. The present review gives a detailed summary of sorption data of Np on clays and clay minerals and examines critically the applicability of the K a approach.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2015-11-29
    Description: Organic dyes such as methylene blue (MB) are often used in the characterization of clays and related minerals, but details of the adsorption mechanisms of such dyes are only partially understood from spectroscopic data, which indicate the presence of monomers, dimers, and higher aggregates for varying mineral surfaces. A combination of quantum (density functional theory) and classical molecular simulation methods was used to provide molecular detail of such adsorption processes, specifically the adsorption of MB onto kaolinite basal surfaces. Slab models with vacuum-terminated surfaces were used to obtain detailed structural properties and binding energies at both levels of theory, while classical molecular dynamics simulations of aqueous pores were used to characterize MB adsorption at infinite dilution and at higher concentration in which MB dimers and one-dimensional chains formed. Results for the neutral MB molecules are compared with those for the corresponding cation. Simulations of the aqueous pore indicate preferred adsorption on the hydrophobic siloxane surface, while charge-balancing chloride ions adsorb at the aluminol surface. At infinite dilution and in the gas-phase models, MB adsorbs with its primary molecular plane parallel to the siloxane surface to enhance hydrophobic interactions. Sandwiched dimers and chains are oriented perpendicular to the surface to facilitate the strong hydrophobic intermolecular interactions. Compared with quantum results, the hybrid force field predicts a weaker MB adsorption energy but a stronger dimerization energy. The structure and energetics of adsorbed MB at infinite dilution are consistent with the gas-phase binding results, which indicate that monomer adsorption is driven by strong interfacial forces rather than by the hydration properties of the dye. These results inform spectroscopic studies of MB adsorption on mineral surfaces while also revealing critical areas for development of improved hybrid force fields.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2015-11-29
    Description: When clay minerals, notably smectites, intercalate organic cations, their interlayer surfaces change from hydrophilic to hydrophobic. The resultant intercalates, known as organo-clays (OCs), have a large affinity for hydrophobic organic contaminants (HOCs). Organo-clays are used as sorbents of HOCs in wastewater treatment and as sorptive barriers in landfill liners. The structural and sorptive characteristics of OCs with respect to HOCs have been studied extensively, and a large volume of literature has accumulated over the past few decades. The interactions of OCs with HOCs and the various approaches to improving the sorption capacity of OCs are reviewed here, with particular reference to the application of novel analytical techniques, such as molecular modeling, to characterizing the OC–HOC interaction.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2015-11-29
    Description: Widespread lateritized ultramafic rocks in the southern part of the Muratdağı region of Turkey constitute a significant source of Ni-Cr-bearing ore with economic potential. However, no mineralogical or geochemical characterizations of these important materials have been performed previously. The aim of the present study was to describe the mineralogy, geochemistry, and genesis of Ni-Cr-bearing smectite in garnierite and ferruginous saprolite associated with the lateritized ophiolite-related ultramafic rocks. The lateritic zones are well developed over serpentinized harzburgitic mantle peridotites. The lateritized units and related bedrocks were examined using polarized-light microscopy, X-ray diffraction, scanning and transmission electron microscopies, and chemical and isotopic methods. The garnierite-containing saprolites are enriched in smectite, Fe-(oxyhydr)oxide phases, and opal-CT. Micromorphological images revealed that flaky smectite and, locally, Fe-rich particles, alunite, gypsum, gibbsite, and sulfur crystals developed along the fractures and dissolution voids. The development of saprolite demonstrates chemical weathering. The presence of silicified and Fe-(oxyhydr)oxide phases associated with gypsum, alunite, and local native sulfur in vertical and/or subvertical fractures and fault infillings are indicative of hydrothermal processes along the extensional, tectonically related fault systems. Chemical weathering and hydrothermal processes, which probably started during the Oligocene and Miocene, led to the formation of nontronite, Fe-bearing montmorillonite, and local Fe-rich kaolinite. Nickel and Cr are concentrated significantly in the saprolite zone and are positively correlated with Fe 2 O 3 content, which is controlled by the formation of nontronite, montmorillonite, and Fe-(oxyhydr)oxide phases. Nickel-Cr-bearing nontronite and montmorillonite precipitated from alkaline water as a result of the increasing (Fe 2 O 3 +Al 2 O 3 +Cr 2 O 5 +Ni+Co)/(MgO+SiO 2 ) ratio under the control of both chemical weathering and hydrothermal processes. The Fe and Mg (associated with Ni and Cr) required for the formation of smectite were supplied by solutions from both chemical weathering and hydrothermal alteration of Ni-Cr-bearing olivine and pyroxene in the harzburgitic bedrock; the Al was supplied by schists, granite, and volcanic units.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2016-01-16
    Description: The objective of the study was to contribute to the understanding of the influence of the structure and the 2:1 layer dimension of smectites on cation exchange capacity (CEC) reduction and the hydration behavior of Li-saturated smectites after heating. Five montmorillonites extracted from bentonites of different provenance were saturated with Li + and heated to 300°C. Initial montmorillonites and montmorillonites with reduced layer charge (RCM) were characterized by comprehensive mineralogical analysis supplemented by CEC measurements, surface-area measurements by Ar adsorption, and 7 Li, 27 Al, and 29 Si magic-angle spinning nuclear magnetic resonance spectroscopy (MAS NMR). The CEC of the initial montmorillonites varied between 89 and 130 cmol(+)/kg while the CEC of the RCM prepared at 300°C varied between 8 and 25 cmol(+)/kg. The lateral dimension of the 2:1 layers varied between 70 and 200 nm. The greatest decrease in CEC was observed for the montmorillonite with the largest diameter of the 2:1 layers and the smallest decrease was observed for the montmorillonite with the smallest diameter of the 2:1 layers. 7 Li MAS NMR revealed an axially symmetric chemical environment of the hydrated interlayer Li + with = 0 for the chemical shift anisotropy tensor for unheated montmorillonites with 〉33% tetrahedral layer charge (). The chemical environment is typical of inner-sphere hydration complexes of interlayer Li + . An axially non-symmetric chemical environment of the interlayer Li + with CS of close to one was observed for all RCM. While the remaining CEC of RCM prepared at 300°C reflected the variable CEC at the edges, and thus the lateral size or aspect ratio of the 2:1 layers, the hydration complex of interlayer Li + was strongly determined by the isomorphic substitutions in the dioctahedral 2:1 layers.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2016-01-16
    Description: Ceramic clays are among the most complicated of ceramic systems because of the very intricate relationship between the behavior of minerals during ceramic processing and their modifications during heating. A major challenge is to predict the phase changes in clay ceramics. The aims of this study were to establish reference data of ceramic products that can be formed based on the mineralogical compositions of the local raw materials. These data, in turn, can be compared with archeological ceramics in order to study their origins. The mineralogical compositions and modifications during firing (550–1100°C under oxidizing conditions) of seven clayey materials sampled from the main clay deposits of northern Morocco were evaluated by X-ray powder diffraction. Two groups of clays were distinguished according to the type of neoformed high-temperature minerals: non-calcareous clays and calcareous clays. For the non-calcareous raw materials, spinel was produced at 950°C. Cristobalite and mullite were formed at temperatures in excess of 1000°C from clays that contain illite, kaolinite, and chlorite. In clays containing vermiculite and large amounts of chlorite, hematite was formed at temperatures in excess of 950°C. Firing of calcareous clays at temperatures 〉950°C yielded Ca-silicates (diopside, gehlenite and wollastonite), spinel, cristobalite, hematite, and feldspars. Mullite may also form in the calcareous clay products when the carbonate content exceeds 10%.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2012-04-01
