ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: First published online as a Review in Advance on October 24, 2005. (Some corrections may occur before final publication online and in print)
    Description: Author Posting. © Annual Reviews, 2005. This article is posted here by permission of Annual Reviews for personal use, not for redistribution. The definitive version was published in Annual Review of Physiology 68 (2006): 22.1-22.29, doi:10.1146/annurev.physiol.68.040104.105418.
    Description: Superfast muscles of vertebrates power sound production. The fastest, the swimbladder muscle of toadfish, generates mechanical power at frequencies in excess of 200 Hz. To operate at these frequencies, the speed of relaxation has had to increase approximately 50-fold. This increase is accomplished by modifications of three kinetic traits: (a) a fast calcium transient due to extremely high concentration of sarcoplasmic reticulum (SR)-Ca2+ pumps and parvalbumin, (b) fast off-rate of Ca2+ from troponin C due to an alteration in troponin, and (c) fast cross-bridge detachment rate constant (g, 50 times faster than that in rabbit fast-twitch muscle) due to an alteration in myosin. Although these three modifications permit swimbladder muscle to generate mechanical work at high frequencies (where locomotor muscles cannot), it comes with a cost: The high g causes a large reduction in attached force-generating cross-bridges, making the swimbladder incapable of powering low-frequency locomotory movements. Hence the locomotory and sound-producing muscles have mutually exclusive designs.
    Description: This work was made possible by support from NIH grants AR38404 and AR46125 as well as the University of Pennsylvania Research Foundation.
    Keywords: Parvalbumin ; Ca2+ release ; Ca2+ uptake ; Cross-bridges ; Adaptation ; Sound production ; Whitman Center
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: 567086 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-9686
    Keywords: Heart function ; Heart muscle ; Cross-bridges ; Step response ; Frequency response
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Technology
    Notes: Abstract A contractile-based model was constructed to represent responses to changes in left ventricular (LV) volume in a heart with constantly activated myocardium. Hearts were isolated from rabbits, the myocardium was put into a state of constant activation by perfusion with Krebs Henseleit solution containing 0.5 mM Ba2+, and recordings were taken of LV pressure responses to step and sinusoidal changes in LV volume. Pressure responses to volume steps were divided into five characteristic phases. An elastance frequency spectrum was calculated from pressure responses to sinusoidal volume changes. Values of features of the elastance frequency spectrum were in accord with values of corresponding features of the step response. Using an explicit homology between elements responsible for LV pressure development (pressure generators) and elements responsible for muscle force development (myofilament cross-bridges), mathematical models were constructed to re-create the data. Basic assumptions were that (1) pressure was the summed effect of pressure generators undergoing volumetric distortion; (2) changes in volume brought about changes in both generator numbers (recruitment) and generator distortion; (3) pressure generators cycle through states that variously do and do not generate pressure. An initial two-step model included a cycle with one attachment step and one detachment step between non-pressure-bearing and pressure-bearing states. Predictions by the two-step model had many similarities with the experimental observations, but were lacking in some important respects. The two-step model was upgraded to a multiple-step model. In addition to multiple attachment and detachment steps within the cycle, the multiple-step model incorporated distortion-dependent detachment steps. The multiple-step model re-created all aspects of the experimentally observed step and frequency responses. Furthermore, this model was consistent with current theories of contractile processes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 132 (1972), S. 365-380 
    ISSN: 1432-0878
    Keywords: Golgi apparatus ; Membranes ; Cross-bridges ; Electron microscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Electron opaque cross-bridge structures span the inter- and intracisternal spaces and provide membrane-to-membrane connections between adjacent cisternae of dictyosomes of pollen tubes ofClivia andLilium. Additionally, the classic intercisternal rods, characteristic of intercisternal regions near the maturing face of dictyosomes, are connected with the adjacent membranes through similar cross-bridge elements. We suggest that these structural links are responsible for maintaining the flattened appearance of the central parts of Golgi apparatus cisternac as well as for the coherence of cisternae within the stack. Observations on other plant (e.g. microsporocytes ofCanna) and animal cells (e.g. rodent liver and hepatoma cells, newt spermatocytes) show that such an array of membrane cross-links is a universal feature of Golgi apparatus architecture. The cross-bridges appear as part of the complex “zone of exclusion” which surrounds dictyosomes, entire Golgi apparatus and Golgi apparatus equivalents in a variety of cell types.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...