ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (44,616)
  • Articles (OceanRep)  (44,616)
Collection
  • Other Sources  (44,616)
Years
  • 101
    facet.materialart.
    Unknown
    Norddeutsches Küsten- und Klimabüro
    Publication Date: 2024-03-08
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2024-03-08
    Description: The Falkland Shelf is a highly productive ecosystem in the Southwest Atlantic Ocean. It is characterized by upwelling oceanographic dynamics and displays a wasp-waist structure, with few intermediate trophic-level species and many top predators that migrate on the shelf for feeding. One of these resident intermediate trophic-level species, the Patagonian longfin-squid Doryteuthis gahi, is abundant and plays an important role in the ecosystem. We used two methods to estimate the trophic structure of the Falkland Shelf food web, focusing on the trophic niche of D. gahi and its impacts on other species and functional groups to highlight the importance of D. gahi in the ecosystem. First, stable isotope measurements served to calculate trophic levels based on an established nitrogen baseline. Second, an Ecopath model was built to corroborate trophic levels derived from stable isotopes and inform about trophic interactions of D. gahi with other functional groups. The results of both methods placed D. gahi in the centre of the ecosystem with a trophic level of ∼ 3. The Ecopath model predicted high impacts and therefore a high keystoneness for both seasonal cohorts of D. gahi. Our results show that the Falkland Shelf is not only controlled by species feeding at the top and the bottom of the trophic chain. The importance of species feeding at the third trophic level (e.g. D. gahi and Patagonotothen ramsayi) and observed architecture of energy flows confirm the ecosystem's wasp-waist structure with middle-out control mechanisms at play.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2024-03-08
    Description: Circulation anomalies accompanying Sudden Stratospheric Warmings (SSWs) can have a significant impact on the troposphere. This surface response is observed for some but not all SSWs, and their downward coupling is not fully understood. We use an existing classification method to separate downward- and non-propagating SSWs (d/nSSWs) in ERA5 reanalysis data for the years 1979–2019. The differences in SSW downward propagation in composites of spatial patterns clearly show that dSSWs dominate the surface regional impacts following SSWs. During dSSWs, the upper-tropospheric jet stream is significantly displaced equatorward. Wave activity analysis shows remarkable differences between d/nSSWs for planetary and synoptic-scale waves. Enhanced stratospheric planetary eddy kinetic energy (EKE) and heat fluxes around the central date of dSSWs are followed by increased synoptic-scale wave activity and even surface coupling for synoptic-scale EKE. An observed significant reduction in upper-tropospheric synoptic-scale momentum fluxes following dSSWs confirms the important role of tropospheric eddy feedbacks for coupling to the surface. Our findings emphasize the role of the lower stratosphere and synoptic-scale waves in coupling the SSW signal to the surface and agree with mechanisms suggested in earlier modeling studies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2024-03-11
    Type: Article , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2024-03-11
    Description: Ocean alkalinity enhancement (OAE) is considered one of the most promising approaches to actively remove carbon dioxide (CO2) from the atmosphere by accelerating the natural process of rock weathering. This approach involves introducing alkaline substances sourced from natural mineral deposits such as olivine, basalt, and carbonates or obtained from industrial waste products such as steel slags, into seawater and dispersing them over coastal areas. Some of these natural and industrial substances contain trace metals, which would be released into the oceans along with the alkalinity enhancement. The trace metals could serve as micronutrients for marine organisms at low concentrations, but could potentially become toxic at high concentrations, adversely affecting marine biota. To comprehensively assess the feasibility of OAE, it is crucial to understand how the phytoplankton, which forms the base of marine food webs, responds to ocean alkalinization and associated trace metal perturbations. In this study, we investigated the toxicity of nickel on three representative phytoplankton species across a range of Ni concentrations (from 0 to 100 µmol L-1 with 12 µmol L-1 synthetic organic ligand). The results showed that the growth of the tested species was impacted differently. The low growth inhibition and high IC50 (concentration to inhibit growth rate by 50 %) revealed that both the coccolithophore Emiliania huxleyi and the dinoflagellate Amphidinium carterae were mildly impacted by the increase in Ni concentrations while the rapid response to exposure of Ni, high growth rate inhibition, and low IC50 of Thalassiosira weissflogii indicate low tolerance to Ni in this species. In conclusion, the variability in phytoplankton sensitivity to Ni suggests that for OAE applications with Ni-rich materials caution is required and critical toxic thresholds for Ni must be avoided.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 2024-03-11
    Description: The central Arctic Ocean (CAO) plays an important role in the global carbon cycle, but the current and future exchange of the climate-forcing trace gases methane (CH4) and carbon dioxide (CO2) between the CAO and the atmosphere is highly uncertain. In particular, there are very few observations of near-surface gas concentrations or direct air–sea CO2 flux estimates and no previously reported direct air–sea CH4 flux estimates from the CAO. Furthermore, the effect of sea ice on the exchange is not well understood. We present direct measurements of the air–sea flux of CH4 and CO2, as well as air–snow fluxes of CO2 in the summertime CAO north of 82.5∘ N from the Synoptic Arctic Survey (SAS) expedition carried out on the Swedish icebreaker Oden in 2021. Measurements of air–sea CH4 and CO2 flux were made using floating chambers deployed in leads accessed from sea ice and from the side of Oden, and air–snow fluxes were determined from chambers deployed on sea ice. Gas transfer velocities determined from fluxes and surface-water-dissolved gas concentrations exhibited a weaker wind speed dependence than existing parameterisations, with a median sea-ice lead gas transfer rate of 2.5 cm h−1 applicable over the observed 10 m wind speed range (1–11 m s−1). The average observed air–sea CO2 flux was −7.6 ..., and the average air–snow CO2 flux was −1.1 . Extrapolating these fluxes and the corresponding sea-ice concentrations gives an August and September flux for the CAO of −1.75 ... , within the range of previous indirect estimates. The average observed air–sea CH4 flux of 3.5 ..., accounting for sea-ice concentration, equates to an August and September CAO flux of 0.35 , lower than previous estimates and implying that the CAO is a very small (≪ 1 %) contributor to the Arctic flux of CH4 to the atmosphere.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2024-03-11
    Description: This study investigates the dynamics of magmatic intrusions based on the joint analysis of analog and numerical models. By injecting different fluids from the bottom of a solidified gelatin block, we simulate the propagation of magmatic intrusions through the crust and record their shapes, trajectories, and velocity as they rise towards the surface. Additionally, we make use of a 2D fluid-filled crack propagation model constrained by our experimental observations. The numerical simulations demonstrate that our viscous fluid-filled crack experiments, conducted with silicon-oil injections, propagate in the same regime as typical basaltic intrusions. The comparison between analog and numerical results allow us to define the domain of validity of the numerical model and its limit of applicability. This study provides new insights into the processes that control the propagation of magmatic intrusions and our ability to reproduce them using analog and numerical models.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2024-03-12
    Description: Identification of seismically active fault zones and the definition of sufficiently large respect distances from these faults which enable avoiding the damaged rock zone surrounding the ruptured ground commonly are amongst the first steps to take in the geoscientific evaluation of sites suitable for nuclear waste disposal. In this work we present a GIS-based approach, using the earthquake-epicentre locations from the instrumental earthquake record of South-Korea to identify potentially active fault zones in the country, and compare different strategies for fault zone buffer creation as originally developed for site search in the high seismicity country Japan, and the low-to-moderate seismicity countries Germany and Sweden. In order to characterize the hazard potential of the Korean fault zones, we moreover conducted slip tendency analysis, here for the first time covering the fault zones of the entire Korean Peninsula. For our analyses we used the geo-spatial information from a new version of the Geological map of South-Korea, containing the outlines of 11 rock units, which we simplified to distinguish between 4 different rock types (granites, metamorphic rocks, sedimentary rocks and igneous rocks) and the surface traces of 1,528 fault zones and 6,654 lineaments identified through years of field work and data processing, a rich geo-dataset which we will publish along with this manuscript. Our approach for identification of active fault zones was developed without prior knowledge of already known seismically active fault zones, and as a proof of concept the results later were compared to a map containing already identified active fault zones. The comparison revealed that our approach identified 16 of the 21 known seismically active faults and added 472 previously unknown potentially active faults. The 5 seismically active fault zones which were not identified by our approach are located in the NE- and SW-sectors of the Korean Peninsula, which haven’t seen much recent seismic activity, and thus are not sufficiently well covered by the seismic record. The strike directions of fault zones identified as active are in good agreement with the orientation of the current stress field of the peninsula and slip tendency analysis provided first insights into subsurface geometry such as the dip angles of both active and inactive fault zones. The results of our work are of major importance for the early-stage seismic hazard assessment that has to be conducted in support of the nuclear waste disposal siting in South-Korea. Moreover, the GIS-based methods for identification of active fault zones and buffering of respect areas around fault zone traces presented here, are applicable also elsewhere.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2024-03-12
    Description: Die Tarifparteien der Länder haben 2020 eine geänderte Entgeltordnung vereinbart, wodurch statt bibliotheksspezifischer nun die allgemeinen Tätigkeitsmerkmale für den Verwaltungsdienst auch auf Tätigkeiten in Bibliotheken angewendet werden. Dadurch sowie durch allgemeine aktuelle Entwicklungen im Bibliothekswesen ergeben sich in etlichen Entgeltgruppen Veränderungen. Das neue Standardwerk für die Erstellung von Stellenbeschreibungen und Stellenbewertungen in wissenschaftlichen Bibliotheken führt neben neuen auch umfassend aktualisierte Arbeitsvorgänge auf und versteht sich als Instrument, um Tätigkeiten in Bibliotheken den unbestimmten Rechtsbegriffen bzw. Entgeltgruppen der derzeit gültigen Entgeltordnung zuzuordnen. Ergänzt wird das Werk durch Grundlagenwissen zum Thema Eingruppierung, Stellenbeschreibung und Stellenbewertung. Nachdem Ende 2020 die Arbeitsvorgänge in Bibliotheken, 1. Öffentliche Bibliotheken (AVÖB) erschienen sind, folgt hiermit die Neufassung der Arbeitsvorgänge in wissenschaftlichen Bibliotheken (AVWB) sowie erstmals eine Zusammenstellung von Arbeitsvorgängen in staatlichen Bücherei- und Bibliotheksfachstellen (AVBF).
    Type: Book , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2024-03-13
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2024-03-14
    Description: Continental margins are a dynamic interface linking the terrestrial lithosphere and oceanic hydrosphere, thus controlling fluxes of terrigenous materials from land to ocean. In particular, estuaries are places channeling vast amounts of minerals, nutrients, organic matter and trace elements (TEs) in dissolved and particulate forms into the oceans. As many TEs are essential nutrients for phytoplankton growth, their concentrations ([TEs]) together with macronutrients in surface waters influence marine primary productivity, thereby impacting ocean ecosystems and carbon cycling. However, before entering the oceans, terrigenous TEs are modified at continental margins by various processes including removal, release and recycling. Consequently, studying geochemical cycling of TEs at continental margins is crucial for discerning their sources and processes that determine TE fluxes to oceans. Radiogenic neodymium (Nd) and hafnium (Hf) isotopic compositions, expressed as εNd and εHf, respectively are sensitive tracers of the origin and mixing of water masses and seawater-particle interactions at the continent-ocean interface. In this thesis a detailed investigation of the distributions of radiogenic Nd and Hf isotopes as well as rare earth elements and yttrium (REY) is performed across the Amazon freshwater plume, the Amazonian mangrove belt and the Amazon shelf and slope as part of the GEOTRACES GApr11 cruise. The objective is to investigate the sources and processes influencing the TE supplies, Nd and Hf isotope distributions and their fluxes to the western Atlantic Ocean.
    Type: Thesis , NonPeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2024-03-14
    Type: Article , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2024-03-19
    Description: In this study, the distribution characteristics, seasonal variations, sea-to-air fluxes, and influencing factors of CO in the Ria Formosa Lagoon system and at Boknis Eck time-series station were systematically investigated through a combination of situ measurements and incubation experiments. The relationship between CO and physical-chemical-biological factors and the potential impact of aquaculture activities were explored. The contribution of the study areas to regional or global atmospheric CO and the various sources and removal rates of CO were quantified. Factors affecting the source-sink pathway were investigated, and the source-sink balance of CO within the surface layer was quantitatively assessed. In addition, a comprehensive compilation of 〉12,000 sea-surface CO observations was performed to reconstruct oceanic emissions using a data-driven machine learning approach, reducing the estimation uncertainty of global oceanic emissions of CO. This thesis work can provide a solid scientific foundation for establishing a biogeochemical cycle model of CO in the ocean.
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2024-03-19
    Description: What action should we take for the effective mitigation of climate change? Measures to avoid greenhouse gas emissions are surely the main priority – but the truth is that in the coming decades, we will also have to remove large quantities of carbon dioxide from the atmosphere and store it securely. Can – indeed, should – the ocean aid us in this task? The new World Ocean Review (WOR 8) explores this issue with reference to the oceans' role in the Earth's carbon cycle and looks at the benefits, risks and knowledge gaps around the main marine carbon dioxide removal techniques.