    Description: The flavonoid naringin is the main source of the undesirable bitter taste in some citrus juices. In commercial debittering processes, the naringin is adsorbed on non-ionic polymeric resins. Organo-clays (OCs), which have been used as sorbents for organic pollutants, could also have affinity for the naringin molecule, and thus potentially could serve as a debittering agent. The objective of the present study was to characterize the sorption capacity of a prepared OC to evaluate its ability to remove naringin from aqueous solutions, investigating the effect of adsorbent dose, initial concentration of naringin, temperature, contact time, and pH. The OC was prepared by the intercalation of cationic surfactant hexadecyltrimethylammonium bromide in a Mexican bentonite. The host clay and the OC were characterized by X-ray diffraction, Fourier-transform infrared, and nitrogen gas adsorption. The OC showed a surface area of 9.3 m2 g−1, 11.35 nm average pore diameter, and a basal spacing, d001, of 2.01 nm. The adsorbent removed naringin at the rate of 60–72% at 25ºC and pH 3. The sorption capacity increased with pH and temperature. Experimental data were well fitted by both Langmuir and Freundlich adsorption models. Most of the sorption took place during the first 10 min and the equilibrium time was reached within 720 min. The rate of sorption was adjusted to pseudo second-order kinetics.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2012-04-01
    Description: Garnierites represent significant Ni ore minerals in the many Ni-laterite deposits worldwide. The occurrence of a variety of garnierite minerals with variable Ni content poses questions about the conditions of their formation. From an aqueous-solution equilibrium thermodynamic point of view, the present study examines the conditions that favor the precipitation of a particular garnierite phase and the mechanism of Ni-enrichment, and gives an explanation to the temporal and spatial succession of different garnierite minerals in Ni-laterite deposits. The chemical and structural characterization of garnierite minerals from many nickel laterite deposits around the world show that this group of minerals is formed essentially by an intimate intermixing of three Mg-Ni phyllosilicate solid solutions: serpentine-népouite, kerolite-pimelite, and sepiolite-falcondoite, without or with very small amounts of Al in their composition. The present study deals with garnierites which are essentially Al-free. The published experimental dissolution constants for Mg end-members of the above solid solutions and the calculated constants for pure Ni end-members were used to calculate Lippmann diagrams for the three solid solutions, on the assumption that they are ideal. With the help of these diagrams, congruent dissolution of Ni-poor primary minerals, followed by equilibrium precipitation of Ni-rich secondary phyllosilicates, is proposed as an efficient mechanism for Ni supergene enrichment in the laterite profile. The stability fields of the solid solutions were constructed using [log aSiO2(aq), log ((aMg2+ + aNi2+)/(aH+)2)] (predominance) diagrams. These, combined with Lippmann diagrams, give an almost complete chemical characterization of the solution and the precipitating phase(s) in equilibrium. The temporal and spatial succession of hydrous Mg-Ni phyllosilicates encountered in Ni-laterite deposits is explained by the small mobility of silica and the increase in its activity.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2012-04-01
    Description: Bentonites are candidate materials for encapsulation of radioactive waste. The cation exchange capacity (CEC) has proved to be one of the most sensitive parameters for detecting changes of mineral properties such as swelling capacity and illitization in alteration experiments. Whether measured differences in CEC values of bentonite buffer samples before and after an experiment are (1) actual differences caused by clay structural changes such as illitization or (2) simply data scatter due to the different methods used by international research teams is an open question. The aim of this study was to measure the CEC of clay samples in five different laboratories using the same method and to evaluate the precision of the values measured. The Cu-trien method and four reference materials of the Alternative Buffer Material (ABM) test project in Äspö, Sweden, were chosen for this interlaboratory study. The precision of the Cu-trien method, which uses visible spectroscopy, was very good with a standard deviation of ±0.7–2.1 meq/100 g for CECs that ranged from 11 to 87 meq/100 g. For the same CEC range, analysis of Cu-trien index cations using inductively coupled plasma (mass spectrometry) and atomic absorption spectroscopy were less precise with a standard deviation of ±2.8–3.9 meq/100 g. Based on the measured precision, greater measured differences in Cu-trien CEC and exchangeable cation values of bentonite buffer samples, before and after an experiment, might be actual differences. Great care must be taken when interpreting measured CEC differences, and analytical characterization of any structural changes may be needed. Compared with results from the ‘International Soil-Analytical Exchange’ (iSE) program for soils, most absolute concentrations were much larger for the clays studied; however, for the two parameters exchangeable Ca2+ and CEC the range was similar to the iSE ring test and, most importantly, the precision was comparable. Future studies should discuss the accuracy of CEC and exchangeable cation values and compare them to alternative CEC methods in which care is taken to prevent dissolution of soluble minerals, such as calcite and gypsum.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2012-04-01
    Description: To acquire a better understanding of the influence exerted by the presence of Cd2+ during the process of transforming ferrihydrite to goethite, the morphological and structural changes of several samples obtained by the addition of Cd2+ to a suspension of nascent goethite were explored, and their chemical reactivity in acid media assessed. The samples (series Gi) were obtained by adding, at different times during the synthesis process, Cd2+ ions to ferrihydrite (Fe5HO8.4H2O) formed in alkaline media. The suspensions were aged for 5 days at 70ºC, and the amorphous materials were extracted using a HCl solution (series GHCl-i). The X-ray diffraction (XRD) patterns showed that a goethite-like phase was formed, and chemical analyses indicated that the Cd content, xCd, increased with the earlier addition of the Cd2+ ions to the Fe oxyhydroxide suspension. Lattice parameters and cell volume, obtained by the Rietveld simulation of XRD data, indicated an enlargement of the cell parameters of goethite in line with the Cd-for-Fe substitution. In order to determine the influence of oxalate ions on the non-extracted solids, a second set of samples was also prepared that was kept in contact with an ammonium oxalate solution for 4 h (series Gox-i). The dissolution behavior of two series of Cd goethites and of a third series, obtained from coprecipitation of Fe3+ and Cd2+ ions in alkaline media, was observed. Kinetics measurements in 4 M HCl showed that the initial dissolution rate of samples Gox-i decreased with aging time, while the opposite effect was observed for series GHCl-i. Dissolution–time curves were well described by the Kabai equation, and activation energies were calculated using the Arrhenius equation. The results indicate that the presence of Cd during the crystallization process of goethite leads to the formation of a Cd goethite with modified morphology, structural parameters, and chemical reactivity.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2012-04-01
    Description: The combination of zero-valent iron (ZVI) and a clay-type amendment is often observed to have a synergistic effect on the rate of reduction reactions. In the present study, electrochemical techniques were used to determine the mechanism of interaction between the iron (Fe) and smectite clay minerals. Iron electrodes coated with an evaporated smectite suspension (clay-modified iron electrodes, CMIEs) were prepared using five different smectites: SAz-1, SWa-1, STx-1, SWy-1, and SHCa-1. All the smectites were exchanged with Na+ and one sample of SWy-1 was also exchanged with Mg2+. Potentiodynamic polarization scans and cyclic voltammograms were taken using the CMIEs and uncoated but passivated Fe electrodes. These electrochemical experiments, along with measurements of the amount of Fe2+ and Fe3+ sorbed in the smectite coating, suggested that the smectite removed the passive layer of the underlying Fe electrode during the evaporation process. Cyclic voltammograms taken after the CMIEs were biased at the active-passive transition potential for varying amounts of time suggested that the smectite limited growth of a passive layer, preventing passivation. These results are attributed to the Brønsted acidity of the smectite as well as to its ability to sorb Fe cations. Oxides that did form on the surface of the Fe in the presence of the smectite when it was biased anodically were reduced at a different electrochemical potential from those that form on the surface of an uncoated Fe electrode under otherwise similar conditions; this difference suggested that the smectite reacted with the Fe2+ formed from the oxidation of the underlying Fe. No significant correlation could be found between the ability of the smectite to remove the Fe passive film and the smectite type. The results have implications for the mixing of sediments and Fe particles in permeable reactive barriers, underground storage of radioactive waste in steel canisters, and the use of smectite supports in preventing aggregation of nano-sized zero-valent iron.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2012-04-01
    Description: Bentonites are candidate materials for encapsulation of radioactive waste. The cation exchange capacity (CEC) has proven to be one of the most sensitive parameters for detecting changes in mineral properties in bentonite-alteration experiments. An interlaboratory study of CECs and exchangeable cations for three reference bentonite buffer materials that were used in the Alternative Buffer Material test (ABM) project in Äspö, Sweden, was conducted to create a suitable database. The present study focused on CEC accuracy and compared CEC methods where care was taken to prevent dissolution of soluble minerals such as calcite and gypsum. The overall quality of the CEC and exchangeable cation values measured using non-Cu-trien CEC methods were good, with CECs of 74–91±0.5–3.3 meq/100 g and exchangeable cation values of 22–61±1.2–3.9 meq/100 g Na + , 7–23±0.8–1.5 meq/100 g Mg 2+ , and 19–39±0.8–1.6 meq/100 g Ca 2+ . The precision was comparable to the standard Cu-trien method even for exchangeable Ca 2+ , although the laboratories used different solution/solid ratios and reaction-time parameters for Cu-trien which affect carbonate dissolution. The MX80 and Dep.CAN bentonite exchangeable Ca 2+ values were more accurate than standard-Cu-trien values. Using the optimized methods of this study, MX80 and Dep.CAN exchangeable Ca 2+ values averaged 20.2±1.6 and 38.8±1.4 meq/100 g which amounts to ~70% of the inflated Cu-trien values. A more complex analysis of the CEC data using different methods, anion analyses, and mineralogical analysis is necessary to obtain plausible and accurate CEC values. Even with a more complicated analytical procedure, the CEC and exchangeable cation values were still not accurate enough because of excess anions. Chloride, sulfate, and dolomite might have increased the exchangeable Na + , Mg 2+ , and Ca 2+ values.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2012-04-01
    Description: The presence, percentage, origins, and rate of formation of clay minerals have been important components in studies involving the geochemical and structural composition of waste-rock piles. The objective of the present study was to investigate the use of tritium as an indicator of the origin of clay minerals within such piles. Tritium values in pore water, interlayer water, and structural hydroxyl sites of clay minerals were examined to evaluate the origins of clay minerals within waste-rock piles located near Questa, New Mexico. Five clay minerals were identified: kaolinite, chlorite, illite, smectite, and mixed-layer illite-smectite, along with the hydrous sulfate minerals gypsum and jarosite. Analysis of waters derived from clay minerals was achieved by thermal reaction of dry-sieved bulk material obtained from the Questa site. In all Questa samples, the low-temperature water derived from pore-water and interlayer sites, as well as the intermediate-temperature water derived from interlayer cation sites occupied by hydronium and structural hydroxyl ions, show tritium values at or near modern levels for precipitation. Pore water and interlayer water ranged from 5.31 to 12.19 tritium units (TU) and interlayer hydronium and structurally derived water ranged from 3.92 to 7.93 TU. Tritium levels for local precipitation ranged from ~4 to 8 TU. One tritium unit (TU) represents one molecule of 3H1HO in 1018 molecules of 1H1HO. The elevated levels of tritium in structural sites can be accounted for by thermal incorporation of significant amounts of hydronium ions in interlayer cation sites for illite and mixed-layer clays, both common at the Questa site. In low-pH environments, such as those found within Questa waste-rock piles (typically pH ~3), the hydronium ion is an abundant species in the rock-pile pore-water system.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2012-04-01
    Description: Particle–particle interactions in natural clays can be evaluated by their rheological behavior, but the results are often affected by the physicochemical properties of the clays. The behaviors of two fundamentally different types of clays (low-activity and high-activity) differ with respect to salinity and a time factor (duration of shearing at a given shear rate): illite-rich Jonquiere clay (low-activity clay, Canada) and montmorillonite-rich Wyoming bentonite (high-activity clay, USA). The purpose of the present study was to investigate these different behaviors. Most natural clays exhibit shear-thinning and thixotropic behavior with respect to salinity and the volumetric concentration of the solids. Natural clays also exhibit time-dependent non-Newtonian behavior. In terms of index value and shear strength, low-activity and high-activity clays are known to exhibit contrasting responses to salinity. The geotechnical and rheological characteristics as a function of salinity and the shearing time for the given materials are compared here. The clay minerals were compared to estimate the inherent shear strengths, such as remolded shear strength (which is similar to the yield strength). Low-activity clay exhibits thixotropic behavior in a time-dependent manner. High-activity clay is also thixotropic for a short period of shearing, although rare cases of rheopectic behavior have been measured for long periods of shearing at high shear rates. The change from thixotropic to rheopectic behavior by bentonite clay has little effect at low shearing speeds, but appears to have a significant effect at higher speeds.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2012-02-01
    Description: The island-arc volcanics situated in the eastern part of the Capîlnas-Techereu nappe (South Apuseni Mountains, Romania) were studied to evaluate the temperature, fluid properties, and mineral chemistry during low-temperature metamorphism. Detailed observations of metamorphic mineral assemblages were conducted using powder X-ray diffraction and electron microprobe. The metamorphism involved albitization of plagioclase feldspar and the formation of mafic phyllosilicates, zeolites, and other hydrous Ca-Al-silicate minerals. Mafic phyllosilicates consisted of transitional dioctahedral-trioctahedral smectites, mixed-layer chlorite-smectite (C/S, 6–96% chlorite), and discrete chlorite. The zeolites were analcime, stilbite ± stellerite, heulandite, laumontite, epistilbite, and mordenite. Also present, as secondary minerals filling amygdales and veins, are prehnite, pumpellyite, and secondary amphibole. Two mineral assemblages were identified which provide important information about metamorphic conditions (temperature, reaction progress, and fluid properties): (1) heulandite + analcime + quartz; and (2) laumontite + albite + quartz + prehnite + pumpellyite ± amphibole. The types of and relations between minerals in the first assemblage suggest the occurrence of low-temperature hydrothermal metamorphism in the zeolite facies at ~125ºC, whereas the second assemblage was metamorphosed at 200ºC. The composition and variability of the mineral assemblages in the study area suggest that, due to slow reaction rates, the low-temperature transformations and mineral assemblages were influenced not only by temperature but also by local rock composition, fluid-rock ratio, and fluid chemistry.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2012-02-01
    Description: Microwave irradiation as a means for heating bentonites during acid activation has been investigated in the past but it has never been optimized for industrial applications. The purpose of this study was to apply a factorial 23 experimental design to a Serbian bentonite in order to determine the influence of microwave heating on the acid-activation process. The effect of acid activation under microwave irradiation on the textural and structural properties of bentonite was studied as a model reaction. A mathematical, second-order response surface model (RSM) was developed with a central composite design that incorporated the relationships among various process parameters (time, acid concentration, and microwave heating power) and the selected process response of specific surface area of the bentonite. The ranges of values for the process parameters chosen were: time, 5–21 min; acid concentration, 2–7 M; and microwave heating power, 63–172 W. The effect of individual variables and their interaction effects on the textural and structural properties of the bentonite were determined. Statistical analysis showed that the duration of microwave irradiation was less significant than the other two factors. The model showed that increasing the time and acid concentration improved the textural properties of bentonites, resulting in increased specific surface area. This model is useful for setting an optimum value of the activation parameters for achieving the maximum specific surface area. An optimum specific surface area of 142 m2g-1 was achieved with an acid concentration of 5.2 M, activation time of 7.4 min, and microwave power of 117 W.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2012-02-01