    Type: Book , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2024-03-18
    Description: Highlights: • Huidobria chilensis is an endemic shrub distributed in the south of the Atacama Desert with a disjunct population at the northern coast. • Population and genetic structure correlate with geographic distance and geological factors. • Rain fall and fog, as well as ground water, must be regarded as important factors for populations at the coast and the Andean valleys, respectively. • A combination of different software tool to analyze GBS data allowed a good understanding of the population structure and genetic diversity. Abstract: Survival in hyperarid deserts is a major challenge for life in general and for plants in particular. The Atacama Desert presents harsh conditions such as limited rainfall, crusted soils, high soil salinity, high altitude, and intense solar radiation. These conditions, together with paleoclimatic variations over the last 10 million years, have influenced the genetic structure and connectivity of plant populations, resulting in a diverse flora with high endemism. However, the diversification of most lineages appears to be relatively recent, in contrast to the reported age of the Atacama Desert and the onset and expansion of hyperarid conditions since the late Oligocene and early Miocene. A prominent exception is Huidobria chilensis (Loasaceae), which is thought to be endemic to the Atacama since the Eocene. However, it is still not understood why this plant has been successful in adapting to the harshening environmental conditions. To investigate its genetic structure in relation to the history of the Atacama Desert, we studied 186 individuals from 11 populations using genotyping-by-sequencing (GBS). A total of nearly 56 k genome-wide single nucleotide polymorphisms (SNPs) were analyzed for population structure and genetic diversity. We identified four genetic clusters corresponding to geographic regions: the coastal region south of Tocopilla, the Cordillera de la Costa around Chañaral, and the Copiapó catchment 1 and 2. Genetic diversity within and between these clusters was analyzed along with rainfall, altitude, and landscape data. Although the genetic data support `isolation by distance’ as a major factor for genetic divergence between populations, the study also reveals the influence of topography on the distribution of H. chilensis and highlights the role of hydrologically connected watersheds and rivers in plant migration and colonization. This shapes the species' evolutionary trajectory and genetic diversity. Understanding these patterns in H chilensis lets one draw general conclusions about adaptation and survival strategies of plants in extreme desert environments such as the Atacama.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 2024-03-18
    Description: Interest in deep-sea mining for polymetallic nodules as an alternative source to onshore mines for various high-technology metals has risen in recent years, as demands and costs have increased. The need for studies to assess its short- and long-term consequences on polymetallic nodule ecosystems is therefore also increasingly prescient. Recent image-based expedition studies have described the temporal impacts on epi-/megafauna seafloor communities across these ecosystems at particular points in time. However, these studies have failed to capture information on large infauna within the sediments or give information on potential transient and temporally limited users of these areas, such as mobile surface deposit feeders or fauna responding to bloom events or food fall depositions. This study uses data from the Peru Basin polymetallic nodule province, where the seafloor was previously disturbed with a plough harrow in 1989 and with an epibenthic sled (EBS) in 2015, to simulate two contrasting possible impact forms of mining disturbance. To try and address the shortfall on information on transient epifauna and infauna use of these various disturbed and undisturbed areas of nodule-rich seafloor, images collected 6 months after the 2015 disturbance event were inspected and all Lebensspuren, 'traces of life', were characterized by type (epi- or infauna tracemakers, as well as forming fauna species where possible), along with whether they occurred on undisturbed seafloor or regions disturbed in 1989 or 2015. The results show that epi- and endobenthic Lebensspuren were at least 50% less abundant across both the ploughed and EBS disturbed seafloors. This indicates that even 26 years after disturbance, sediment use by fauna may remain depressed across these areas.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2024-03-18
    Description: Photosynthesis fuels primary production at the base of marine food webs. Yet, in many surface ocean ecosystems, diel-driven primary production is tightly coupled to daily loss. This tight coupling raises the question: which top-down drivers predominate in maintaining persistently stable picocyanobacterial populations over longer time scales? Motivated by high-frequency surface water measurements taken in the North Pacific Subtropical Gyre (NPSG), we developed multitrophic models to investigate bottom-up and top-down mechanisms underlying the balanced control of Prochlorococcus populations. We find that incorporating photosynthetic growth with viral- and predator-induced mortality is sufficient to recapitulate daily oscillations of Prochlorococcus abundances with baseline community abundances. In doing so, we infer that grazers in this environment function as the predominant top-down factor despite high standing viral particle densities. The model-data fits also reveal the ecological relevance of light-dependent viral traits and non-canonical factors to cellular loss. Finally, we leverage sensitivity analyses to demonstrate how variation in life history traits across distinct oceanic contexts, including variation in viral adsorption and grazer clearance rates, can transform the quantitative and even qualitative importance of top-down controls in shaping Prochlorococcus population dynamics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2024-03-18
    Description: The potential for future earthquakes on faults is often inferred from inversions of geodetically derived surface velocities for locking on faults using kinematic models such as block models. This can be challenging in complex deforming zones with many closely spaced faults or where deformation is not readily described with block motions. Furthermore, surface strain rates are more directly related to coupling on faults than surface velocities. We present a methodology for estimating slip deficit rate directly from strain rate and apply it to New Zealand for the purpose of incorporating geodetic data in the 2022 revision of the New Zealand National Seismic Hazard Model. The strain rate inversions imply slightly higher slip deficit rates than the preferred geologic slip rates on sections of the major strike‐slip systems including the Alpine Fault, the Marlborough Fault System and the northern part of the North Island Fault System. Slip deficit rates are significantly lower than even the lowest geologic estimates on some strike‐slip faults in the southern North Island Fault System near Wellington. Over the entire plate boundary, geodetic slip deficit rates are systematically higher than geologic slip rates for faults slipping less than one mm/yr but lower on average for faults with slip rates between about 5 and 25 mm/yr. We show that 70%–80% of the total strain rate field can be attributed to elastic strain due to fault coupling. The remaining 20%–30% shows systematic spatial patterns of strain rate style that is often consistent with local geologic style of faulting. Plain Language Summary The potential for future earthquakes on faults is often inferred from velocities of the ground surface derived from satellite geodesy, but this approach can be challenging in complex deforming zones with many closely spaced faults. We present a new methodology for estimating the rate at which energy is accumulating on faults using measurements of surface strain rates. The method is applied to New Zealand for the purpose of incorporating geodetic data in the 2022 revision of the New Zealand National Seismic Hazard Model. We show that 70%–80% of the total deformation field can be attributed to energy accumulation on known active faults while the source of the remaining 20%–30% remains unknown. Along some of the major faults in New Zealand we find some important differences in rates of energy accumulation from what is expected from geologic data. Estimated rates are significantly lower than even the lowest geologic estimates on some faults in the fault system near highly‐populated Wellington. Key Points We develop a method to invert geodetically derived strain rates for slip deficit rates on faults We find small but systematic differences between slip deficit rates and geologic slip rates About 70%–80% of the surface strain can be attributed to elastic strain due to coupling on faults
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2024-03-15
    Description: Nutrient transfer into the sunlit surface ocean by cyclonic eddies is potentially crucial for sustaining primary productivity in the stratified subtropical gyres. However, the nature of productivity enhancements, including the flow of matter to higher trophic levels and its impact on carbon fluxes, remain poorly resolved. Here, we report a detailed assessment of the biogeochemical response to a cyclonic eddy in the subtropical Northwest Pacific via a combination of ship‐based and autonomous platforms. Primary production was enhanced twofold within the eddy core relative to reference sites outside, whereas phytoplankton biomass even decreased. Pico‐phytoplankton (〈 2 μ m) dominated (〉 80%) both phytoplankton biomass and primary production inside and outside the eddy. The stimulated primary production in the eddy core was accompanied by an approximately twofold increase in mesozooplankton abundance, an approximately threefold increase in particle formation in the deep chlorophyll maximum layer, as well as significantly enhanced surface oceanic CO 2 uptake and net community production. We suggest these observations carry important implications for understanding carbon export in the subtropical ocean and highlight the need to include such subtropical eddy features in ocean carbon budget analyses.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2024-03-15
    Description: Highlights: • Microphytobenthos contributed to the particulate organic matter in both beaches. • Allochthonous materials provide relevant contributions to the POM in surf zones. • Estuarine subsidies' availability determines changes in consumers' isotopic niches. • Higher estuarine trophic subsidies resulted in narrower niches of dominant species. Abstract: Benthic invertebrates in the surf zone of exposed sandy beaches represent important links for energy circulation between benthic and pelagic food webs. This work assesses the trophic ecology of co-occurring epi- and hyper-benthic invertebrates inhabiting the surf zone of sandy beaches located close to an estuarine mouth. It illustrates that different sources of organic matter induce changes in resource utilization. The trophic positions, and the niche width and overlap of species were described using δ13C and δ15N stable isotope analysis. The contribution of different sources to the particulate organic matter was quantified through stable isotopes analysis and fatty acids profiles. Shifts in the trophic niches of dominant species reflected a decrease in the contribution of estuarine carbon to the diets along the coast. This change in contribution of estuarine carbon also influenced trophic niche properties: more diverse resources availability resulted in narrower niches without overlap while less diverse resources resulted in broad isotopic niches and a highest overlap. Results show that spatial variations in the availability of resources can modify carbon pathways and trophic interactions in coastal food webs. Whenever resources are abundant, species display a more specialized diet while food scarcity leads to broader diets, a pattern consistent with the optimal foraging theory. This resource maximization behavior commonly observed in nature is also occurring in surf zone ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2024-03-15
    Description: Concentrations of bioavailable inorganic nitrogen (N) and phosphorus (P) are simultaneously depleted in the (sub)tropical North Atlantic Ocean, but it remains unclear if phytoplankton growth rates are N limited or N–P co‐limited. Here we present findings from three bottle‐scale experiments using a four‐by‐four matrix of low‐level N and P additions, conducted at one site in the subtropical North Atlantic Ocean. Phytoplankton responses were assessed both in terms of bulk chlorophyll a (Chl a ) concentrations and intracellular Chl a of dominant Prochlorococcus and Synechococcus groups. Two matrix experiments suggested that N was independently limiting in situ growth, with no co‐limiting role for P, while the third showed co‐limitation by both N and P in this region. This switch from N limitation to N–P co‐limitation was attributed to an episodic wet deposition event that supplied N, thereby stimulating phytoplankton growth and consuming available P. Such rapid transitions in nutrient limitation in response to environmental forcing might be common in oceanic systems with multiple depleted nutrients.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2024-03-15
    Description: Rationale Potassium (K) is a major component of several silicate minerals and seawater, and, therefore, constraining past changes in the potassium cycle is a promising way of tracing large‐scale geological processes on Earth. However, [K] measurement using inductively coupled plasma mass spectrometry (ICP‐MS) is challenging due to an ArH + interference, which may be of a similar magnitude to the K + ion beam in samples with 〈0.1% m/m [K]. Methods In this work, we investigated the effect of the ArH + interference on K/Ca data quality by comparing results from laser‐ablation (LA)‐ICP‐MS measured in medium and high mass resolution modes and validating our LA results via solution ICP‐optical emission spectroscopy (OES) and solution ICP‐MS measurements. To do so, we used a wide range of geological reference materials, with a particular focus on marine carbonates, which are potential archives of past changes in the K cycle but are typically characterised by [K] 〈 200 μg/g. In addition, we examine the degree to which trace‐element data quality is driven by downhole fractionation during LA‐ICP‐MS measurements. Results Our results show that medium mass resolution (MR) mode is sufficiently capable of minimising the effect of the ArH + interference on K + . However, the rate of downhole fractionation for Na and K varies between different samples as a result of their differing bulk composition, resulting in matrix‐specific inaccuracy. We show how this can be accounted for via downhole fractionation corrections, resulting in an accuracy of better than 1% and a long‐term reproducibility (intermediate precision) of 〈6% (relative standard deviation) in JCp‐1NP using LA‐ICP‐MS in MR mode. Conclusion Our [K] measurement protocol is demonstrably precise and accurate and applicable to a wide range of materials. The measurement of K/Ca in relatively low‐[K] marine carbonates is presented here as a key example of a new application opened up by these advances.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2024-03-15
    Description: Co-cultivation, coupled with the OSMAC approach, is considered an efficient method for expanding microbial chemical diversity through the activation of cryptic biosynthetic gene clusters (BGCs). As part of our project aiming to discover new fungal metabolites for crop protection, we previously reported five polyketides, the macrolides dendrodolides E (1) and N (2), the azaphilones spiciferinone (3) and 8α-hydroxy-spiciferinone (4), and the bis-naphtho-γ-pyrone cephalochromin (5) from the solid Potato Dextrose Agar (PDA) co-culture of two marine sediment-derived fungi, Plenodomus influorescens and Pyrenochaeta nobilis. However, some of the purified metabolites could not be tested due to their minute quantities. Here we cultivated these fungi (both axenic and co-cultures) in liquid regime using three different media, Potato Dextrose Broth (PDB), Sabouraud Dextrose Broth (SDB), and Czapek-Dox Broth (CDB), with or without shaking. The aim was to determine the most ideal co-cultivation conditions to enhance the titers of the previously isolated compounds and to produce extracts with stronger anti-phytopathogenic activity as a basis for future upscaled fermentation. Comparative metabolomics by UPLC-MS/MS-based molecular networking and manual dereplication was employed for chemical profiling and compound annotations. Liquid co-cultivation in PDB under shaking led to the strongest activity against the phytopathogen Phytophthora infestans. Except for compound 1, all target compounds were detected in the co-culture in PDB. Compounds 2 and 5 were produced in lower titers, whereas the azaphilones (3 and 4) were overexpressed in PDB compared to PDA. Notably, liquid PDB co-cultures contained meroterpenoids and depside clusters that were absent in the solid PDA co-cultures. This study demonstrates the importance of culture regime in BGC regulation and chemical diversity of fungal strains in co-culture studies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 2024-03-15
    Description: Early life microbial colonizers shape and support the immature vertebrate immune system. Microbial colonization relies on the vertical route via parental provisioning and the horizontal route via environmental contribution. Vertical transmission is mostly a maternal trait making it hard to determine the source of microbial colonization in order to gain insight into the establishment of the microbial community during crucial development stages. The evolution of unique male pregnancy in pipefishes and seahorses enables the disentanglement of both horizontal and vertical transmission, but also facilitates the differentiation of maternal versus paternal provisioning ranging from egg development, to male pregnancy and early juvenile development. Using 16S rRNA amplicon sequencing and source-tracker analyses, we revealed how the distinct origins of transmission (maternal, paternal and horizontal) shaped the juvenile internal and external microbiome establishment in the broad-nosed pipefish Syngnathus typhle. Our data suggest that transovarial maternal microbial contribution influences the establishment of the juvenile gut microbiome whereas paternal provisioning mainly shapes the juvenile external microbiome. The identification of juvenile key microbes reveals crucial temporal shifts in microbial development and enhances our understanding of microbial transmission routes, colonization dynamics and their impact on lifestyle evolution.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2024-03-15
    Description: Physical and chemical trace metal speciation are important for our understanding of metal cycling and potential toxicity to marine life. Trace metals can behave differently in diffusion processes or particle-solution interactions and have different bioavailabilities depending on their physical and chemical forms, which often depend on redox conditions. Here we investigated dissolved (〈 0.2 µm) and soluble (〈 0.02 µm) concentrations of Mn, Co, Ni, Fe, Cu, V, Mo, U, Cd, and As in oxic and suboxic deep-sea sediments of the central equatorial Pacific Ocean. Vanadium, Mo, U, As, and Cd showed no significant concentration differences between their dissolved and soluble forms, suggesting that they are present as inorganic ionic species or organic complexes in the truly dissolved or small colloidal fraction. In contrast, the colloidal fraction (〉 0.02 µm 〈 0.2 µm) of Mn, Co, Ni, and Cu increased with depth in oxic pore waters and Fe had the largest but variable colloidal pool. Soluble Mn, Co, and Ni were released in the uppermost 2-4 cm in the sediment because of reductive dissolution. The increasing colloidal fraction with depth suggests a decrease in the concentration of small organic ligands with depth, that are abundant in the surface sediment pore waters, and instead an increasing importance of larger (〉 0.02 µm) inorganic nanoparticles and colloids such as Mn and Fe (oxyhydr)oxides that control Mn, Fe, and Co cycling at depths 〉 10 cm. The distribution of Ni and Cu cannot be exclusively explained by inorganic nanoparticles and a shift from low to larger high molecular weight organic ligands might occur. These findings provide new insights into trace metal distributions in the dissolved phase, highlighting the diversity of metal complexes and the need to incorporate these in future calculations of benthic metal fluxes and ecotoxicity assessments, especially in oxic pore waters.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2024-03-15