    Description: A diapiric intrusion of clays in the Carlentini Formation (Tortonian) was discovered in a quarry at S. Demetrio High (Hyblean Plateau, Sicily, Italy). Seven clay samples were analyzed by different analytical methods, including X-ray powder diffraction (XRD) and Fourier-transform infrared (FTIR) spectroscopy, to determine the composition and mechanism of formation (sedimentary vs. hydrothermal) of these clays. Ferric saponite, carbonates (calcite and traces of ankerite), quartz, pyrite, and zeolites (phillipsite and harmotome) were detected using XRD and FTIR. This mineral assemblage, dominated by Fe-rich saponite, and the abundance of light rare-earth elements (LREE), Eu, fluid-mobile elements (FME 〉 10× primordial mantle: Li, Be, B, As, Sb, Pb, U, Ba, Sr, Cs), and other incompatible elements (Zr = 169 ppm, Nb = 46 ppm, Th = 11 ppm, on average) imply that S. Demetrio clays precipitated from a mixture of hot Si-rich hydrothermal fluids (350–400ºC) and cold seawater. The evidence is in accord with the affinity of clays for hydrothermally modified mafic and ultramafic rocks, forming the Hyblean lower crust, based on multi-element comparisons, and on the occurrence of trace amounts of chrysotile 2Mc1 and sepiolite. The association of long-chain aliphatic-aromatic hydrocarbons (intensity ratios I2927/I2957 〉 0.5) with hydrothermal clays, the lack of fossils, and the similarity of the IR absorption bands with those of organic compounds detected previously in some metasomatized Hyblean gabbroic xenoliths suggest a possible abiogenic origin of hydrocarbons via a Fischer-Tropsch-type reaction. The S. Demetrio clay diapir was emplaced at shallow crustal levels in the Late Miocene as a consequence of the interaction, at a greater depth, of an uprising basalt magma and the products of an early, serpentinite-hosted hydrothermal system.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2012-02-01
    Description: Bentonite cake is usually formed on the excavated trench surface that is supported by the bentonite slurry during construction of slurry cutoff walls. The lower hydraulic conductivity of bentonite cakes formed during construction of slurry cutoff walls in comparison to backfill materials provides an additional benefit. In the present study, the hydraulic conductivities of bentonite cakes made using three different bentonites were estimated using the modified fluid-loss test under various pressures. Both the hydraulic conductivities of bentonite cakes and cutoff-wall backfill are important in evaluating the in situ hydraulic performance of slurry cutoff-wall construction. Three bentonite slurry concentrations of 4, 6, and 8% were used to fabricate bentonite cakes that represent common field conditions. X-ray diffraction, cation exchange capacity, and swell-index data were collected to characterize the bentonites. Two modified methods for analyzing fluid-loss test results were used to estimate bentonite cake hydraulic conductivities. In addition, the viscosity as a function of time was measured to explain the sealing capacities of the bentonite slurries. The bentonite-cake hydraulic conductivities ranged from 2.15×10-11 m/s to 2.88×10-10 m/s, which were 10 to 500 times lower than the cutoff wall backfill design. Experimental results for 4 and 6% bentonite slurries were relatively similar, but the 8% slurries were noticeably different. Calculated bentonite-cake thickness and stress distribution indicated that the local void ratio and hydraulic conductivity may vary across the cake thickness. The considerably lower bentonite-cake hydraulic conductivities compared to the cutoff wall backfill design show its significance in slurry cutoff-wall construction practices.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2011-10-05
    Description: Kaolinite is a common gangue mineral in iron ore and sodium silicate has been used widely as a dispersant of silicate gangue minerals including kaolinite in various iron-ore flotation methods over a wide range of pH. Its actual dispersive effect on kaolinite under iron-ore flotation conditions has received very limited attention, however. The presence of hydrolyzable metal cations in process water further complicates sodium silicate-kaolinite interactions. In the present study, the dispersive effect of sodium silicate on kaolinite particles in distilled water as well as in CaCl2 and MgCl2 solutions was investigated systematically through electrophoretic mobility and colloid-stability studies. The studies were based on controlled pH, which eliminated the dispersive effect of sodium silicate induced by increasing pulp pH, in order to simulate the conditions of iron-ore processing. With pH controlled at constant levels, sodium silicate dispersed kaolinite only when positively charged sites were present on kaolinite surfaces and the zeta potential of kaolinite was more negative than ~-30 mV. Over the pH range from 5 to 10.5, a significant dispersive effect of sodium silicate was only observed at pH 7. In process water, when Ca and Mg were present, the strong coagulation of kaolinite particles caused by the hydrolyzable metal cations could not be dispersed effectively with sodium silicate.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2011-10-05
    Description: The naturally occurring layered double hydroxides (LDH, or anionic clays) are of particular interest in environmental geochemistry because of their ability to retain hazardous cations and especially anions. However, incorporation of these minerals into predictive models of water-rock interaction in contaminant environments, including radioactive-waste repositories, is hampered by a lack of thermodynamic and stability data. To fill part of this gap the present authors have derived properties of one of the complex multicomponent solid solutions within the LDH family: the hydrotalcite-pyroaurite series, Mg3(Al1-xFex)(OH)8(CO3)0.5{middle dot}2.5H2O. Members of the hydrotalcite-pyroaurite series with fixed MgII/(AlIII+FeIII) = 3 and various FeIII/(FeIII+AlIII) ratios were synthesized by co-precipitation and dissolved in long-term experiments at 23{+/-}2{degrees}C and pH = 11.40{+/-}0.03. The chemical compositions of co-existing solid and aqueous phases were determined by inductively coupled plasma-optical emission spectroscopy, thermogravimetric analysis, and liquid scintillation counting of 55Fe tracers; X-ray diffraction and Raman were used to characterize the solids. Based on good evidence for reversible equilibrium in the experiments, the thermodynamic properties of the solid solution were examined using total-scale Lippmann solubility products, {sum}{Pi}T. No significant difference was observed between values of {sum}{Pi}T from co-precipitation and from dissolution experiments throughout the whole range of Fe/Al ratios. A simple ideal solid-solution model with similar end-member {sum}{Pi}T values (a regular model with 0 〈 WG 〈 2 kJ mol-1) was sufficient to describe the full range of intermediate mineral compositions. In turn, this yielded the first estimate of the standard Gibbs free energy of the pyroaurite end member, Go298,Pyr = -3882.60{+/-}2.00 kJ/mol, consistent with Go298,Htlc = -4339.85 kJ/mol of the hydrotalcite end member, and with the whole range of solubilities of the mixed phases. The molar volumes of the solid-solution at standard conditions were derived from X-ray data. Finally, Helgeson's method was used to extend the estimates of standard molar entropy and heat capacity of the end members over the pressure-temperature range 0-70{degrees}C and 1-100 bar.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2011-10-21
    Description: The Middle-Upper Miocene-Pliocene sediments near Polatli contain commercial sepiolitic clay deposits. The sepiolite-rich Polatli basin sediments were studied to describe the sepiolitic clay deposits of the area and to assess the environments of formation using X-ray diffraction, optical and scanning electron microscopy, and chemical analysis. The Polatli basin is an elongated, rift-related graben trending NE-SW in central Turkey, filled with continental Late Miocene to Early Pliocene sediments. The sediments which comprise claystone, marl and limestone, dolostone, and evaporites are characteristic deposits of low-salinity, playa-lake depositional environments. These sepiolite-rich deposits include sepiolite, dolomite, and calcite, with minor amounts of palygorskite, quartz, moganite, amorphous silica (opal-CT), and feldspar. The sepiolite shows all the characteristic X-ray diffraction reflections of that mineral, whereas amorphous silica containing sepiolite shows some of the characteristic reflections of sepiolite, but with somewhat broader and less intense basal reflections. In the siliceous deposits, the long, fibrous, and filamentous aggregates of the sepiolite were converted to thick, short fibers, low in Mg, and showing transition to amorphous silica. Major and trace elements (e.g. Si, Al, Fe, Mg, Sr, Ba, etc.) were found almost exclusively in Mg-rich smectitic claystone and detrital silicate-rich rocks, whereas Mg, Ca, and some Si were concentrated in the neoformed minerals in the basin. The rare-earth elements (REE) and some of the high-field strength elements (HFSE), large ion lithophile elements (LILE), and transition elements (TRE) patterns were similar for detrital silicate-rich rocks and formed from neoformed mineral lithologies. The REE, TRE, LILE, and some of the HFSE contents of limestone, dolostone, and sepiolitic claystone were similar while those of detrital silicate-rich rocks and Mg-rich smectitic claystones were similar to each other. PAAS-normalized REE and other trace-element patterns were typically subparallel and depleted in neoformed minerals. All sample groups had positive Eu* anomalies, except Mg-rich smectite (0.80). Limestone, dolostone, and amorphous silica compounds showed slightly negative Ce* anomalies, whereas sepiolitic claystones, Mg-rich smectitic claystones, and detrital silicate-rich rocks had a slightly positive Ce* anomaly.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2011-10-21
    Description: The objectives of this study were to investigate the effects of chemical parameters on the characterization of W-type zeolite crystals and their intergrowths with other types of zeolites. The crystal size and purity of W-type zeolites are affected significantly by the gel composition with respect to the molar ratios of SiO2/Al2O3 (aluminosilicate module, {alpha}), H2O/K2O (alkainity, {beta}), and water content (H2O/SiO2, {gamma}). The effects of these gel parameters on the synthesis and characterization of W-type zeolite were investigated. Crystalline W-type zeolite of high purity was synthesized using a gel with a molar ratio of Al2O3:6.4SiO2:5.6K2O:164.6H2O at T = 165{degrees}C for a period of 72 h. The effect of excess K2O/SiO2 ratio in a mono-cation (K)-SiO2-Al2O3 gel-composition system on the nanoparticle size and purity of the product was also investigated. Experiments were carried out using the following levels of alkalinity: 21.4, 29.4, and 51.9; aluminosilicate module: 5.0, 6.4, and 10.0; water content: 16.5, 25.7, and 32.9; and excess K2O/SiO2 ratio : from 0.65 to 3.33. The results showed that by increasing the aluminosilicate module at high K2O/SiO2 ratio, the crystallinity and crystal size of the zeolite synthesized increased, while at low alkalinity, the crystallinity and crystal size decreased. Decreasing alkalinity at low aluminosilicate module increased the crystallinity and decreased the crystal size, while at high aluminosilicate module, both decreased. Finally, by increasing the water content at all aluminosilicate module and alkalinity values, the crystallinity and crystal size of the W-type zeolite increased. Excess K2O/SiO2 ratio was the key factor that should be adjusted in the range 0.7-1.0 for synthesis of pure crystals of W-type zeolite.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2011-10-05
    Description: Toxic dyes must be removed from waste water coming from the textile and paint industries. Adsorption is one possible method of removing dyes under soft' conditions, without the generation of secondary hazardous materials. The present study used the carbonate-containing layered double hydroxides (LDH), Mg-Al and Mg-Zn-Al (with a M2+/M3+ ratio of 3), as adsorbents to remove two industrial colorants, Astrazon Remazol Brilliant Blue and Direct Red, present in low concentrations in aqueous solutions. The physicochemical properties of adsorbents at the surfaces of LDH, as well as the properties of the solutions containing the dyes control how the colorants are removed. Both fresh and calcined LDH were effective in the removal experiments, with effectiveness ranging from 50 to 100%. Analysis of kinetic data demonstrated that the adsorption process fitted the pseudo-second-order model better than the pseudo-first order model, information which is useful for system design in the treatment of wastes from the textile industry. Parameters such as pH of solutions and concentration of dye in solution influenced mainly the initial adsorption rate.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2011-10-21
    Description: The Kutahya kaolinite deposits are the most important source of raw materials for the ceramics industry in Turkey. To date, no detailed mineralogical or geochemical characterizations of these materials have been carried out; the present study aims to fill that gap. The Kutahya kaolinite deposits formed by alteration of dacite and andesite tuffs related to Neogene volcanism which was associated with extensional tectonics. The kaolinite deposits contain silica and Fe- and Ti-bearing phases (pyrite, goethite, and rutile) in vertical and subvertical veins that diminish and then disappear upward. Mineralogical zonation outward from the main kaolinite deposit is as follows: kaolinite {+/-} smectite + illite + opal-CT + feldspar; feldspar + kaolinite + quartz + smectite + illite; quartz + feldspar + volcanic glass. The veins and mineral distributions demonstrate that hydrothermal alteration was the main process in the development of the kaolinite deposits of the area. The very sharp, intense, diagnostic basal reflections at 7.2 and 3.57 A, as well as non-basal reflections, well defined pseudohexagonal to hexagonal crystallinity with regular outlines, ideal differential thermal analysis-thermal gravimetric curves, and ideal, sharp, infrared spectral bands indicate well crystallized kaolinite. Micromorphologically, the development of kaolinite plates at the edges of altered feldspar and devitrified volcanic glass indicates an authigenic origin. Lateral increase in (SiO2+Fe2O3+MgO+Na2O+CaO+K2O)/(Al2O3+TiO2) from the center of the kaolinite deposit outward also indicates hydrothermal zonation. Enrichment of Sr in altered and partially altered rocks relative to fresh volcanic-rock samples demonstrates retention of Sr and depletion of Rb, Ba, Ca, and K during hydrothermal alteration of sanidine and plagioclase within the volcanic units. In addition, depletion of heavy rare earth elements (HREE) relative to light rare earth elements (LREE) in the kaolinized materials may be attributed to the alteration of hornblende. The negative Eu anomaly suggests the alteration of feldspar by hydrothermal fluids. The isotopic data from kaolinite and smectite indicate that hydrothermal-alteration processes developed at 119.1-186.9{degrees}C and 61.8-84.5{degrees}C, respectively. Thus, the kaolinite deposits formed by hydrothermal alteration of volcanic glass, feldspar, and hornblende by a dissolution-precipitation mechanism which operated under acidic conditions within Neogene dacite, andesite, and tuffs.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2011-10-21
    Description: Toxic metal contamination of waste waters can be mitigated by metal adsorption to clay and zeolitic minerals, but in developing countries such environmental remediation can be cost prohibitive if these minerals are not readily available. Because of its abundance, low cost, and excellent selectivity for several toxic metal ions, clinoptilolite from the Zlatokop deposit in Serbia was investigated for its ability to remove copper ions from aqueous solutions and serve as an effective local resource for this purpose. The sorption capacity of the clinoptilolite at 298 K varied from 8.3 mg Cu g-1 (for C0 = 100 mg Cu dm-3) to 16.8 mg Cu g-1 (for C0 = 400 mg Cu dm-3). The sorption data were best described by the Freundlich isotherm and the sorption kinetics followed the pseudo-second-order model. Intra-particle diffusion of Cu2+ was present but it is not the rate-limiting step. The sorption of Cu2+ on the clinoptilolite occurred spontaneously, the free energy change decreasing with temperature. The sorption was endothermic and was accompanied by an increase in entropy. Dehydration of the Cu-loaded clinoptilolite at 540{degrees}C led to the formation of nanocrystalline Cu(I) oxide particles with an average size of ~2 nm, suggesting possible novel applications for the Cu-loaded clinoptilolite.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2011-10-21
    Description: Clay-rich deposits of Upper Cretaceous levels in the Taveiro (Reveles and S. Pedro) and Aveiro (Bustos) regions of west-central Portugal are economically and environmentally important, but detailed chemical and mineralogical characterization is lacking. The purpose of this study was to partially fill that gap by correlating the trace-element geochemistry (particularly the rare earth elements, REE) with the mineralogy of both the whole rock and of the
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2011-07-11
    Description: Blum and Eberl (2004) presented a new technique for determining the surface area of clay minerals in sediment samples by measuring the amount of poly-vinylpyrrolidone (PVP) [CAS#9003-39-8] adsorbed by a sample, and explained how the surface-area determination can be used to determine quantitatively the smectite content of the samples. In the previous method for determining surface area by PVP uptake (Blum and Eberl, 2004; also see the erratum relating to that paper published on p. 214 of the present issue), ~50 mg of Na-saturated smectite was dispersed in 5 mL of water, and 1 mL of 10 wt.% PVP-55 (mean MW 55,000) was added. The sample was centrifuged, a portion of the solution decanted, and the PVP concentration in solution determined by mass after drying. The mass of PVP adsorbed on the sample was then computed by difference. This method, while accurate, had several limitations for its practical application which have now been overcome. One of the limitations of the procedure outlined by Blum and Eberl (2004) was...