    Description: Processes taking place within the magma plumbing system can exert an important control on the composition of mid-ocean ridge basalts (MORB). Plagioclase ultraphyric basalts (PUBs) found at magma-poor mid-ocean ridges exhibit diverse disequilibrium characteristics, which can provide vital insights for distinguishing the complex effects of melt transport from those of source heterogeneity on the compositions of MORBs. Here, we present new insights into magmatic processes using integrated petrologic and geochemical studies of the PUBs from two zones (~ 50° and ~ 64°E longitude) along the ultraslow-spreading southwest Indian ridge (SWIR). The studied PUBs have complex mineral morphologies, including skeletal and acicular crystals, glomerocrysts with open and closed structure, reverse and normally zoned crystals and external and internal resorption even in single samples. Both low- and high-Fo olivine and An plagioclase crystals are in disequilibrium with their matrix glasses. Some plagioclase phenocrysts have repeated oscillatory zoning (An77–86) going from their core to rim and an abrupt decrease in An content toward the rim. Disequilibrium Sr isotopic compositions are present at several scales: between cores and rims of plagioclase crystals, between different plagioclase crystals and between plagioclase and their host lavas. Inferred pressures of magma storage range from 0.3 to 11.3 kbar. The textural and compositional diversity of crystals together with the variability in melt compositions reflect the combined influences of source heterogeneity and magmatic processes (e.g. crystallization, assimilation and magma mixing processes) taking place within crystal mushes. Our data combined with previous studies suggest that the magmatic processes within the SWIR magma plumbing system involve formation, disaggregation and juxtaposition of crystal-rich mush zones.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: other
    Format: other
    Format: other
    Format: text
    Format: other
    Format: other
    Format: other
    Format: other
    Format: other
    Format: other
    Format: other
    Format: other
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    Publication Date: 2024-03-22
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2024-03-22
    Description: High dissolved iron (dFe) concentrations of the order of 10-100 nmol L-1 are a feature of waters influenced by sedimentary inputs in oxygen minimum zones (OMZ). However, the temporal development of dFe concentrations is poorly defined due to a general reliance on snapshot cross-shelf sections to study marine trace metal dynamics. Multiple cruise campaigns since the 1980s have investigated Fe dynamics over the Peruvian shelf, particularly between 9-17°S where the shelf is broad, extremely productive and known to feature benthic dFe effluxes which are amongst the highest measured globally. This extensive long-term dataset uniquely allows us to study the interannual variability in dFe concentrations and their response to El Niño–Southern Oscillation (ENSO) events. By combining data from 11 cruises during the period 1984-2017 we are able to evaluate dFe dynamics on interannual timescales in a major OMZ. The region where average dFe concentrations are sensitive to variations in ENSO is confined to a subsurface layer at depths between 50-150 m, particularly in the narrow coastal region within 50 km of the coastline. Subsurface dFe concentrations were generally low during El Niño events (0.7-15.4 nmol L-1) and relatively high with a wider range of variability during the cold ENSO phase (1.1-52.1 nmol L-1). Inverse relationships between wind speed and surface/subsurface dFe were evident. In the subsurface layer, this may be attributable to enhanced dFe offshore transport along isopycnals when upwelling-favorable winds relax in accordance with previously outlined theories. Surface layer (〈40 m) dFe variability was likely associated with a dilution and/or oxidation effect depending on the strength of wind driven water column mixing. Upwelling brings macronutrient-rich water into the euphotic zone, but its intensity had a limited impact on upper layer dFe concentrations possibly due to the influence of an onshore geostrophic flow. Interannual variability in surface chlorophyll-a (Chl-a) was found to correlate with dFe concentration in the offshore zone of northern Peru. This is consistent with bioassay experiments and climatological residual nitrate concentrations which both indicate proximal Fe limitation of phytoplankton growth over and beyond the northern Peruvian shelf. Overall, our work highlights the importance of physical factors driving short-term variations in Fe availability in one of the world’s most economically important fishery regions and suggests that, despite pronounced spatial and temporal variability in dFe concentrations, the ENSO phase has an impact on dFe availability.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 2024-03-22
    Description: CO2 injection has been deemed a promising method for CH4 production from gas hydrate-bearing sediments for its potential in stabilizing the host sediments and balancing carbon emission. However, the process is yet to be fully understood, as it involves interactions of multi-physical and chemical processes including the generation of water-immiscible CH4–CO2 fluid mixtures, the evolution of chemical reaction kinetics for both CH4 and CO2 hydrates, heat emission and absorption during hydrate formation and dissociation, and stress redistribution caused by spatially evolving responses of CH4–CO2 hydrate-bearing sediments. This paper develops a coupled thermo-hydro-chemo-mechanical formulation that captures the complexity of these processes and applies it to investigate the behavior of CH4 hydrate-bearing sediments subjected to CO2 injection. The capabilities of this coupled formulation are validated through numerical simulations of laboratory experiments of CO2 injection into CH4 hydrate-bearing soil. Moreover, the application of this formulation in a field-scale scenario reveals insights into the efficiencies of CH4 production and CO2 storage and the geomechanical implications. Notably, the study finds that compared to the depressurization-only method, the combined hot CO2 injection and depressurization method could increase CH4 production by approximately 400%. In addition, this method could sequester about 70% of injected CO2 into solid hydrates, while exhibiting smaller maximum slope of differential displacement. These outcomes highlight the viability and benefits of CH4 hydrate production through CO2 injection, increasing the prospects of this approach.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2024-03-22
    Description: Within the context of climate change, coastal vegetated ecosystems have the capacity for long-term carbon storage. Blue carbon refers to such carbon trapped in the oceans and coastal shelf seas. These ecosystems are under anthropogenic pressure and, to help these ecosystems to thrive and realize their carbon storage potentials, interventions require acceptance from society, in general, and adjacent coastal communities, in particular. Through a random street survey along the German coasts in 2022, quantitative and qualitative data were collected from more than 200 participants. A questionnaire comprising 50 open and closed questions was designed to assess the status quo of German coastal residents’ norms and values concerning blue carbon ecosystems. Focus was put on nature conservation and climate change perceptions. The survey results reveal that most residents along the German coast valued nature conservation while idealizing nature that is seen as “untouched” by humans. Responses regarding active interventions to improve coastal ecosystem services were diverse. Blue carbon strategies are likely to operate within this area of tension. Most respondents were aware of climate change as a threat to their home region and were in favor of an increase in action against climate change there. The respondents were familiar with CO 2 reduction and avoidance strategies. However, they were less aware of measures to remove atmospheric CO 2 and the potential of storing CO 2 in ecosystems beyond afforestation measures. Due to a lack of knowledge, no consolidated public opinions on blue carbon in coastal vegetated ecosystems could be identified, blurring societal acceptance of blue carbon strategies. While these ecosystems are particularly vulnerable to human disturbance, long-term carbon storage is essential for blue carbon. Therefore, the individual acceptance of interventions from people living in close proximity to intervention sites is key for sustained success. The present article concludes that there are possibilities to co-create knowledge and acceptance as prerequisites for blue carbon interventions to possibly become efficacious.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2024-03-22
    Description: Underwater image restoration has been a challenging problem for decades since the advent of underwater photography. Most solutions focus on shallow water scenarios, where the scene is uniformly illuminated by the sunlight. However, the vast majority of uncharted underwater terrain is located beyond 200 meters depth where natural light is scarce and artificial illumination is needed. In such cases, light sources co-moving with the camera, dynamically change the scene appearance, which make shallow water restoration methods inadequate. In particular for multi-light source systems (composed of dozens of LEDs nowadays), calibrating each light is time-consuming, error-prone and tedious, and we observe that only the integrated illumination within the viewing volume of the camera is critical, rather than the individual light sources. The key idea of this paper is therefore to exploit the appearance changes of objects or the seafloor, when traversing the viewing frustum of the camera. Through new constraints assuming Lambertian surfaces, corresponding image pixels constrain the light field in front of the camera, and for each voxel a signal factor and a backscatter value are stored in a volumetric grid that can be used for very efficient image restoration of camera-light platforms, which facilitates consistently texturing large 3D models and maps that would otherwise be dominated by lighting and medium artifacts. To validate the effectiveness of our approach, we conducted extensive experiments on simulated and real-world datasets. The results of these experiments demonstrate the robustness of our approach in restoring the true albedo of objects, while mitigating the influence of lighting and medium effects. Furthermore, we demonstrate our approach can be readily extended to other scenarios, including in-air imaging with artificial illumination or other similar cases.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2024-03-25
    Description: This dataset, resulting from Task 4.5 quantifies the potential of ocean-based negative emission technologies (NETs) using Earth System Models (ESMs). The dataset consists of simulations of ocean liming and direct CO2 removal from seawater. The ocean liming scenarios utilize excess CaO and cement production capacities from the EU, China, and the US, exploring their application for ocean alkalinization and gauging termination effects. Simulations ran from 2015-2100 using NorESM2-LM, EC-Earth3-CC, and AWI-CM models. This comprehensive dataset informs on the efficacy of ocean-based NETs and provides insights for future climate mitigation strategies, aligning with the Paris Agreement goals. It facilitates further analysis and supports ongoing research in global carbon cycle feedbacks of ocean-based NETs.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2024-03-25
    Description: The impact of oxygen on the preservation of organic matter in marine surface sediments is still controversial. We revisited this long-standing debate by determining the burial efficiency of sedimentary organic matter in the Black Sea, the largest anoxic and euxinic basin in the modern ocean. Surface sediments were sampled in the Danube paleodelta on the northwestern margin of the Black Sea at 420–1550 m water depth. Steady-state modeling of solid species (particulate organic carbon and nitrogen) and solutes (ammonium, sulfate, and total alkalinity) in sediments was performed to quantify rates of mass accumulation, particulate organic matter (POM) degradation, and POM burial. We develop a novel analytical model to quantify these rates applying an inverse modelling approach to down core data accounting for molecular diffusion, sediment burial and compaction. Our model results indicate that 56.7 ± 6.6 % of the particulate organic matter deposited in the study area is not degraded in surface sediments but accumulates below 10 cm sediment depth. This burial efficiency is substantially higher than those previously derived for seafloor areas underlying oxygenated bottom waters. Hence, our study confirms previous studies showing that euxinic bottom water conditions promote the preservation of particulate organic matter in marine sediments.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2024-03-25
    Description: The TetraEther indeX of 86 carbon atoms (TEX86) is widely used as a proxy to reconstruct past sea surface temperatures. Most current applications of TEX86 are primarily based on analyzing the composition of isoprenoid glycerol dialkyl glycerol tetraethers (isoGDGTs) that comprise TEX86 in sediments, with the assumption that the sedimentary isoGDGTs are mainly derived from the surface mixed layer. Here we report on the variations in the isoGDGT distribution, archaeal abundance and community through the water column of the Western Pacific Ocean, directly testing the export depth of isoGDGTs and constraining the temperature records of TEX86. Our data show that maximum isoGDGT concentrations occurred in subsurface waters (150–200 m) with maximum archaeal abundances. The ratio between isoGDGTs bearing 2 vs. 3 cyclopentane moieties, i.e. [2/3] ratio, increased with depth, which is likely related to the shift of the archaeal community from Ca. Nitrosopelagicus-dominance to norank_f__Nitrosopumilaceae-dominance. Models based on the [2/3] ratios in the water column predicted an average export depth of isoGDGTs to sediments of around 150–200 m, consistent with the robust relationship between the compiled sedimentary TEX86 and the annual mean subsurface temperature. Taken together, our findings support that TEX86 records subsurface rather than surface temperatures in the open ocean.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    facet.materialart.
    Unknown
    GEOMAR Helmholtz Centre for Ocean Research
    Publication Date: 2024-03-25
    Description: Vessel-mounted Acoustic Doppler Current Profilers (ADCPs) provide velocity profiles of the upper ocean along the ship track. They are a key tool in oceanographic research to study the oceanic circulation and the associated distribution of mass, heat, contaminants and other tracers. In order to obtain high-quality ocean current data from vessel-mounted ADCP measurements, a number of requirements must be met, from system installation and data acquisition measures to certain essential processing steps. Here, we collect key points on ADCP data acquisition in general and on the characteristics and requirements of vessel-mounted deployments. We summarize general post-processing guidelines and present an open-source Python toolbox called OSADCP for scientists to convert, clean, calibrate and organize binary raw vessel-mounted ADCP data for scientific use. The toolbox is designed to process ADCP measurements in deep water by Teledyne RDI Ocean Surveyor ADCPs and the data acquisition software VMDAS. An extended version of OSADCP is continuously developed as part of a data management project for the German oceanographic research fleet. The corresponding workflow was designed to ensure a standardized and reliable ADCP data transfer from the sensor to the repository. It is described here as one example for scientific data management that follows FAIR data guidelines.
    Type: Software , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 2024-03-25
    Description: Throughout this dissertation, a systematic evaluation of macroalgae-based CDR methodologies is carried out, encompassing various deployment locations,combinations with artificial upwelling, and a case study within Germany’s EEZ. The findings, in conjunction with existing research, underline the significant trade-offs involved, particularly the suppression of marine primary production which could have broader ecological ramifications. Despite being based on certain idealized assumptions, the thesis lays a solid groundwork for further investigations, advocating for a diversified approach in the assessment of climate mitigation strategies and emphasizing the urgency for further research, implementation, and global collaboration in addressing the climate change crisis.
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2024-03-25
    Description: The greenhouse gas methane (CH4) contributed to a warm climate that maintained liquid water and sustained Earth’s habitability in the Precambrian despite the faint young sun. The viability of methanogenesis (ME) in ferruginous environments, however, is debated, as iron reduction can potentially outcompete ME as a pathway of organic carbon remineralization (OCR). Here, we document that ME is a dominant OCR process in Brownie Lake, Minnesota (midwestern United States), which is a ferruginous (iron-rich, sulfate-poor) and meromictic (stratified with permanent anoxic bottom waters) system. We report ME accounting for ≥90% and >9% ± 7% of the anaerobic OCR in the water column and sediments, respectively, and an overall particulate organic carbon loading to CH4 conversion efficiency of ≥18% ± 7% in the anoxic zone of Brownie Lake. Our results, along with previous reports from ferruginous systems, suggest that even under low primary productivity in Precambrian oceans, the efficient conversion of organic carbon would have enabled marine CH4 to play a major role in early Earth’s biogeochemical evolution.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 2024-03-25
    Description: To advance underwater computer vision and robotics from lab environments and clear water scenarios to the deep dark ocean or murky coastal waters, representative benchmarks and realistic datasets with ground truth information are required. In particular, determining the camera pose is essential for many underwater robotic or photogrammetric applications and known ground truth is mandatory to evaluate the performance of, e.g., simultaneous localization and mapping approaches in such extreme environments. This paper presents the conception, calibration, and implementation of an external reference system for determining the underwater camera pose in real time. The approach, based on an HTC Vive tracking system in air, calculates the underwater camera pose by fusing the poses of two controllers tracked above the water surface of a tank. It is shown that the mean deviation of this approach to an optical marker-based reference in air is less than 3 mm and 0.3. Finally, the usability of the system for underwater applications is demonstrated.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Publication Date: 2024-03-25
    Description: Imaging is increasingly used to capture information on the marine environment thanks to the improvements in imaging equipment, devices for carrying cameras and data storage in recent years. In that context, biologists, geologists, computer specialists and end-users must gather to discuss the methods and procedures for optimising the quality and quantity of data collected from images. The 4 th Marine Imaging Workshop was organised from 3-6 October 2022 in Brest (France) in a hybrid mode. More than a hundred participants were welcomed in person and about 80 people attended the online sessions. The workshop was organised in a single plenary session of presentations followed by discussion sessions. These were based on dynamic polls and open questions that allowed recording of the imaging community’s current and future ideas. In addition, a whole day was dedicated to practical sessions on image analysis, data standardisation and communication tools. The format of this edition allowed the participation of a wider community, including lower-income countries, early career scientists, all working on laboratory, benthic and pelagic imaging. This article summarises the topics addressed during the workshop, particularly the outcomes of the discussion sessions for future reference and to make the workshop results available to the open public.