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2011-06-01
    Description: Contaminant-transport modeling requires information about the charge of subsurface particle surfaces. Because values are commonly reused many times in a single simulation, small errors can be magnified greatly. Goethite ({alpha}-FeOOH) and pyrolusite ({beta}-MnO2) are ubiquitous mineral phases that are especially contaminant reactive. The objective of the present study was to measure and compare the point of zero charge (PZC) using different methods. The pyrolusite PZC was measured with three methods: mass titration (MT) (PZC = 5.9{+/-}0.1), powder addition (PA) (PZC = 5.98{+/-}0.08), and isoelectric point, IEP (PZC = 4.4{+/-}0.1). The IEP measurement was in agreement with literature values. However, MT and PA resulted in a statistically larger PZC than the IEP measurement. The surface area of pyrolusite, 2.2 m2g-1, was too small to permit PZC determination by the potentiometric titration (PT) method. Goethite PZC values were measured using MT (7.5{+/-}0.1), PT (7.46{+/-}0.09), and PA (7.20{+/-}0.08). The present work presents the first reported instance where MT and PA have been applied to measure the point of zero charge of either pyrolusite or goethite. The results illustrate the importance of using multiple, complementary techniques to measure PZC values accurately.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2011-06-01
    Description: Mesoporous materials with pore diameters in the range 2-50 nm forming tubular or fibrous structures are of great interest due to their unique properties. Because they are commonly used as sorbents and catalyst carriers, knowledge of their surface area and porosity is critical. A modified intercalation/ deintercalation method was used to increase the efficiency of nanotube formation from kaolin-group minerals which differ in terms of their degree of structural order. Unlike previous experiments, in the procedure adopted in the present study, methanol was used instead of 1,3-butanediol for grafting reactions and octadecylamine intercalation was also performed. The samples were examined using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and transmission electron microscopy (TEM). The specific surface area and porosity of previously described and newly formed materials were investigated by N2 adsorption/desorption. Compared to results described earlier, the percent yield of nanotubes obtained in the present study was significantly greater only in the case of Maria III' kaolinite, which has high structural order. This increase was obtained mainly by the grafting reaction with methanol. Highly ordered stacking of kaolinite-methanol intercalates was noticed and, thus, the amine intercalation was more efficient. In particular, the use of long-chain octadecylamine significantly increased the nanotube yield. The grafting reaction with methanol procedure yielded fewer nanotubes, however, when applied to poorly ordered samples ( Jaroszow' kaolinite and Dunino' halloysite). In the case of the Maria III' kaolinite, the diameter of the rolled layers observed by TEM was ~30 nm and corresponded to average diameters of newly formed pores (DmN) determined using N2 adsorption/desorption, confirming that nanotubes contributed to an increase in surface area and total pore volume. In the case of Jaroszow' kaolinite and Dunino' halloysite mainly macropores (DmN 〉 100 nm) and mesopores (20 nm 〉 DmN 〉 40 nm) were formed. The pores were attributed to interparticle and interaggregate spaces in the stacks of platy particles and to the small relative number of nanotubes.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2011-06-01
    Description: Clay processes, mineral reactions, and element budgets in oceans continue to be important topics for scientific investigation, particularly with respect to understanding better the roles of chemistry, formation mechanism, and input from hydrothermal fluids, seawater, and non-hydrothermal mineral phases. To that end, the present study was undertaken. Three samples of submarine metalliferous sediments of hydrothermal origin were studied to investigate the formation of smectite, usually Fe-rich, which takes place in such environments. The samples are from the historical collection returned by the British HMS Challenger expedition (1872-1876) and kept at the Natural History Museum in London. The samples were collected from the vicinity of the Pacific-Antarctic Ridge and the Chile Ridge. The samples were analyzed by means of X-ray diffraction (XRD), chemical analysis, scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDX), infrared (IR), and transmission electron microscopy-analytical electron microscopy (TEM-AEM). After removal of biogenic calcite the samples appeared to consist mainly of two low-crystallinity phases mixed intimately: Fe/Mn (oxyhydr)oxides and a Si-Al-Mg-Fe phase of similar chemical characteristics to smectite and with variable proportions of the above elements, as indicated by XRD, IR, and SEM-EDX. In particular, analysis by XRD revealed the presence of highly disordered {delta}-MnO2. The TEM-AEM analysis showed that Fe/MnOOH particles have Fe/Mn ratios in the range 25-0.2 and textures changing from granular to veil-like as the proportion of Mn increased. The smectite-like material has the morphology and chemistry of smectite, as well as 10-15 A lattice fringes. Selected area electron diffraction (SAED) patterns indicated a very poorly crystalline material: in some cases distances between diffraction rings corresponded to d values of smectite. The smectite composition indicated a main Fe-rich dioctahedral component with a substantial Mg-rich trioctahedral component (total octahedral occupancy between 2.02 and 2.51 atoms per O10[OH]2). The (proto-) smectite is interpreted to have formed within the metalliferous sediment, as a slow reaction between Fe/MnOOH, seawater (providing Mg), detrital silicates from the continent (providing Si and Al), and X-ray amorphous silica of hydrothermal origin that adsorbed on Fe/MnOOH phases and deposited with them. This material is possibly in the process of maturation into well crystallized smectite.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2011-06-01
    Description: The swelling property of smectite is dominated by the hydration of exchangeable cations in the interlayer spacing ( interlayer hydration'). By investigating systematically the swelling behavior of various exchangeable cations with different valences and ionic radii, the interlayer hydration of smectite was explored. The swelling behavior of Li+-, K+-, Rb+-, Cs+-, Mg2+-, Sr2+-, Ba2+-, and La3+-montmorillonites in undersaturated conditions was measured precisely over the range 50-150{degrees}C by in situ X-ray diffraction (XRD) analyses. The systematic swelling behavior of ten homocationic montmorillonites, the aforementioned eight homoionic montmorillonites, plus Na+ and Ca2+ from a previous study, and the cation hydration energies were analysed by studying the changes occurring in the basal spacing and the 001 peak width. With decreasing cation hydration energy, swelling curves (i.e. plots of basal spacing vs. relative humidity (RH)) change from continuous (Mg2+, La3+, and Ca2+) to stepwise (Sr2+, Li+, Ba2+, and Na+) to one-layer only (K+, Rb+, and Cs+). For the first two groups, the RH at the midpoint between the one- and two-layer hydration states increased as the cation hydration energy decreased. Under low RH, with increasing temperature, the basal spacings of Mg-, La-, Ca-, Sr-, Li-, and Ba-montmorillonites decreased continuously to the zero-layer hydration state, whereas Na-, K-, Rb-, and Cs-montmorillonites swelled from the zero-layer hydration state even at the lowest temperature (50{degrees}C). A decrease in the basal spacing at the same RH but at different temperatures suggests the existence of metastable states or that the layer-stacking structure changes with temperature. The systematics of the swelling behavior of various homocationic montmorillonites as functions of RH and temperature (
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2011-07-11
    Description: The layer charge density (LCD) of montmorillonite represents the permanent negative charge, its most important property. The LCD can be determined by two different methods, the structural formula method (SFM) and the alkylammonium method (AAM). Other methods of determining the LCD are calibrated against one or the other of these. The results of the two methods differ systematically: SFM values are larger than AAM values and the difference increases with increasing layer charge density. In the present study, the critical parameters of both methods were considered quantitatively in order to identify the most likely reason for the systematic difference. One particularly important argument against the validity of the SFM is that typical SFM values correspond to unrealistically large CEC values that have never been reported. In addition, SFM does not consider the variable charge which causes cations to be adsorbed to the outer surface (at pH 〉4). In contrast to minor constituents, which can of course also affect SFM values, the variable charge can explain only part of the systematic difference. The exchange of pure smectite samples with both Cu-trien and alkylammonium revealed the presence of non-exchangeable, non-structural cations (Na, K, Ca). These cations, together with 10% (or more) variable charge, may explain the differences in LCD values. The non-exchangeable, non-structural cations could stem from undetected traces of feldspar or volcanic glass. The present samples indicated that the systematic difference in LCD values between the two methods is related to the amount of non-exchangeable, non-structural cations only, indicating that the two LCD methods probe different features of smectites. Using the SFM on pure smectite provides a value for the total number of charges (permanent with and without fixed (= non-exchangeable, non-structural) cations plus variable charge). The AAM, on the other hand, provides the charge density of the exchangeable cations (without variable charge).