    Type: Article , NonPeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Publication Date: 2024-03-25
    Description: Metaorganism research contributes substantially to our understanding of the interaction between microbes and their hosts, as well as their co-evolution. Most research is currently focused on the bacterial community, while archaea often remain at the sidelines of metaorganism-related research. Here, we describe the archaeome of a total of eleven classical and emerging multicellular model organisms across the phylogenetic tree of life. To determine the microbial community composition of each host, we utilized a combination of archaea and bacteria-specific 16S rRNA gene amplicons. Members of the two prokaryotic domains were described regarding their community composition, diversity, and richness in each multicellular host. Moreover, association with specific hosts and possible interaction partners between the bacterial and archaeal communities were determined for the marine models. Our data show that the archaeome in marine hosts predominantly consists of Nitrosopumilaceae and Nanoarchaeota, which represent keystone taxa among the porifera. The presence of an archaeome in the terrestrial hosts varies substantially. With respect to abundant archaeal taxa, they harbor a higher proportion of methanoarchaea over the aquatic environment. We find that the archaeal community is much less diverse than its bacterial counterpart. Archaeal amplicon sequence variants are usually host-specific, suggesting adaptation through co-evolution with the host. While bacterial richness was higher in the aquatic than the terrestrial hosts, a significant difference in diversity and richness between these groups could not be observed in the archaeal dataset. Our data show a large proportion of unclassifiable archaeal taxa, highlighting the need for improved cultivation efforts and expanded databases.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 2024-03-25
    Description: Total alkalinity (AT) and dissolved inorganic carbon (CT) in the oceans are important properties with respect to understanding the ocean carbon cycle and its link to global change (ocean carbon sinks and sources, ocean acidification) and ultimately finding carbon-based solutions or mitigation procedures (marine carbon removal). We present a database of more than 44 400 AT and CT observations along with basic ancillary data (spatiotemporal location, depth, temperature and salinity) from various ocean regions obtained, mainly in the framework of French projects, since 1993. This includes both surface and water column data acquired in the open ocean, coastal zones and in the Mediterranean Sea and either from time series or dedicated one-off cruises. Most AT and CT data in this synthesis were measured from discrete samples using the same closed-cell potentiometric titration calibrated with Certified Reference Material, with an overall accuracy of ±4 µmol kg−1 for both AT and CT. The data are provided in two separate datasets – for the Global Ocean and the Mediterranean Sea (https://doi.org/10.17882/95414, Metzl et al., 2023), respectively – that offer a direct use for regional or global purposes, e.g., AT–salinity relationships, long-term CT estimates, and constraint and validation of diagnostic CT and AT reconstructed fields or ocean carbon and coupled climate–carbon models simulations as well as data derived from Biogeochemical-Argo (BGC-Argo) floats. When associated with other properties, these data can also be used to calculate pH, the fugacity of CO2 (fCO2) and other carbon system properties to derive ocean acidification rates or air–sea CO2 fluxes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    Publication Date: 2024-03-25
    Description: The air–sea exchange and oceanic cycling of greenhouse gases (GHG), including carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4), carbon monoxide (CO), and nitrogen oxides (NOx ¼ NO þ NO2), are fundamental in controlling the evolution of the Earth’s atmospheric chemistry and climate. Significant advances have been made over the last 10 years in understanding, instrumentation and methods, as well as deciphering the production and consumption pathways of GHG in the upper ocean (including the surface and subsurface ocean down to approximately 1000 m). The global ocean under current conditions is now well established as a major sink for CO2, a major source for N2O and a minor source for both CH4 and CO. The importance of the ocean as a sink or source of NOx is largely unknown so far. There are still considerable uncertainties about the processes and their major drivers controlling the distributions of N2O, CH4, CO, and NOx in the upper ocean. Without having a fundamental understanding of oceanic GHG production and consumption pathways, our knowledge about the effects of ongoing major oceanic changes—warming, acidification, deoxygenation, and eutrophication—on the oceanic cycling and air–sea exchange of GHG remains rudimentary at best. We suggest that only through a comprehensive, coordinated, and interdisciplinary approach that includes data collection by global observation networks as well as joint process studies can the necessary data be generated to (1) identify the relevant microbial and phytoplankton communities, (2) quantify the rates of ocean GHG production and consumption pathways, (3) comprehend their major drivers, and (4) decipher economic and cultural implications of mitigation solutions
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
  • 144
    Publication Date: 2024-03-25
    Description: The upper wind-driven circulation in the tropical Atlantic Ocean plays a key role in the basin-wide distribution of water mass properties and affects the transport of heat, freshwater, and biogeochemical tracers such as oxygen or nutrients. It is crucial to improve our understanding of its long-term behaviour, which largely relies on model simulations and applied forcing due to sparse observational data coverage, especially before the mid-2000s. Here, we apply two different forcing products, the Coordinated Ocean-ice Reference Experiments (CORE) v2 and the Japanese 55-year Reanalysis (JRA55-do) surface dataset, to a high-resolution ocean model. Where possible, we compare the simulated results to long-term observations. We find large discrepancies between the two simulations regarding the wind and current field. In the CORE simulation, strong, large-scale wind stress curl amplitudes above the upwelling regions of the eastern tropical North Atlantic seem to cause an overestimation of the mean and seasonal variability in the eastward subsurface current just north of the Equator. The wind stress curl of JRA55-do forcing shows much finer structures, and the JRA55-do simulation is in better agreement with the mean and intraseasonal fluctuations in the subsurface current found in observations. The northern branch of the South Equatorial Current flows westward at the surface just north of the Equator. On interannual to decadal timescales, it shows a high correlation of R=0.9 with the zonal wind stress in the CORE simulation but only a weak correlation of R=0.35 in the JRA55-do simulation. We also identify similarities between the two simulations. The strength of the eastward-flowing North Equatorial Counter Current located between 3 and 10° N covaries with the strength of the meridional wind stress just north of the Equator on interannual to decadal timescales in the two simulations. Both simulations present a comparable mean, seasonal cycle and trend of the eastward off-equatorial subsurface current south of the Equator but underestimate the current strength by half compared to observations. In both simulations, the eastward-flowing Equatorial Undercurrent weakened between 1990 and 2009. In the JRA simulation, which covers the modern period of observations, the Equatorial Undercurrent strengthened again between 2008 to 2018, which agrees with observations, although the simulation underestimates the strengthening by over a third. We propose that long-term observations, once they have reached a critical length, need to be used to test the quality of wind-driven simulations. This study presents one step in this direction.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2024-03-25
    Description: The ocean region along the latitude of 40oS in the South Atlantic, characterized by enhanced primary productivity, forms a transition zone between the nutrient replete but iron depleted Southern Ocean, and the nitrate and iron depleted Subtropical Gyre. Here, we present distributions of nutrient-type dissolved and particulate trace metals (dTMs and pTMs) including cadmium (Cd), nickel (Ni), copper (Cu), and zinc (Zn) in the South Atlantic from the GEOTRACES GA10 cruises. Phytoplankton uptake, riverine and atmospheric inputs shaped dTM and pTM concentrations in surface waters (dCd 27.8±36.0 pmol kg-1, n=222; dCu 0.732±0.429 nmol kg-1, n=222; dNi 3.38±0.52 nmol kg-1, n=219; dZn 0.332±0.398 nmol kg-1, n=214). Subsurface nutrients and dTMs (dCd 563±184 pmol kg-1, n=335; dCu 1.819±0.773 nmol kg-1, n=334; dNi 6.19±1.06 nmol kg-1, n=330; dZn 3.71±2.10 nmol kg-1, n=333) were controlled by the mixing of Antarctic origin waters and North Atlantic Deep Waters (NADW) with negligible contributions from local remineralization. Dissolved and particulate TMs in the Argentine Basin showed elevated concentrations towards the seafloor because of benthic inputs. Direct hydrothermal inputs of dTMs and pTMs to deep waters were not observed along the transect. The Cd-Cu-Zn-phosphate stoichiometries of Antarctic origin waters were set by a combination of dynamic physical circulation and preferential uptake of Cd, Cu, and Zn relative to phosphate in surface waters because of a dominance by diatoms in the Southern Ocean. Water mass mixing subsequently produced convoluted dCu-P and dZn-P relationships and apparent linear dCd-P and dNi-P relationships in the South Atlantic. More importantly, endmember characteristics of Antarctic waters and NADW are largely fixed in their formation regions in high latitude oceans. Therefore, the highly dynamic high latitude oceans are key regions that supply nutrients and TMs at specific ratios to low latitude oceans via the thermohaline circulation. Changes to processes in the high latitude oceans may have consequences for marine primary productivity downstream, and hence the global carbon cycle.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2024-03-25
    Description: The Black Sea is a permanently anoxic, marine basin serving as model system for the deposition of organic-rich sediments in a highly stratified ocean. In such systems, archaeal lipids are widely used as paleoceanographic and biogeochemical proxies; however, the diverse planktonic and benthic sources as well as their potentially distinct diagenetic fate may complicate their application. To track the flux of archaeal lipids and to constrain their sources and turnover, we quantitatively examined the distributions and stable carbon isotopic compositions (delta 13C) of intact polar lipids (IPLs) and core lipids (CLs) from the upper oxic water column into the underlying sediments, reaching deposits from the last glacial. The distribution of IPLs responded more sensitively to the geochemical zonation than the CLs, with the latter being governed by the deposition from the chemocline. The isotopic composition of archaeal lipids indicates CLs and IPLs in the deep anoxic water column have negligible influence on the sedimentary pool. Archaeol substitutes tetraether lipids as the most abundant IPL in the deep anoxic water column and the lacustrine methanic zone. Its elevated IPL/CL ratios and negative delta 13C values indicate active methane metabolism. Sedimentary CL- and IPL-crenarchaeol were exclusively derived from the water column, as indicated by non-variable delta 13C values that are identical to those in the chemocline and by the low BIT (branched isoprenoid tetraether index). By contrast, in situ production accounts on average for 22% of the sedimentary IPL-GDGT-0 (glycerol dibiphytanyl glycerol tetraether) based on isotopic mass balance using the fermentation product lactate as an endmember for the dissolved substrate pool. Despite the structural similarity, glycosidic crenarchaeol appears to be more recalcitrant in comparison to its non-cycloalkylated counterpart GDGT-0, as indicated by its consistently higher IPL/CL ratio in sediments. The higher TEX86, CCaT, and GDGT-2/-3 values in glacial sediments could plausibly result from selective turnover of archaeal lipids and/or an archaeal ecology shift during the transition from the glacial lacustrine to the Holocene marine setting. Our in-depth molecular-isotopic examination of archaeal core and intact polar lipids provided new constraints on the sources and fate of archaeal lipids and their applicability in paleoceanographic and biogeochemical studies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2024-03-25
    Description: Highlights • Investigation into the potential of Porites microatolls for SST reconstruction. • Comparison between recent and more conventional coral paleoclimatology methods. • Application of Srsingle bondU and Li/Mg paleothermometer. • Accuracy and reproducibility of Sr/Ca proved to be the most suitable proxy for SST reconstruction. Abstract Massive dome-shaped coral Porites are the predominant choice for paleoclimate studies due to their consistent and reliable growth. When growing close to sea level, they become limited in their vertical growth and form so-called ‘microatolls’. Microatolls have not yet been extensively explored for paleoclimate reconstruction. Here, we investigate how reliable modern Porites microatolls are against empirical sea-surface temperature using Sr/Ca, δ18O, Li/Mg and Srsingle bondU paleothermometry methods on samples from the Society Islands, French Polynesia. Our results show Sr/Ca ratios have the lowest Standard Error of the Inverse Prediction (SEIP) at 0.415 °C (N = 41) with a calibration of Sr/Ca (mmol mol−1) = −0.082 ± 0.006 SST (°C) + 11.256 ± 0.170 and with high reproducibility across multiple corals. The reproducibility of δ18O was less good, with SEIP increasing to 0.829 °C (N = 41). Considering methods directly from the literature, Li/Mg ratio empirically corrected for Sr/Ca had the best balance between bias and precision where no local calibration could be available. This study independently evaluates and confirms the suitability of Porites microatolls from well-flushed environments for paleoclimate studies. Fossil dome-shaped Porites grow anywhere between near-surface and roughly 20 m depths which inherently incorporates uncertainty into any sea surface temperature reconstruction. This uncertainty is significantly reduced for microatolls due to their well-constrained bathymetry. The study represents a fundamental step in paleoclimate research targeting consistently near the water-air interface bringing reliability and, especially when combined with their ability to reconstruct past sea-level changes, microatolls have the potential to be central for future paleoenvironmental studies.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2024-03-25
    Description: Sponges (Porifera) are basal metazoans that feed on and establish symbiotic associations with microbes. How sponges discriminate between bacteria to digest as food, incorporate as symbionts, or eliminate as pathogens remains unknown. This thesis aimed to study mechanisms for microbial discrimination in sponges. Mechanisms likely to modulate sponge-microbe interactions are introduced (Chapter 1). The host transcriptomic response upon seawater and symbiont microbial consortia encounter was characterized by RNASeq in two sponges (Chapter 2). Aplysina aerophoba showed little differential gene expression and no participation of receptors, whereas Dysidea avara responded by regulating NLRs suggesting that microbial discrimination is driven by the repertoire of immune genes as well as to what degree they are induced. On the cellular level, an in-vivo phagocytosis assay was established in Halichondria panicea combining incubations with microalgae, bacteria, and latex beads with cell dissociation and fluorescence-activated cell sorting (FACS) to quantify particle incorporation into sponge cells (Chapter 3). After 30 min particles were predominantly incorporated into choanocyte-like cells and appeared to be translocated to archaeocyte-like cells after 60 min. Lastly, the established assay was combined with proteomic analysis to investigate H. panicea’s phagocytic response upon exposure to a “native” and a “foreign” Vibrio isolate (Chapter 4). Vibrio incorporation into sponge cells was indiscriminate, but the distribution of vibrios into different cell types differed between isolates. Phagocytic-related proteins were in a higher abundance in the foreign vs. the native treatment. These results indicate that bacterial discrimination in H. panicea occurs after internalization leading to differences in the processing of foreign vs native vibrio types.
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Publication Date: 2024-03-25
    Description: Efficient usage of the highly heterogeneous, high-volume biogeochemistry (BGC) essential ocean variables (EOV) data determines the success of BGC observations in supporting the development of evidence-based strategies for climate change mitigation, and adaptation, ecosystem health conservation, and sustainable resource management. Acknowledging the positive impacts of BGC EOV data synthesis products on the BGC data landscape, the overarching goal of this thesis was to further manifest BGC EOV synthesis products as an integral part in the ocean observing system. For this purpose, first, a novel evaluation scheme was developed that enables an objective assessment of the readiness of BGC EOV data synthesis products following the system-engineering approach of the Framework of Ocean Observing. In parallel, over the course of this thesis annual updates of the GLobal Ocean Data Analysis Project (GLODAP) were realized since 2019. The most recent, GLODAPv2.2022, represents the largest and most consistent dataset for carbon-relevant hydrographic cruise data, including data from 1,085 hydrographic cruises with 1,381,248 water samples. Additionally, in pursue of a higher readiness for GLODAP, the vision of a uniform, semi-automatic, and standards-compliant data ingestion system in combination with a modern and versatile data extraction system were developed and outlined. Furthermore, a pilot for the Synthesis Product for Ocean Time Series (SPOTS) was successfully produced during this thesis. Thereby, a template for a sustained living SPOTS was created and the BGC data landscape was expanded by the previously overlooked ship-based time-series programs. For the pilot, a total of 108,332 water samples from 12 ship-based time-series programs were synthesized. Altogether, through this thesis, important steps towards manifesting BGC EOV data synthesis products as an integral part in the ocean observing system were realized.
    Type: Thesis , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Publication Date: 2024-03-26
    Description: This review has been undertaken to understand the effectiveness of ocean acidification on oceanic micronutrient metal cycles (iron, copper and zinc) and its potential impacts on marine biota. Ocean acidification will slow down the oxidation of Fe(II) thereby retarding Fe(III) formation and subsequent hydrolysis/precipitation leading to an increase in iron bioavailability. Further, the increased primary production sustains enzymatic bacteria assisted Fe(III) reduction and subsequently the binding of weaker ligands favours the dissociation of free Fe(II) ions, thus increasing the bioavailability. The increasing pCO2 condition increases the bioavailability of copper ions by decreasing the availability of free CO32− ligand concentration. The strong complexation by dissolved organic matter may decrease the bioavailable iron and zinc ion concentration. Since ocean acidification affects the bioavailability of essential metals, studies on the uptake rates of these elements by phytoplankton should be carried out to reveal the future scenario and its effect on natural environment.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Publication Date: 2024-03-27
    Type: Newspaper report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    Publication Date: 2024-03-27
    Type: Newspaper report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    Publication Date: 2024-03-27
    Description: We conducted extensive sediment trap experiments in the Benguela Upwelling System (BUS) in the south-eastern Atlantic Ocean to study the influence of zooplankton on the flux of particulate organic carbon (POC) through the water column and its sedimentation. Two long term moored and sixteen short term free-floating sediment trap systems were deployed. The mooring experiments were conducted for several years and the sixteen drifters were deployed on three different research cruises between 2019 and 2021. Zooplankton was separated from the trapped material and divided into 8 different zooplankton groups. In contrast to zooplankton which actively carries POC into the traps in the form of biomass (active POC flux), the remaining fraction of the trapped material was assumed to fall passively into the traps along with sinking particles (passive POC flux). The results show, in line with other studies, that copepods dominate the active POC flux, with the active POC flux in the southern BUS (sBUS) being about three times higher than in the northern BUS (nBUS). In contrast, the differences between the passive POC fluxes in the nBUS and sBUS were small. Despite large variations, which reflected the variability within the two subsystems, the mean passive POC fluxes from the drifters and the moored traps could be described using a common POC flux attenuation equation. However, the almost equal passive POC flux, on the one hand, and large variations in the POC concentration in the surface sediments between the nBUS and sBUS, on the other hand, imply that factors others than the POC supply exert the main control on POC sedimentation in the BUS. The varying intensity of the near-bottom oxygen minimum zone (OMZ), which is more pronounced in the nBUS than in the sBUS, could in turn explain the differences in the sediments, as the lack of oxygen reduces the POC degradation. Hence, globally expanding OMZs might favour POC sedimentation in regions formerly exposed to oxygenated bottom water but bear the risk of increasing the frequency of anoxic events in the oxygen-poor upwelling systems. Apart from associated release of CH4, which is a much more potent greenhouse gas than CO2, such events pose a major threat to the pelagic ecosystem and fisheries.
    Type: Article , NonPeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    Publication Date: 2024-04-03
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    Publication Date: 2024-04-03
    Description: In this report, we claim that although there is no national deployment or consultation program for OceanNETs in the US, Germany, or Australia, the very idea is sufficiently open-ended to accommodate and even federate different development pathways for industrial-scale emissions reduction. We use the “sociotechnical imaginaries” concept to show how existing moral and political outlooks can, concretely, support the more abstract “need” for OceanNETs within overshoot scenarios. Thus, even without an endorsement of the feasibility or desirability of OceanNETs—as a matter of transnational climate negotiations, for example—it is possible to observe openings for large-scale transformations in ocean use under the description of “climate action.” Such changes are patchier than the imagined research-to-deployment pipeline considered in conventional depictions of OceanNETs, and, indeed, may take the form of those techniques often deemed most marginal to the OceanNETs research agenda, such as “carbon capture and storage” or “seaweed afforestation.” Moreover, the difficulty of engaging local communities in these ongoing changes is a structural feature of negative emissions technology development more generally. This difficulty can be understood not only as a matter of geography, but of the assumptions of net-zero politics, in particular the abstraction of the global carbon budget. This exposes OceanNETs to considerable political and moral instabilities expressed in—yet not reducible to—concerns over the “hype cycle” or “rogue action.”
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2024-04-03
    Description: Carbon disulfide (CS2) has recently gained attention as an important precursor for the atmospheric trace gas carbonyl sulfide (OCS), which delivers sulfur to the stratospheric sulfur layer and impacts the radiative budget of the Earth. CS2 is naturally produced in the ocean and emitted to the atmosphere. However, the magnitude of its marine emissions is only poorly constrained due to lacking understanding of its production and consumption processes. Here, we present incubation experiments with and without UV light treatment and provide evidence for a previously not considered UV-light-driven degradation process of CS2 in seawater, following first-order kinetics. In addition to its already known photochemical production process, CS2 production is found in the dark, depending on the amount of dissolved organic sulfur present in seawater. We provide novel production and consumption rates of CS2 in seawater that pave the way toward mechanistically quantifying marine emissions of this important trace gas. Key Points: - Carbon disulfide in seawater is degraded by UV light at time scales of days - Carbon disulfide is produced in seawater without UV light at rates comparable to photochemical production - Carbon disulfide dark production is limited by dissolved organic sulfur
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Publication Date: 2024-04-03
    Description: Retrieving the physical properties and water content of marine aerosols requires understanding the links between the particles' optical and microphysical properties. By using a morphologically realistic model with varying salt mass fractions fm, describing the transition from irregularly shaped, dry salt crystals to brine-coated geometries, optical properties relevant to polarimetric remote sensing are computed at wavelengths of 532 and 1,064 nm. The extinction cross section and its color ratio depend on particle size, but are insensitive to changes in fm; thus, measured extinction coefficients at two wavelengths contain information on both particle number and size. The lidar ratio's dependence on both size and wavelength has implications for inverting the lidar equation. The results suggest that active observations of the backscattering cross section's color ratio and the depolarization ratio, as well as, passive observations of the degree of linear polarization offer avenues to obtain the water content of marine aerosols. Key Points: - Modeled extinction coefficient of marine aerosol depends on particle radius and wavelength, but not on water content - The depolarization ratio and the color ratio of the backscattering cross section generally decrease with growing aerosol water content - The linear polarization peak near backscattering angles at NIR wavelength could be used in passive polarimetry to retrieve water content
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 2024-04-03
    Description: Highlights • Present day infiltration conditions in an monsoonal environment are studied. • Noble gas concentrations in groundwater are fixed near the soil surface. • Noble gas temperatures represent seasonal infiltration conditions in the monsoon. • Holocene and modern infiltration conditions are quite similar in southern Oman. Abstract Comparing directly measured soil temperatures with noble gas recharge temperatures (NGTs) inferred from noble gas concentrations indicates that the infiltrating soil water equilibrates with soil air near the soil surface during the rainy season. Therefore, NGTs of groundwater recently recharged by the Indian Summer Monsoon (ISM) in the Dhofar Mountains in southern Oman reflect the soil temperatures of the 3-month period and do not represent an annual mean. This finding highlights the need to account for seasonality when interpreting NGT data in regions with pronounced dry and wet seasons. We extend the observations from the southern flank of the Dhofar Mountains to three wells situated on the northern flank of the Dhofar Mountains. Two of these wells yield water of Holocene age that was recharged by the monsoon, their NGT signals are therefore classified as seasonal. The NGT calculated from a third well for recharge conditions during the Last Glacial Maximum (LGM), when the ISM was absent, is approximately 3 °C lower than that of the two Holocene wells. The lower LGM noble gas temperature corresponds well with the lower annual Sea Surface Temperature (SST) in the nearby Arabian Sea. NGTs from published studies from northern Oman are 1–3 °C higher when compared with our data of the same period in the southern Oman. We explain this regional difference of reconstructed temperatures for the LGM and Holocene groundwater with a more continental climatic influence on the infiltration conditions further to the north. The published NGTs from northern Oman show a large temperature difference between the late Holocene and the LGM. In view of our finding of seasonal NGT signals under monsoonal climate, part of this difference may reflect a change in the precipitation regime rather than in air temperature.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2024-04-03
    Description: Climate change is opening the Arctic Ocean to increasing human impact and ecosystem changes. Arctic fjords, the region’s most productive ecosystems, are sustained by a diverse microbial community at the base of the food web. Here we show that Arctic fjords become more prokaryotic in the picoplankton (0.2–3 µm) with increasing water temperatures. Across 21 fjords, we found that Arctic fjords had proportionally more trophically diverse (autotrophic, mixotrophic, and heterotrophic) picoeukaryotes, while subarctic and temperate fjords had relatively more diverse prokaryotic trophic groups. Modeled oceanographic connectivity between fjords suggested that transport alone would create a smooth gradient in beta diversity largely following the North Atlantic Current and East Greenland Current. Deviations from this suggested that picoeukaryotes had some strong regional patterns in beta diversity that reduced the effect of oceanographic connectivity, while prokaryotes were mainly stopped in their dispersal if strong temperature differences between sites were present. Fjords located in high Arctic regions also generally had very low prokaryotic alpha diversity. Ultimately, warming of Arctic fjords could induce a fundamental shift from more trophic diverse eukaryotic- to prokaryotic-dominated communities, with profound implications for Arctic ecosystem dynamics including their productivity patterns.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 2024-04-03
    Description: Highlights • This study simulates the sedimentation-driven development of multiple stacked BSRs in the Danube paleo-delta, Black Sea. • Formation of multiple BSRs in the Black Sea is controlled by the sequence of sedimentation events of the levees induced by sea-level changes. • Kinetics of phase transitions plays a key role in the coexistence, location, and timing of the multiple BSRs. • Development of multiple stacked BSRs is possible only under a narrow range of parameters, unique for the Danube delta setting. Abstract The gas hydrate stability zone (GHSZ) is defined by pressure-temperature-salinity (pTS) constraints of natural gas hydrate (GH) system. It refers to a depth interval which usually extends several hundred meters into the sediment column at sufficient water depths. The lower boundary of the GHSZ often coincides in seismic reflection data with a bottom simulating reflector (BSR), which indicates the transition between the underlying free gas and the overlying no-free gas zone at the thermodynamic stability boundary. The GHSZ in geological systems is dynamic and can shift in response to sedimentation processes and/or changes in environmental conditions such as bottom water temperatures, hydrostatic pressure, and water salinity. The appearance of multiple BSRs has been interpreted as remnants of former GHSZ shifts which have persisted over geological timescales. In this study, we numerically simulate the sedimentation-driven development of multiple stacked BSRs in the Danube deep-sea fan in the Black Sea. We show that in this dynamic sediment depositional regime sufficient amounts of residual gas remain trapped in the former GHSZ, given sufficiently high initial gas hydrate saturations, so that paleo-BSRs could persist over long time scales (similar to 300 kyr). In particular, the formation and persistence of multiple BSRs in the Danube Delta is controlled by the sequence of sedimentation events of the levees induced by sea-level change. The kinetics of methane phase transitions between gas hydrate, dissolved methane, and free gas plays a key role in the coexistence, location and timing of the multiple BSRs. Thus, For a given permeability, distinct multiple BSRs appear only for a narrow range of GH formation (10(-14) 〈 k(f) [mol/m(2) Pa s] 〈= 10(-12)) and dissociation rates (10(-16) 〈 k(d) [mol/m(2) Pa s] 〈 10(-14)).