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2011-06-15
    Description: The use of waste materials from mineral ore processing has much potential for immobilizing pollutants such as arsenic (As) in natural soils and waters. The purpose of the present study was to investigate red mud (RM, a finely textured bauxite-ore residue) as a sequestering agent for arsenate and phosphate, including characterization of the types of surface complexes formed. The mineralogical and structural changes occurring in RM were investigated after exchange with arsenate [As(V)-RM] and phosphate [P(V)-RM] anions at pH 4.0, 7.0, and 10.0. Eight different phases were present in the untreated red mud (RMnt), though 80 wt.% of the crystalline phase consisted of sodalite, hematite, gibbsite, and boehmite. The X-ray diffraction (XRD) data for As(V)-RM revealed an anion-promoted dissolution of the gibbsite, suggesting that this phase was the most active for As(V) sequestration. In addition, the lattice parameters of cancrinite were different in As(V)-RM at pH 7.0 and 10.0 from those in RMnt. The changes may be related to the incorporation of arsenate in the cancrinite cages. X-ray diffraction patterns of P(V)-RM at pH 4.0 and 7.0 revealed the dissolution of sodalite, hematite, and gibbsite, and the formation of a novel phase, berlinite [({alpha},{beta})AlPO4]. The new phases detected through XRD and thermal (TG/DTG) analysis in P(V)-RM probably originated through an initial phosphate-promoted dissolution of some RM phases, followed by a precipitation reaction between the phosphate and Al/Fe ions. The results obtained suggest that phosphate and arsenate, though with different reactivities, were strongly bound to some RM phases, such as gibbsite, cancrinite, sodalite, and hematite through mechanisms such as chemical sorption and coprecipitation reactions. The knowledge acquired will be helpful in selecting alternative materials such as red muds, which currently pose critical economic and environmental challenges related to their disposal, for the decontamination of soils and waters polluted with As.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2011-06-01
    Description: Magnetite (Fe3O4) is a key economically valuable component in iron ore and is extracted by dissolution processes, but among the Fe (oxyhydr)oxides its solubility behavior is one of the least understood. The objective of this study was to improve understanding of magnetite dissolution mechanisms leading to thermodynamic equilibrium by comparing the dissolution of two solid samples, one synthetic and one industrial, using oxalic, sulfuric, and nitric acids at varying concentrations and temperatures. Of the three solid-liquid systems investigated, only the system consisting of magnetite and oxalic acid reached an equilibrium state within the duration of an individual experiment (6 h). In this system, increasing the acid concentration resulted in a significant increase in the equilibrium concentration of dissolved Fe. When dissolving synthetic and industrial magnetite, increasing the temperature not only increased the rate of reaction but also affected the concentration of dissolved Fe. Significant effects were observed when increasing the temperature from 15 to 35{degrees}C, but only slight differences were seen on further increases in temperature. Observations regarding the equilibrium state of the sulfuric and nitric acid systems could not be made because equilibrium was not reached. The most important individual observation regarding the equilibrium state of the nitric- and sulfuric-acid systems seems to be that in future studies a much longer reaction time is necessary, due to slow kinetics of the dissolution mechanism. A proton-based mechanism has been hypothesized as the one governing the dissolution of magnetite by these two acids, but only the dissolution of the industrial sample yielded results that were similar for these two acids and consistent with that hypothesis.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2011-04-04
    Description: A number of different types of bentonite deposits formed by hydrothermal alteration and diagenetic processes are to be found in the Ordu area of the Eastern Black Sea region. The Ca- and Na-bentonite deposits are related to Upper Cretaceous tholeitic to calc-alkaline volcanites, predominantly dacite and andesite, and also include rhyodacite with lesser basalt and their pyroclastic equivalents. In the present study, dacite (PR1), perlite (PR2), moderately altered rocks (MPR), and Na- and Ca-bentonites were studied to describe and compare their mineralogical and geochemical properties and their conditions of formation by means of X-ray diffraction, optical microscopy, scanning electron microscopy, and chemical analytical techniques. Ca-bentonites, except for smectite, contain opal-CT, feldspar, biotite, and rarely pyrite, while Na-bentonites contain smectite and less feldspar, opal-CT, kaolinite, and illite. Progressive alteration of the PR2 caused depletion in K2O and Na2O and enrichment in MgO and CaO in all of the Ca-bentonite samples. Na2O was depleted in all of the Na-bentonites and in most of the MPR. The medium and heavy rare earth elements (MREE and HREE) show mass gain or mass loss in the Na-bentonites. The HREE show nearly immobile behavior in the Ca-bentonites. The rare earth elements (REE) and transition elements (TRE) mostly gained mass in the Ca-bentonites in contrast to Na-bentonites. Large-ion lithophile elements (LILE) are strongly depleted in all of the bentonites. The LREE, MREE, and HREE were strongly depleted in most of the MPR samples. TiO2, Lu, Tm, and Tb show immobile behavior in all samples. PR1 exhibits a slightly positive Eu anomaly. Two MPR samples show slightly positive Eu anomalies (1.03, 1.13), and one Na-bentonite sample displays a slightly positive Eu anomaly (1.04). Most of the Na-bentonites have weakly negative Eu anomalies, whereas perlite and the Ca-bentonite have a strongly negative Eu anomaly. The PR1, PR2, MPR, and Na-bentonite present a positive Ce anomaly, and the Ca-bentonite shows a moderately negative Ce anomaly. The Ca-montmorillonites are mainly hydrothermal in origin and derived from alteration of volcanoclastic material in situ and/or in the subaerial environment. The Na-montmorillonites formed by alteration and diagenesis of volcanoclastic material in the sedimentary basin.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2011-01-21
    Description: Guanidine and imidazole are important functional molecules that constitute the side chain of basic amino acids (arginine and histidine); these molecules are capable of interacting with mineral surfaces. However, little information is available about the effect of these molecules on mineral dissolution, including amorphous silica. In this study, to evaluate the effect of these organic molecules on the dissolution rates of amorphous silica, dissolution experiments were performed in solutions containing these molecules and other related heterocyclic compounds. The dissolution experiments were conducted by the batch method using 0.1 g of amorphous silica and 100 mL of 0.1 mM NaCl solution with 0.0, 0.1, 1.0, and 10.0 mM of guanidine, imidazole, pyrazole, or pyrrole at pH values of 4, 5, and 6. The results demonstrated that these compounds can enhance the dissolution rate of amorphous silica, depending on their ionic speciation in the following order: guanidine = imidazole 〉 pyrazole 〉 pyrrole. When 10.0 mM solutions were used, both guanidine and imidazole greatly increased the dissolution rate with an enhancement factor of 5.5-6.5, pyrazole exhibited a smaller change in the dissolution rate with an enhancement factor of 1.5-2.4, and pyrrole exhibited no significant enhancement. ChemEQL calculations confirmed that guanidine (pK = 13.6) and imidazole (pK = 6.99) are fully protonated and mostly present as cationic species in a pH range of 4-6; therefore, these compounds are capable of interacting with the 〉SiO- sites of amorphous silica. Pyrazole (pK = 2.61) and pyrrole (pK = 0.4), however, existed mostly as neutral forms. The concentrations of cationic species of pyrazole and pyrrole were at least one and three orders of magnitude lower than those of fully protonated compounds, respectively; therefore, pyrazole and pyrrole were less reactive than the fully protonated compounds on the surfaces of amorphous silica.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2011-01-21
    Description: Studies of the paragenesis of authigenic illite in arkosic sandstones of various regions and ages have revealed that the illitization of kaolinite is an important reaction accounting for the formation of authigenic illite in sandstones during burial diagenesis. The illitization of kaolinite takes place at an intermediate burial depth of 3-4 km, where pressure can reach values of 100 MPa ({approx}1000 bars). The purpose of the present study was to analyze the effect of pressure on the rate of kaolinite illitization in alkaline conditions. Hydrothermal reactions were conducted on KGa-1b kaolinite in KOH solution at 300{degrees}C and under pressures of 500, 1000, and 3000 bars for 1 to 24 h. The visual examination of the X-ray diffraction (XRD) patterns indicated a notable influence of pressure on the reaction rate. Molar percentages of muscovite/illite formed at each time interval were calculated from the analysis of two diagnostic XRD peaks, representing the 060 reflections of kaolinite and muscovite/illite. The data were modeled to obtain the initial rate of conversion at each pressure. The results indicated that the initial rate of kaolinite to muscovite/illite conversion is one order of magnitude greater at 3000 bars than at 500 or 1000 bars. Comparison of these data with those in the literature show a faster conversion rate (several orders of magnitude) in an initially high-alkaline solution than in a near-neutral solution.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2011-01-21