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2024-04-03
    Description: Multiple stressors often act concomitantly on ecosystems but detection of species responses follows the “single species-single driver” strategy, and cumulative impacts are seldom considered. During 1990–2010, multiple perturbations in the Caspian Sea, led to the decline of kilka, sturgeon and Caspian seal populations. Specific causes for their collapse were identified but a cumulative assessment has never been carried out. Using loop analysis, a qualitative modelling technique suitable in poor-data contexts, we show how multiple drivers can be combined to assess their cumulative impact. We confirm that the decline of kilka, sturgeon and Caspian seal populations is compatible with a net effect of the concomitant perturbations. Kilkas collapse was certainly due to the outburst of M. leidyi and overfishing. In addition, the excess nutrient might have conspired to reduce these populations. The interplay between concurrent drivers produces trade-offs between opposite effects and ecosystem management must face this challenge
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2024-04-03
    Description: Here we present a confocal Fe K-edge μ-XANES method (where XANES stands for X-ray absorption near-edge spectroscopy) for the analysis of Fe oxidation state in heterogeneous and one-side-polished samples. The new technique allows for an analysis of small volumes with high spatial 3D resolution of 〈100 µm3. The probed volume is restricted to that just beneath the surface of the exposed object. This protocol avoids contamination of the signal by the host material and minimizes self-absorption effects. This technique has been tested on a set of experimental glasses with a wide range of Fe3+  ΣFe ratios. The method was applied to the analysis of natural melt inclusions trapped in forsteritic to fayalitic olivine crystals of the Hekla volcano, Iceland. Our measurements reveal changes in Fe3+  ΣFe from 0.17 in basaltic up to 0.45 in dacitic melts, whereas the magnetite–ilmenite equilibrium shows redox conditions with Fe3+  ΣFe ≤0.20 (close to FMQ, fayalite–magnetite–quartz redox equilibrium) along the entire range of Hekla melt compositions. This discrepancy indicates that the oxidized nature of glasses in the melt inclusions could be related to the post-entrapment process of diffusive hydrogen loss from inclusions and associated oxidation of Fe in the melt. The Fe3+  ΣFe ratio in silicic melts is particularly susceptible to this process due to their low FeO content, and it should be critically evaluated before petrological interpretation.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    Publication Date: 2024-04-03
    Description: Current earthquake forecasting approaches are mainly based on probabilistic assumptions, as earthquakes seem to occur randomly. Such apparent randomness can however be caused by deterministic chaos, rendering deterministic short‐term forecasts possible. Due to the short historical and instrumental record of earthquakes, chaos detection has proven challenging, but more frequently occurring slow slip events (SSE) are promising candidates to probe for determinism. Here, we characterize the SSE signatures obtained from GNSS position time series in the Hikurangi Subduction Zone (New Zealand) to investigate whether the seemingly random SSE occurrence is governed by chaotic determinism. We find evidence for deterministic chaos for stations recording shallow SSEs, suggesting that short‐term deterministic forecasting of SSEs, similar to weather forecasts, might indeed be possible over timescales of a few weeks. We anticipate that our findings could open the door for next‐generation SSE forecasting, adding new tools to existing probabilistic approaches. Plain Language Summary Since earthquakes appear to occur randomly, the currently available probabilistic predictions are based on past earthquake records. These predictions estimate the likelihood of an earthquake of a given magnitude occurring within a defined time period. In contrast to such probabilistic approaches, deterministic systems are fully predictable, albeit often confined to short time scales due to their potential chaotic behavior. Probing for deterministic predictability in the earthquake cycle is intractable due to the limited historical instrumental record. However, frequently occurring slow slip events ‐ captured by transient GNSS displacements that can last several weeks ‐ provide a unique opportunity to explore deterministic predictability in these types of slow earthquakes. By studying GNSS time series from various stations on New Zealand’s North Island, we have discovered evidence suggesting that these irregularly occurring slow slip events might be governed by chaotic determinism. This implies the potential to forecast both timing and magnitude of slow slip events a few weeks in advance using deterministic methods, much like we predict weather patterns. Consequently, our theoretical findings could therefore pave the way for innovative approaches to short‐term slow slip forecasting. Key Points Nonlinear analysis of GNSS displacement time series unveils evidence for deterministic chaos in slow slip events in New Zealand Our theoretical findings imply that irregularly occurring slow slip events could potentially be forecasted a few weeks in advance
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2024-04-03
    Description: Sediment fluxes to the seafloor govern the fate of elements and compounds in the ocean and serve as a prerequisite for research on elemental cycling, benthic processes and sediment management strategies. To quantify these fluxes over seafloor areas, it is necessary to scale up sediment mass accumulation rates (MAR) obtained from multiple sample stations. Conventional methods for spatial upscaling involve averaging of data or spatial interpolation. However, these approaches may not be sufficiently precise to account for spatial variations of MAR, leading to poorly constrained regional sediment budgets. Here, we utilize a machine learning approach to scale up porosity and 210 Pb data from 145 and 65 stations, respectively, in the Skagerrak. The models predict the spatial distributions by considering several predictor variables that are assumed to control porosity and 210 Pb rain rates. The spatial distribution of MAR is based on the predicted porosity and existing sedimentation rate data. Our findings reveal highest MAR and 210 Pb rain rates to occur in two parallel belt structures that align with the general circulation pattern in the Skagerrak. While high 210 Pb rain rates occur in intermediate water depths, the belt of high MAR is situated closer to the coastlines due to lower porosities at shallow water depths. Based on the spatial distributions, we calculate a total MAR of 34.7 Mt yr -1 and a 210 Pb rain rate of 4.7 · 10 14 dpm yr -1 . By comparing atmospheric to total 210 Pb rain rates, we further estimate that 24% of the 210 Pb originates from the local atmospheric input, with the remaining 76% being transported laterally into the Skagerrak. The updated MAR in the Skagerrak is combined with literature data on other major sediment sources and sinks to present a tentative sediment budget for the North Sea, which reveals an imbalance with sediment outputs exceeding the inputs. Substantial uncertainties in the revised Skagerrak MAR and the literature data might close this imbalance. However, we further hypothesize that previous estimates of suspended sediment inputs into the North Sea might have been underestimated, considering recently revised and elevated estimates on coastal erosion rates in the surrounding region of the North Sea.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2024-04-03
    Description: Highlights • Four rhyolitic explosive eruption events were distinguished from 13.1 Ma to 11.6 Ma. • Silicic volcanism occurred at termination of subduction in a thinning lithosphere. • Rhyolites show extreme magma differentiation and reduced-dry character. • Zircon trace element and Hf isotope fingerprint is an effective correlation tool. Abstract The Tokaj Mts. volcanism occurred in a thinning continental lithosphere regime at the final stage of the subduction process. Using high-precision zircon U-Pb dating, four major explosive eruption events were distinguished. Among them the 13.1 Ma Sátoraljaújhely and the 12.0 Ma Szerencs eruptions could have yielded large amount of volcanic material (possibly 〉 100 km3) and they were associated with caldera collapse as shown by the several hundred-metre-thick pyroclastic deposits and the long (〉100 km) runout pyroclastic flow in case of the 13.1 Ma eruption. The 12.3 Ma Hegyköz and the 11.6 Ma Vizsoly eruptions were relatively smaller. The volcanic products can be readily distinguished by zircon and glass trace elements and trace element ratios, which can be used for fingerprinting and to correlate with distal deposits. The Rb, Ba, Sr content and strong negative Eu-anomaly of the glasses reflect extreme crystal fractionation, particularly for the Szerencs rhyolitic magma. The silicic volcanic products of the Tokaj Mts. show compositional similarities with the so-called ‘dry–reduced–hot’ rhyolite type consistent with an origin in an extensional environment, where the primary magmas were formed by near-adiabatic decompression melting in the mantle with subordinate fluid flux. In contrast, some of the older Bükkalja rhyolitic magmas evolved via more hydrous evolutionary paths, where amphibole played a role in the control of the trace element budget. The significant increase of zircon ε Hf values from −8.8 to + 0.2 in the rhyolitic pyroclastic rocks of Tokaj Mts. with time implies that mantle-derived magmas became more dominant. This can be explained by the specific tectonic setting, i.e. the final stage of subduction when the descending subducted slab became almost vertical, which exerted a pull in the upper lithosphere leading to thinning and accelerated subsidence as well as asthenospheric mantle flow just before the slab detachment.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    Publication Date: 2024-04-04
    Description: In this report the on-line data workshop that relates to the mesocosm experiment conducted in the subtropical, oligotrophic waters off Gran Canaria in September/October 2021 is described. All participating groups presented their final (and in some cases still preliminary) results. At the meeting a list of intended manuscripts was prepared and for each manuscript lead authors were identified. Additionally, a publication strategy was discussed and decided.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2024-04-04
    Description: Perturbations in stratospheric aerosol due to explosive volcanic eruptions are a primary contributor to natural climate variability. Observations of stratospheric aerosol are available for the past decades, and information from ice cores has been used to derive estimates of stratospheric sulfur injections and aerosol optical depth over the Holocene (approximately 10 000 BP to present) and into the last glacial period, extending back to 60 000 BP. Tephra records of past volcanism, compared to ice cores, are less complete but extend much further into the past. To support model studies of the potential impacts of explosive volcanism on climate variability across timescales, we present here an ensemble reconstruction of volcanic stratospheric sulfur injection (VSSI) over the last 140 000 years that is based primarily on terrestrial and marine tephra records. VSSI values are computed as a simple function of eruption magnitude based on VSSI estimates from ice cores and satellite observations for identified eruptions. To correct for the incompleteness of the tephra record, we include stochastically generated synthetic eruptions assuming a constant background eruption frequency from the ice core Holocene record. While the reconstruction often differs from ice core estimates for specific eruptions due to uncertainties in the data used and reconstruction method, it shows good agreement with an ice-core-based VSSI reconstruction in terms of millennial-scale cumulative VSSI variations over the Holocene. The PalVol reconstruction provides a new basis to test the contributions of forced vs. unforced natural variability to the spectrum of climate and the mechanisms leading to abrupt transitions in the palaeoclimate record with low- to high-complexity climate models. The PalVol volcanic forcing reconstruction is available at https://doi.org/10.26050/WDCC/PalVolv1 (Toohey and Schindlbeck-Belo, 2023).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    Publication Date: 2024-04-05
    Description: Suspended particulate matter (SPM) carries a major fraction of metals in turbid coastal waters, markedly influencing metal bioaccumulation and posing risks to marine life. However, its effects are often overlooked in current water quality criteria for metals, primarily due to challenges in quantifying SPM’s contribution. This contribution depends on the SPM concentration, metal distribution coefficients (Kd), and the bioavailability of SPM-bound metals (assimilation efficiency, AE), which can collectively be integrated as a modifying factor (MF). Accordingly, we developed a new stable isotope method to measure metal AE by individual organisms from SPM, employing the widely distributed filter-feeding clam Ruditapes philippinarum as a representative species. Assessing SPM from 23 coastal sites in China, we found average AEs of 42% for Zn, 26% for Cd, 20% for Cu, 8% for Ni, and 6% for Pb. Moreover, using stable isotope methods, we determined metal Kd of SPM from these sites, which can be well predicted by the total organic carbon and iron content (R2 = 0.977). We calculated MFs using a Monte Carlo method. The calculated MFs are in the range 9.9-43 for Pb, 8.5-37 for Zn, 2.9-9.7 for Cu, 1.4-2.7 for Ni, and 1.1-1.6 for Cd, suggesting that dissolved-metal-based criteria values should be divided by MFs to provide adequate protection to aquatic life. This study provides foundational guidelines to refine water quality criteria in turbid waters and protect coastal ecosystems.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2024-04-05
    Description: The sailboat Seaexplorer collected underway sea surface partial pressure of CO2 (pCO2) data for 129 days (2018–2021), including an Antarctic circumnavigation. By comparing ensembles of data-driven air-sea CO2 fluxes computed with and without sailboat data and applying a detection algorithm, we show that these sailboat observations significantly increase the regional carbon uptake in the North Atlantic and decrease it in the Southern Ocean. While compensating changes in both basins limit the global effect, the Southern Ocean–particularly frontal regions (40°S–60°S) during summertime—exhibited the largest air-sea CO2 flux changes, averaging 20% of the regional mean. Assessing the sensitivity of the air-sea CO2 flux to measurement uncertainty, the results stay robust within the expected random measurement uncertainty (± 5 μatm) but remain undetectable with a measurement offset of 5 µatm. We thus conclude that sailboats fill essential measurement gaps in remote ocean regions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    Publication Date: 2024-04-05
    Description: Current global warming results in rising sea-water temperatures, and the loss of sea ice in arctic and subarctic oceans impacts the community composition of primary producers with cascading effects on the food web and potentially on carbon export rates. This study analyzes metagenomic shotgun and diatom rbcL amplicon-sequencing data from sedimentary ancient DNA (sedaDNA) of the subarctic western Bering Sea that records phyto- and zooplankton community changes over the last glacial–interglacial cycle, including the last interglacial period (Eemian). Our data show that interglacial and glacial plankton communities differ, with distinct Eemian and Holocene plankton communities. The generally warm Holocene period is dominated by pico-sized cyanobacteria and bacteria-feeding heterotrophic protists, while the Eemian period is dominated by eukaryotic pico-sized chlorophytes and Triparmaceae. In contrast, the glacial period is characterized by micro-sized phototrophic protists, including sea-ice associated diatoms in the family Bacillariaceae and co-occurring diatom-feeding crustaceous zooplankton. Our deep-time record of plankton community changes reveals a long-term decrease in phytoplankton cell size coeval with increasing temperatures, and resembling community changes in the currently warming Bering Sea. The phytoplankton community in the warmer-than-present Eemian period is distinct from modern communities and limits the use of the Eemian as an analog for future climate scenarios. However, under enhanced future warming, the expected shift towards the dominance of small-sized phytoplankton and heterotrophic protists might result in an increased productivity, whereas the community’s potential of carbon export will be decreased, thereby weakening the subarctic Bering Sea’s function as an effective carbon sink.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    Publication Date: 2024-04-05
    Description: The objective of this perspective article is to determine the extent to which processes operating across the air–sea interface are considered in international environmental policy. The ocean is usually important but rarely a defining feature in such policies. We will begin with a brief introduction to the existing relevant treaties and policy frameworks. The provisions within these treaties will be analyzed for instances when air–sea interactions are considered and when they are not. We aim to establish that there is a lack of consideration in international regulation of the interaction between the atmosphere and the ocean, something that is not compatible with the environmental reality. Consequently, we point out examples where we think the air–sea interface could have been incorporated in international legislation. The question of why there is a gap between science and policy, regarding air–sea interactions, is posed and our hypotheses for the answers are outlined. The concept of so-called soft law and related instruments, such as the 2015 United Nations Sustainable Development Goals, are discussed. We finalize this review with our recommendations for future policymaking across the air–sea interface.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2024-04-05
    Description: We examine the impact of horizontal resolution and model time step on the climate of the OpenIFS version 43r3 atmospheric general circulation model. A series of simulations for the period 1979–2019 are conducted with various horizontal resolutions (i.e. ∼100, ∼50, and ∼25 km) while maintaining the same time step (i.e. 15 min) and using different time steps (i.e. 60, 30, and 15 min) at 100 km horizontal resolution. We find that the surface zonal wind bias is significantly reduced over certain regions such as the Southern Ocean and the Northern Hemisphere mid-latitudes and in tropical and subtropical regions at a high horizontal resolution (i.e. ∼25 km). Similar improvement is evident too when using a coarse-resolution model (∼100 km) with a smaller time step (i.e. 30 and 15 min). We also find improvements in Rossby wave amplitude and phase speed, as well as in weather regime patterns, when a smaller time step or higher horizontal resolution is used. The improvement in the wind bias when using the shorter time step is mostly due to an increase in shallow and mid-level convection that enhances vertical mixing in the lower troposphere. The enhanced mixing allows frictional effects to influence a deeper layer and reduces wind and wind speed throughout the troposphere. However, precipitation biases generally increase with higher horizontal resolutions or smaller time steps, whereas the surface air temperature bias exhibits a small improvement over North America and the eastern Eurasian continent. We argue that the bias improvement in the highest-horizontal-resolution (i.e. ∼25 km) configuration benefits from a combination of both the enhanced horizontal resolution and the shorter time step. In summary, we demonstrate that, by reducing the time step in the coarse-resolution (∼100 km) OpenIFS model, one can alleviate some climate biases at a lower cost than by increasing the horizontal resolution.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    Publication Date: 2024-04-05