    Description: The characterization of poorly crystalline minerals formed by weathering is difficult using conventional techniques. The objective of this study was to use cutting-edge spectroscopic techniques to characterize secondary Fe mineralogy in young soils formed in basaltic cinders in a cool, arid environment. The mineralogy of a chronosequence of soils formed on 2, 6, and 15 thousand year old basaltic cinders at Craters of the Moon National Monument (COM) was examined using synchrotron-based X-ray absorption fine structure (XAFS) spectroscopy in combination with selective extractions. Fe K-edge XAFS is useful for determining speciation in poorly crystalline materials such as young weathering products. Over 86% of Fe in the soil clay fractions was contained in poorly crystalline materials, mostly in the form of ferrihydrite, with the remainder in a poorly crystalline Fe-bearing smectite. The XAFS spectra suggest that ferrihydrite in the 15 ka soil clay is more resistant to ammonium oxalate (AOD) extraction than is ferrihydrite in the younger materials. Fe in the poorly crystalline smectite is subject to dissolution during citrate-bicarbonate-dithionite (CBD) extraction. The results indicate that relatively few mineralogical changes occur in these soils within the millennial time frame and under the environmental conditions associated with this study. Although the secondary mineral suite remains similar in the soils of different ages, ferrihydrite crystallinity appears to increase with increasing soil age.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2011-01-21
    Description: Differentiating clay minerals that formed in a supergene environment during deep chemical weathering from those that formed during hydrothermal alteration at higher temperatures associated with a mineralizing event is important in the exploration for epithermal Au deposits. The purpose of this study was to further elucidate this topic by comparing morphological and chemical properties of clay minerals in saprolite overlying epithermally altered bedrock at the Vera Au deposit, Queensland, Australia, with those of clay minerals in saprolite overlying bedrock adjacent to the epithermal alteration zone. X-ray diffraction (XRD) and analytical transmission electron microscopy (ATEM) investigations identified kaolinite, illite, and interstratified illite-smectite, together with quartz, Fe and Ti oxide minerals, and the sulfate minerals jarosite, gypsum, alunite, and natroalunite. Kaolinite crystals within the weathered argillic alteration zone proximal to the epithermal quartz vein are generally larger (up to 3 {micro}m in diameter) and better formed (subhedral to euhedral) than crystals in saprolite distal to the hydrothermal alteration zone, in which smaller (mostly
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2011-01-21
    Description: The effects of surfactants on bentonites have been of great scientific interest for many years. Even though quaternary alkylammonium salts (QAS) have been studied, very few data are available on the comparative performance of different chain-length QAS for the modification of the surface properties and adsorption properties of bentonites. The objective of this study was to investigate the effect of chain length on the adsorption of cationic surfactants onto bentonite. The surface and adsorption properties of different chain-length QAS, i.e. hexadecyltrimethylammonium bromide (HTAB, C16), tetradecyltrimethylammonium bromide (TTAB, C14), and dodecyltrimethylammonium bromide (DTAB, C12), to produce organo-bentonites (OB) were studied. The concentrations of QAS were selected based on the cation exchange capacity (CEC) of the clay mineral. Zeta potential, swelling, and viscosity measurements and scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared (FTIR) analyses were used to explain the changes in surface properties. The results indicated that the best modification of bentonite was obtained using a 16-carbon chain length QAS (HTAB) in a 1:1 ratio of QAS to CEC. The basal spacing at this concentration was measured to be 22.19 A, which also corresponded to the maximum adsorption density. The OB produced at this concentration showed the best hydrophobic character based on the swelling tests in toluene. The extent of hydrophobicity and adsorption density was correlated with the CEC and alkyl chain of the QAS. All these properties were used to elucidate the mechanism of modification governing the bentonite/QAS system.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2011-01-21
    Description: The effect of plant species on soil-clay mineralogy has not been studied widely. In the present study, the clay mineralogy of top soils under Sequoia gigantia and grass regimes, maintained side by side for up to 150 y in the parks of several French chateaux, were investigated using X-ray diffraction (XRD) methods and chemical analyses of the clay fractions. The seven paired samples that were studied originated from soils developed on calcareous, granitic, and loess substrates. The XRD data indicated the presence of a trioctahedral chlorite with a trioctahedral hydroxy-Mg sheet in sequoia soils observed in four of seven of the sites whereas it was absent from the adjacent prairie-soil samples. Parent materials influenced the formation of magnesian chlorite as it was observed in all soils developed on granite and in none of the soils developed on limestone. The exchangeability of the interlayer hydroxy-Mg sheet replaced by K+ from newly formed chlorite in a 14 y old sequoia-influenced soil suggests that the mineral was initially a hydroxy-interlayered mineral. Increased stability was observed in the older (100 and 150 y) soil chlorites, indicating a progression of polymerization of the Mg hydroxy-interlayered material. The small amount of chlorite in the whole clay assemblage impeded the observation of changes in Mg content by direct chemical measurements of the clay fractions but the systematically greater amount of exchanged Mg2+ ion measured under sequoia compared with adjacent prairie supports the formation of Mg magnesian chlorite. The results presented indicate, on the one hand, the importance of plant regimes in controlling the soil chemistry and hence the clay mineralogy of surface soil horizons (magnesian chlorites were observed only under sequoia), and, on the other hand, that parent material modulates this plant influence (chlorite formation was observed on granite-derived soils).
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2011-01-14
    Description: NEWMOD(C), developed by R.C. Reynolds, Jr., has been an important tool for evaluating quantitatively X-ray diffraction (XRD) patterns from interstratified clay minerals for more than 20 years. However, a significant drawback to the NEWMOD(C) approach is that analyses are done by forward simulation, making results sensitive to user input and starting-model assumptions. In the present study, a reverse-fitting procedure was implemented in a new program, FITMOD, which automatically minimizes the differences between experimental and simulated XRD patterns. The differences are minimized by varying model parameters (such as Reichweite, crystal-size distribution, cation content, type of disorder, etc.) using the downhill simplex method. The downhill simplex method is a non-linear optimization technique for determining minima of functions. This method does not require calculation of the derivatives of the functions being minimized, an important consideration with many of the parameters in NEWMOD-type simulations. Instead, the downhill simplex method calculates pseudo-derivatives by evaluating sufficient points to define a derivative for each independent variable. The performance of FITMOD was evaluated by fitting a series of synthetic XRD patterns generated by NEWMOD+, yielding agreement factors, Rwp, of
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2011-01-21
    Description: The coefficient of friction of clay minerals at the micro-scale has generally not been studied due to difficulties in obtaining measurements in a bulk-soil volume undergoing shear at such small scales. Information on friction at the micro-scale may provide insight into grain-scale processes that operate in bulk samples or in natural faults. The objective of this study was to develop a method to measure the micro-scale friction coefficient of smectites. The experiments described show that the axial atomic force microscopy method can be adapted to easily obtain accurate coefficient of friction ({micro}) measurements for smectites from force curves involving colloidal probes. The method allows for the measurements to be performed over spatial scales of a few {micro}m, can be carried out under dry conditions or a wide range of aqueous solutions, and requires no calibration beyond making a few microscopic measurements of the probe. This method provides measurements of micro-scale normal and shear forces between minerals, which can be used for a variety of applications such as the study of shear deformation, consolidation, and fault dynamics. Control tests of silica on mica ({micro} = 0.29{+/-}0.02) agree with literature values where limits indicate one standard deviation. Coefficient of friction values for wet and dry Na-montmorillonite were determined to be 0.20{+/-}0.03 and 0.72{+/-}0.03, respectively.
    Print ISSN: 0009-8604
    Electronic ISSN: 1552-8367
    Topics: Geosciences
    Published by Clay Minerals Society
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...