    Description: The Arctic Ocean is an exceptional environment where hydrosphere, cryosphere, and atmosphere are closely interconnected. Changes in sea-ice extent and thickness affect ocean currents, as well as moisture and heat exchange with the atmosphere. Energy and water fluxes impact the formation and melting of sea ice and snow cover. Here, we present a comprehensive statistical analysis of the stable water isotopes of various hydrological components in the central Arctic obtained during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition in 2019–2020, including the understudied Arctic winter. Our dataset comprises >2200 water, snow, and ice samples. Snow had the most depleted and variable isotopic composition, with δ18O (–16.3‰) increasing consistently from surface (–22.5‰) to bottom (–9.7‰) of the snowpack, suggesting that snow metamorphism and wind-induced transport may overprint the original precipitation isotope values. In the Arctic Ocean, isotopes also help to distinguish between different sea-ice types, and whether there is a meteoric contribution. The isotopic composition and salinity of surface seawater indicated relative contributions from different freshwater sources: lower δ18O (approximately –3.0‰) and salinities were observed near the eastern Siberian shelves and towards the center of the Transpolar Drift due to river discharge. Higher δ18O (approximately –1.5‰) and salinities were associated with an Atlantic source when the RV Polarstern crossed the Gakkel Ridge into the Nansen Basin. These changes were driven mainly by the shifts within the Transpolar Drift that carried the Polarstern across the Arctic Ocean. Our isotopic analysis highlights the importance of investigating isotope fractionation effects, for example, during sea-ice formation and melting. A systematic full-year sampling for water isotopes from different components strengthens our understanding of the Arctic water cycle and provides crucial insights into the interaction between atmosphere, sea ice, and ocean and their spatio-temporal variations during MOSAiC.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Publication Date: 2024-04-05
    Description: A new member of the family Flavobacteriaceae (termed Hal144T) was isolated from the marine breadcrumb sponge Halichondria panicea. Sponge material was collected in 2018 at Schilksee which is located in the Kiel Fjord (Baltic Sea, Germany). Phylogenetic analysis of the full-length Hal144T 16S rRNA gene sequence revealed similarities from 94.3 to 96.6% to the nearest type strains of the genus Maribacter. The phylogenetic tree of the 16S rRNA gene sequences depicted a cluster of strain Hal144T with its closest relatives Maribacter aestuarii GY20T (96.6%) and Maribacter thermophilus HT7-2T (96.3%). Genome phylogeny showed that Maribacter halichondriae Hal144T branched from a cluster consisting of Maribacter arenosus, Maribacter luteus, and Maribacter polysiphoniae. Genome comparisons of strain Maribacter halichondriae Hal144T with Maribacter sp. type strains exhibited average nucleotide identities in the range of 75–76% and digital DNA-DNA hybridisation values in the range of 13.1–13.4%. Compared to the next related type strains, strain Hal144T revealed unique genomic features such as phosphoenolpyruvate-dependent phosphotransferase system pathway, serine-glyoxylate cycle, lipid A 3-O-deacylase, 3-hexulose-6-phosphate synthase, enrichment of pseudogenes and of genes involved in cell wall and envelope biogenesis, indicating an adaptation to the host. Strain Hal144T was determined to be Gram-negative, mesophilic, strictly aerobic, flexirubin positive, resistant to aminoglycoside antibiotics, and able to utilize N-acetyl-β-D-glucosamine. Optimal growth occurred at 25–30 °C, within a salinity range of 2–6% sea salt, and a pH range between 5 and 8. The major fatty acids identified were C17:0 3-OH, iso-C15:0, and iso-C15:1 G. The DNA G + C content of strain Hal144T was 41.4 mol%. Based on the polyphasic approach, strain Hal144T represents a novel species of the genus Maribacter, and we propose the name Maribacter halichondriae sp. nov. The type strain is Hal144T (= DSM 114563T = LMG 32744T).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    Publication Date: 2024-04-05
    Description: The Hikurangi Margin east of New Zealand's North Island hosts an extensive gas hydrate province with numerous gas hydrate accumulations related to the faulted structure of the accretionary wedge. One such hydrate feature occurs in a small perched upper‐slope basin known as Urutī Basin. We investigated this hydrate accumulation by combining a long‐offset seismic line (10‐km‐long receiver array) with a grid of high‐resolution seismic lines acquired with a 600‐m‐long hydrophone streamer. The long‐offset data enable quantitative velocity analysis, while the high‐resolution data constrain the three‐dimensional geometry of the hydrate accumulation. The sediments in Urutī Basin dip landward due to ongoing deformation of the accretionary wedge. These strata are clearly imaged in seismic data where they cross a distinct bottom simulating reflection (BSR) that dips counterintuitively in the opposite direction to the regional dip of the seafloor. BSR‐derived heat flow estimates reveal a distinct heat flow anomaly that coincides spatially with the upper extent of a landward‐verging thrust fault. We present a conceptual model of this gas hydrate system that highlights the roles of fault‐controlled fluid flow at depth merging into strata‐controlled fluid flow into the hydrate stability zone. The result is a layer‐constrained accumulation of concentrated gas hydrate in the dipping strata. Our study provides new insight into the interplay between deep faulting, fluid flow and gas hydrate formation within an active accretionary margin. Plain Language Summary Gas hydrates are ice‐like substances in which natural gas molecules are trapped in a cage of water molecules. They exist where the pressure is high, temperature is cold, and enough methane is present. These conditions exist in the marine environment at water depths greater than 300–500 m near sediment‐rich continental margins and in polar regions. It is important to study gas hydrates because they represent a significant part of the Earth's carbon budget and influence the flow of methane into the oceans and atmosphere. In this study, we use the seismic reflection method to generate images of gas‐hydrate‐bearing marine sediments east of New Zealand. Our data reveal an intriguing relationship between deep‐sourced fluid flow upward along a tectonic fault, and shallower flow through dipping sediments. This complex fluid flow pattern has led to disruption of the gas hydrate system and the formation of concentrated gas hydrate deposits within the dipping sediments. Our study highlights the relationships between relatively deep tectonic processes (faulting and fluid flow) and the shallow process of gas hydrate formation in an active subduction zone. Key Points A distinct gas‐hydrate to free‐gas transition is mapped using high‐ and low‐frequency seismic data Gas and hydrate accumulations in the Urutī Basin are controlled by the structural setting, ongoing deep‐sourced fluid flow, and near surface stratigraphy Regions of high modeled heat flow can be directly related to accumulations of gas and gas hydrates
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    Publication Date: 2024-04-05
    Description: The Cabo Verde Archipelago is related to a mantle plume located close to the rotational pole of the African Plate. It consists of islands and seamounts arranged in a horseshoe‐shaped pattern open to the west, thus forming two volcanic chains, each with a weak east‐west age progression. High‐resolution swath bathymetry of 12 Cabo Verde seamounts is used here to assign each seamount to its pre‐shield, shield or post‐shield evolutionary stage, respectively. The eastern seamounts exhibit degraded and partially eroded morphologies, and are mainly in their post‐shield stage. A new 40 Ar‐ 39 Ar date for Senghor Seamount at 14.872 ± 0.027 Ma supports old ages for the eastern seamounts. The western seamounts generally exhibit younger volcanic‐edifice‐construction morphologies, showing fresh effusive and explosive volcanics, including rarely observed deep‐water explosive volcanism in the Charles Darwin Volcanic Field. Furthermore, the two previously unknown seamounts Sodade and Tavares in the westernmost termini of both volcanic chains exhibit pristine volcanic morphologies, in agreement with present‐day volcanism and seismic activity recorded from the western seamounts. The islands and seamounts rest on three submarine platforms to the east, northwest and southwest, respectively. Taken together, the seamount and island data suggest a shift in igneous activity from the eastern to the other platforms at about 8–6 Ma. However, the complex evolution pattern for both volcanic chains includes the simultaneous occurrence of pre‐shield or shield edifices at any time, followed by erosional and rejuvenation stages. The new seamount data still demonstrate ongoing westward submarine‐growth in both volcanic chains. Plain Language Summary The Cabo Verde volcanic islands and seamounts are located in the central Atlantic Ocean, ∼570 km off the west coast of Africa. They form a horseshoe‐shaped archipelago with two volcanic chains, which were formed by the African plate moving very slowly over a mantle hotspot (the Cabo Verde Plume). Both the northern and southern volcanic chains show weak east‐to‐west age progressions from ∼26 million years to the present day. This study uses underwater topographic data and observations/rock sampling via remotely operated vehicles from 12 submarine volcanic seamounts, including two previously unknown seamounts, collected during four research cruises in the Cabo Verde Archipelago. Geomorphology is used to classify each seamount as being in its pre‐shield, shield or post‐shield evolutionary stage, respectively. Cabo Verde islands and seamounts rest on three submarine morphological platforms, reflecting westward jumps of the main igneous activity, and also confirming the westward migration of the Cabo Verde hotspot beneath both volcanic chains. Key Points We present bathymetrical maps of 12, in part previously uncharted Cabo Verde seamounts Geomorphology reflects various evolutionary seamount stages and relative ages. Four older seamounts indicate late Quaternary sea level lowstands Islands and seamounts rest on three morphological platforms, indicating westward jumps of the main igneous activity
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    Publication Date: 2024-04-05
    Description: We conducted two‐dimensional numerical simulations to investigate the mechanisms underlying the strong spatiotemporal correlation observed between submarine landslides and gas hydrate dissociation due to glacial sea‐level drops. Our results suggest that potential plastic deformation or slip could occur at localized and small scales in the shallow‐water portion of the gas hydrate stability zone (GHSZ). This shallow‐water portion of the GHSZ typically lies within the area enclosed by three points: the BGHSZ–seafloor intersection, the seafloor at ∼600 m below sea level (mbsl), and the base of the GHSZ (BGHSZ) at ∼1,050 mbsl in low‐latitude regions. The deep BGHSZ (〉1,050 mbsl) could not slip; therefore, the entire BGHSZ was not a complete slip surface. Glacial hydrate dissociation alone is unlikely to cause large‐scale submarine landslides. Observed deep‐water (much greater than 600 mbsl) turbidites containing geochemical evidence of glacial hydrate dissociation potentially formed from erosion or detachment in the GHSZ pinch‐out zone. Plain Language Summary Many submarine landslides spatiotemporally correlate with gas hydrate dissociation. However, direct mechanical evidence supporting whether the overpressure and deformation due to glacial sea‐level drop‐induced hydrate dissociation are adequate for triggering submarine landslides is lacking. Here, we present two‐dimensional thermal‐hydraulic‐chemical and geomechanical models of a gas‐hydrate system in response to glacial sea‐level drops and conduct sensitivity analyses of the model behavior under a wide range of key conditions from a global perspective. Our simulations suggest that glacial hydrate dissociation might induce plastic deformation or slip at localized and small scales only possibly within the shallow‐water portion of the hydrate stability zone. The deep part (〉1,050 m below sea level) of the bottom boundary of the hydrate stability zone could not slip; therefore, the entire bottom boundary of the hydrate stability zone was not a complete slip surface. We demonstrate that glacial hydrate dissociation alone is unlikely to trigger large‐scale submarine landslides. Our work highlights the vicinity of the upper limit of the hydrate stability zone (where the base of the hydrate stability zone intersects the seafloor) as an important area for investigating overpressure and focused fluid flow, localized plastic deformation or slip, and downslope sediment transport related to glacial hydrate dissociation. Key Points Glacial hydrate dissociation might cause potential plastic deformation or slip at localized and small scales in shallow parts of the GHSZ The large deformation surface at the BGHSZ boundary of the potential plastic deformation zone was not a complete slip surface Glacial sea‐level drop‐induced gas hydrate dissociation alone is unlikely to have caused large‐scale submarine landslides
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    Publication Date: 2024-04-08
    Description: Warmer temperatures and higher sea level than today characterized the Last Interglacial interval [Pleistocene, 128 to 116 thousand years ago (ka)]. This period is a remarkable deep-time analog for temperature and sea-level conditions as projected for 2100 AD, yet there has been no evidence of fossil assemblages in the equatorial Atlantic. Here, we report foraminifer, metazoan (mollusks, bony fish, bryozoans, decapods, and sharks among others), and plant communities of coastal tropical marine and mangrove affinities, dating precisely from a ca. 130 to 115 ka time interval near the Equator, at Kourou, in French Guiana. These communities include ca. 230 recent species, some being endangered today and/or first recorded as fossils. The hyperdiverse Kourou mollusk assemblage suggests stronger affinities between Guianese and Caribbean coastal waters by the Last Interglacial than today, questioning the structuring role of the Amazon Plume on tropical Western Atlantic communities at the time. Grassland-dominated pollen, phytoliths, and charcoals from younger deposits in the same sections attest to a marine retreat and dryer conditions during the onset of the last glacial (ca. 110 to 50 ka), with a savanna-dominated landscape and episodes of fire. Charcoals from the last millennia suggest human presence in a mosaic of modern-like continental habitats. Our results provide key information about the ecology and biogeography of pristine Pleistocene tropical coastal ecosystems, especially relevant regarding the—widely anthropogenic—ongoing global warming.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: other
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    Publication Date: 2024-04-10
    Description: Transparent exopolymer particles (TEP) and Coomassie stainable particles (CSP), two prominent classes of gel−like particles in the ocean primarily produced by phytoplankton, play crucial roles in ecological and biogeochemical processes, influencing microbial nutrition, growth, and particle aggregation. The distribution of these particles is intricately linked to the spatiotemporal dynamics of phytoplankton. Mesoscale cyclonic eddies (CEs) are known to stimulate phytoplankton growth and influence particle transport, but their effects on TEP and CSP remain to be determined. In the Eastern Tropical North Atlantic (ETNA), we examined three CEs: one off the Mauritanian coast during summer (Mau), one offshore during winter (Sal), and another near Brava island during winter. Mau and Brava CEs were in their intensification/maturity phase, while the Sal CE was in its decay phase. Both TEP and CSP concentrations correlated with primary productivity, but TEP increased with chlorophyll−a concentration, whereas elevated CSP coincided also with the highest abundance of pico−nanophytoplankton (〈20 µm), mainly Synechococcus. Both gels exhibited a positive correlation with bacterial biomass production, indicating their consumption by heterotrophic bacteria. TEP total area in the epipelagic waters of all CEs (Mau, Brava, and Sal) was elevated compared to surrounding waters, with on average 4, 2.5, and 1.6−fold higher values, respectively. However, no significant difference in TEP size distribution was observed within any CEs and their surroundings. Similarly, CSP total area increased in the epipelagic waters of Mau and Brava CEs, with on average 5 and 2.4−fold higher values, respectively, compared to surrounding waters. CSP particles were notably larger in these two eddies, while the Sal CE showed no significant difference from surrounding waters in CSP abundance and size. Overall, TEP and CSP exhibited distinct responses to CEs, with increased concentrations during their intensification/maturation stage and remineralization dominating during their decaying stage.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    Publication Date: 2024-04-10
    Description: Introduction Ecosystem engineers play a pivotal role in shaping habitats through their activities and presence. In shallow Baltic waters, seagrasses, patch-forming mussels, and infaunal clams modify soft bottom habitats, impacting benthic community structure. While the individual effects of these ecosystem engineers are well studied, interactions among co-occurring engineers are poorly understood.Methods We conducted a mesocosm experiment to assess the independent and combined impacts of seagrass (Zostera marina), epifaunal mussels (Mytilus spp.), and infaunal clams (Macoma balthica) on invertebrate colonization in soft sediments.Results Our findings reveal significant engineer-driven alterations in macrofaunal community structure. Combined engineer effects diverged from individual impacts, indicating potential synergies or antagonisms in sediment (re)colonization. Notably, a higher number of engineer species positively affected the diversity of settled macrofauna, with the lowest macrofaunal abundance and biomass but the highest Shannon diversity found in the presence of all three engineers.Discussion Results suggest that seagrass, mussels, and clams influence benthos through larval settlement and sediment biogeochemistry, providing insights into the distinct roles of habitat-forming organisms in shaping the benthic communities in coastal ecosystems of the Baltic Sea.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    Publication Date: 2024-04-10
    Description: The Bay of Bengal (BoB) spans 〉2.2 million km(2) in the northeastern Indian Ocean and is bordered by dense populations that depend upon its resources. Over recent decades, a shift from larger phytoplankton to picoplankton has been reported, yet the abundance, activity, and composition of primary producer communities are not well-characterized. We analysed the BoB regions during the summer monsoon. Prochlorococcus ranged up to 3.14 x 10(5) cells mL(-1 )in the surface mixed layer, averaging 1.74 +/- 0.46 x 10(5) in the upper 10 m and consistently higher than Synechococcus and eukaryotic phytoplankton. V1-V2 rRNA gene amplicon analyses showed the High Light II (HLII) ecotype formed 98 +/- 1% of Prochlorococcus amplicons in surface waters, comprising six oligotypes, with the dominant oligotype accounting for 65 +/- 4% of HLII. Diel sampling of a coherent water mass demonstrated evening onset of cell division and rapid Prochlorococcus growth between 1.5 and 3.1 div day-1, based on cell cycle analysis, as confirmed by abundance-based estimates of 2.1 div day(-1). Accumulation of Prochlorococcus produced by ultradian growth was restricted by high loss rates. Alongside prior Arabian Sea and tropical Atlantic rates, our results indicate Prochlorococcus growth rates should be reevaluated with greater attention to latitudinal zones and influences on contributions to global primary production.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Publication Date: 2024-04-10
    Description: Seismic data from the North Sea commonly show vertical acoustic blanking (VAB) often interpreted as fluid conduits with implications for Quaternary development. The robustness of this interpretation has long been controversial as the infill of tunnel valleys can also cause vertical blanking. Using 2D and 3D seismic data and sediment echosounder data from the German North Sea, we investigate VAB to determine a geological or imaging origin of these anomalies. We detected multiple VAB occurrences throughout the North Sea. 3D data from the Ducks Beak (‘Entenschnabel’) reveal a correlation of VAB with bright spots in incised channels directly below the seafloor. Large source–receiver distances allow imaging the subsurface below the channel without signal penetrating through it (undershooting). This method removes the blanking. Energy absorption by shallow biogenic gas trapped within the channels explains the observed VAB. Hence, the blanking represents an imaging artifact, highlighting the need for careful seismic processing with sufficient offset before interpreting such anomalies as fluid pathways. The channels belong to a postglacial channel system related to the now submerged lowlands of Doggerland. This work demonstrates the usability of mapping VAB to detect shallow features for paleo‐landscape reconstruction and identification of shallow gas for hazard assessments, for example.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2024-04-10
    Description: 1. The expansion of scientific image data holds great promise to quantify individuals, size distributions and traits. Computer vision tools are especially powerful to automate data mining of images and thus have been applied widely across studies in aquatic and terrestrial ecology. Yet marine benthic communities, especially infauna, remain understudied despite their dominance of marine biomass, biodiversity and playing critical roles in ecosystem functioning. 2. Here, we disaggregated infauna from sediment cores taken throughout the spring transition (April-June) from a near-natural mesocosm setup under experimental warming (Ambient, +1.5 degrees C, +3.0 degrees C). Numerically abundant mudsnails were imaged in batches under stereomicroscopy, from which we automatically counted and sized individuals using a superpixel-based segmentation algorithm. Our segmentation approach was based on clustering superpixels, which naturally partition images by low-level properties (e.g., colour, shape and edges) and allow instance-based segmentation to extract all individuals from each image. 3. We demonstrate high accuracy and precision for counting and sizing individuals, through a procedure that is robust to the number of individuals per image (5-65) and to size ranges spanning an order of magnitude (〈750 mu m to 7.4 mm). The segmentation routine provided at least a fivefold increase in efficiency compared with manual measurements. Scaling this approach to a larger dataset tallied 〉40k individuals and revealed overall growth in response to springtime warming. 4. We illustrate that image processing and segmentation workflows can be built upon existing open-access R packages, underlining the potential for wider adoption of computer vision tools among ecologists. The image-based approach also generated reproducible data products that, alongside our scripts, we have made freely available. This work reinforces the need for next-generation monitoring of benthic communities, especially infauna, which can display differential responses to average warming.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    Publication Date: 2024-04-10
    Description: The long-term dynamics of microbial communities across geographic, hydrographic, and biogeochemical gradients in the Arctic Ocean are largely unknown. To address this, we annually sampled polar, mixed, and Atlantic water masses of the Fram Strait (2015–2019; 5–100 m depth) to assess microbiome composition, substrate concentrations, and oceanographic parameters. Longitude and water depth were the major determinants (~30%) of microbial community variability. Bacterial alpha diversity was highest in lower-photic polar waters. Community composition shifted from west to east, with the prevalence of, for example, Dadabacteriales and Thiotrichales in Arctic- and Atlantic-influenced waters, respectively. Concentrations of dissolved organic carbon peaked in the western, compared to carbohydrates in the chlorophyll-maximum of eastern Fram Strait. Interannual differences due to the time of sampling, which varied between early (June 2016/2018) and late (September 2019) phytoplankton bloom stages, illustrated that phytoplankton composition and resulting availability of labile substrates influence bacterial dynamics. We identified 10 species clusters with stable environmental correlations, representing signature populations of distinct ecosystem states. In context with published metagenomic evidence, our microbial-biogeochemical inventory of a key Arctic region establishes a benchmark to assess ecosystem dynamics and the imprint of climate change.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    Publication Date: 2024-04-10
    Description: There is only sparse empirical data on the settling velocity of small, nonbuoyant microplastics thus far, although it is an important parameter governing their vertical transport within aquatic environments. This study reports the settling velocities of 4031 exemplary microplastic particles. Focusing on the environmentally most prevalent particle shapes, irregular microplastic fragments of four different polymer types (9-289 mu m) and five discrete length fractions (50-600 mu m) of common nylon and polyester fibers are investigated, respectively. All settling experiments are carried out in quiescent water by using a specialized optical imaging setup. The method has been previously validated in order to minimize disruptive factors, e.g., thermal convection or particle interactions, and thus enable the precise measurements of the velocities of individual microplastic particles (0.003-9.094 mm/s). Based on the obtained data, ten existing models for predicting a particle's terminal settling velocity are assessed. It is concluded that models, which were specifically deduced from empirical data on larger microplastics, fail to provide accurate predictions for small microplastics. Instead, a different approach is highlighted as a viable option for computing settling velocities across the microplastics continuum in terms of size, density, and shape
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    Publication Date: 2024-04-10
    Description: Trace metals (TMs) manganese (Mn), cobalt (Co), and aluminium (Al) have important geochemical and biological roles in the ocean. Here, we present full depth profiles of dissolved (d) and particulate Al, Mn, and Co along the latitude of 40 °S in the South Atlantic Ocean from the GEOTRACES GA10 cruises that operated in austral spring 2010 and summer 2011. The region is characterized by enhanced primary productivity and forms a key transition zone between the Southern Ocean and South Atlantic Subtropical Gyre. The mean concentrations of dAl, dCo, and dMn (±standard deviation) were 3.36 ± 2.65 nmol kg−1, 35.3 ± 17.6 pmol kg−1, and 0.624 ± 1.08 nmol kg−1, respectively. Their distributions in surface waters were determined by external sources and complex internal biogeochemical processes. Specifically, surface ocean dCo was controlled by the interplay between phytoplankton uptake, remineralization and external inputs; dMn was likely determined by the formation and photoreduction of Mn-oxides; and dAl was supplied by atmospheric deposition and removed by scavenging onto particles. Fluvial and sedimentary inputs near the Rio de La Plata estuary and benthic sources from the Agulhas Bank resulted in elevated dTM concentrations in near-shore surface waters. These externally sourced dTMs were effectively delivered to the open ocean by offshore diffusion and/or advection, and potentially facilitated enhanced primary productivity along the transect. The distributions of dTMs at depth were predominantly controlled by the mixing of North Atlantic Deep Water (NADW) and waters of Antarctic origin (e.g., Upper Circumpolar Water (UCDW) and Antarctic Bottom Water (AABW)). The calculated endmember concentrations of dAl and dCo in NADW showed minor decreases in the SASTG following north–south transport, suggesting removal rates of 0.064 nM/year and 0.035–0.075 pM/year, respectively. The endmember concentration of dCo in AABW was maintained at ∼30 pmol kg−1 without evidence for scavenging removal in the Southern Ocean and SASTG (time frame 〉400 years). The concentrations of dMn in NADW and AABW were between 0.1 and 0.16 nmol kg−1, and any elevated dMn concentrations were ascribed to local external inputs (e.g., from sediments in the Argentine Basin and hydrothermal activity near the Mid-Atlantic Ridge). Hence, four controlling factors (sources, internal cycling, water mass mixing and time) need to be considered when assessing TM distributions in the global ocean, even for TMs that are vulnerable to scavenging removal processes. Because the deep waters formed in high latitude oceans are crucial components of the global thermohaline overturning system, any processes (e.g., glacier melting, upwelling and sinking, and biological activity) that impact the preformed dTM concentrations in high latitude oceans will determine the downstream dTM distributions. Therefore, the sources and sinks of TMs and associated biological activity in high latitude oceans could engender basin to global scale impacts on seawater distributions of Al, Co, and Mn and their stoichiometric relationships with macronutrients, and the global biogeochemical cycles of these scavenged-type TMs.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    Publication Date: 2024-04-10
    Description: Standardised terminology in science is important for clarity of interpretation and communication. In invasion science - a dynamic and rapidly evolving discipline - the proliferation of technical terminology has lacked a standardised framework for its development. The result is a convoluted and inconsistent usage of terminology, with various discrepancies in descriptions of damage and interventions. A standardised framework is therefore needed for a clear, universally applicable, and consistent terminology to promote more effective communication across researchers, stakeholders, and policymakers. Inconsistencies in terminology stem from the exponential increase in scientific publications on the patterns and processes of biological invasions authored by experts from various disciplines and countries since the 1990s, as well as publications by legislators and policymakers focusing on practical applications, regulations, and management of resources. Aligning and standardising terminology across stakeholders remains a challenge in invasion science. Here, we review and evaluate the multiple terms used in invasion science (e.g. 'non-native', 'alien', 'invasive' or 'invader', 'exotic', 'non-indigenous', 'naturalised', 'pest') to propose a more simplified and standardised terminology. The streamlined framework we propose and translate into 28 other languages is based on the terms (i) 'non-native', denoting species transported beyond their natural biogeographic range, (ii) 'established non-native', i.e. those non-native species that have established self-sustaining populations in their new location(s) in the wild, and (iii) 'invasive non-native' - populations of established non-native species that have recently spread or are spreading rapidly in their invaded range actively or passively with or without human mediation. We also highlight the importance of conceptualising 'spread' for classifying invasiveness and 'impact' for management. Finally, we propose a protocol for classifying populations based on (i) dispersal mechanism, (ii) species origin, (iii) population status, and (iv) impact. Collectively and without introducing new terminology, the framework that we present aims to facilitate effective communication and collaboration in invasion science and management of non-native species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2024-04-09
    Description: The overriding physicochemical controls in seawater discussed here are the chemical composition and the state of master variables including temperature, pressure, salinity, pH and redox status. Dissolved Organic Matter also plays a major role, but since its properties are not sufficiently well quantified it is described as an emergent master variable at this stage. The theoretical basis for the treatment of equilibrium chemistry and kinetics is presented, together with projections of the future development of seawater chemistry resulting from climate change. Key points • Composition of seawater • Master variables (temperature, pressure, pH, oxygen/redox state) • The role of Dissolved Organic Matter • Equilibrium chemistry • Kinetics • The consequences of ongoing global changes
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
  • 190
    Publication Date: 2024-04-09
    Description: Despite management efforts, anthropogenic nutrient enrichments continue to enhance phytoplankton blooms worldwide. Release of nitrogen and phosphorus compounds not only provides surplus of nutrients but also disbalances their stoichiometry. Declines in the relative availability of dissolved silicon might induce limitation in diatoms, major primary producers with silicified shells. We studied experimentally how nutrient enrichment and resulting decline in dissolved silicon to nitrogen ratios (Si:N) affect the structure and functioning of natural plankton communities. Nitrate was added to create a range of Si:N ratios and phosphate was supplied in Redfield ratio to nitrogen. We also manipulated copepod abundance to understand the top-down effects on communities experiencing nutrient enrichment. Nitrogen and phosphorus additions resulted in a steep phytoplankton biomass increase, followed by a post-bloom decline. Phytoplankton bloom biomass was higher in high nitrogen treatments but during the post-bloom period this trend switched. Biomass was sustained longer in high Si:N treatments, indicating that silicon limitation terminates the bloom. Many diatom species did not benefit from nitrogen and phosphorus enrichment and diatom dominance ceased below Si:N of 0.4:1. Under high grazing pressure, silicate was taken up faster suggesting that silicification is important in diatom defense. Copepods shaped plankton communities via feeding on dinoflagellates, chlorophytes and the diatom Skeletonema costatum but there was no significant effect of nitrogen and phosphorus enrichment on copepod abundance. Our results, combined with previous studies, show that while nutrient concentrations define the total phytoplankton bloom biomass, resource ratios are important in sustaining biomass and determining community structure and composition.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 2024-04-09
    Description: Reconstructing interglacial marine environments helps us understand the climate change mechanisms of the past. To contribute to this body of knowledge, we studied a high-resolution 455 cm-thick sediment sequence of the Boreal (Eemian) marine beds directly overlying Moscovian (Saalian) moraine in the Bychye-2 section on the Pyoza River. We analyzed lithological and microfossil (foraminifers, ostracods, pollen, aquatic palynomorphs) variations at the studied site. Stratigraphical zonation is based on the local and well-established regional pollen zones, correlated with the western European pollen zones. The studied marine beds accumulated from the end of the Moscovian glacial (〉131 ka) until ca. 119.5 ka. We distinguished three successive phases: a seasonally sea-ice-covered, relatively deep, freshened basin in the initial rapid flooding stage (〉131–130.5 ka); a deep basin in the maximum flooding phase with less extensive sea ice cover (130.5–130.25 ka); and a shallow basin with reduced sea ice cover (130.25–119.5 ka). According to a pollen zone comparison with other sites, the regional glacioisostatic rebound started ca. 130 ka. The diverse warm-water assemblages of benthic foraminifers and ostracods containing typical Baltic Sea species occurred during the regression, mainly 128–124 ka, thus giving evidence for a relatively long-lasting connection between the White and Baltic Seas.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    Publication Date: 2024-04-09
    Description: Phytoplankton forms the base of the marine food web by transforming CO2 into organic carbon via photosynthesis. Some of the organic carbon is then transferred through the food web and exported into the deep ocean, a process known as the biological carbon pump. Despite the importance of phytoplankton for marine ecosystems and the global carbon cycle, projections of phytoplankton biomass in response to climate change differ strongly across Earth system models, illustrating uncertainty in our understanding of the underlying processes. Differences are especially large in the Southern Ocean, a region that is notoriously difficult to represent in models. Here, we argue that water column-integrated phytoplankton biomass in the Southern Ocean is projected to largely remain unchanged under climate change by the CMIP6 multi-model ensemble because of a shifting balance of bottom-up and top-down processes driven by a shoaling mixed layer depth. A shallower mixed layer is projected to improve growth conditions and consequently weaken bottom-up control. In addition to enhanced phytoplankton growth, the shoaling of the mixed layer also compresses phytoplankton closer to the surface and promotes zooplankton grazing efficiency, thus intensifying top-down control. Overall, our results suggest that while changes in bottom-up conditions stimulate enhanced growth, intensified top-down control opposes an increase in phytoplankton and becomes increasingly important for phytoplankton response under climate change in the Southern Ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    Publication Date: 2024-04-09
    Description: Reptiles and amphibians (herptiles) are some of the most endangered and threatened species on the planet and numerous conservation strategies are being implemented with the goal of ensuring species recovery. Little is known, however, about the gut microbiome of wild herptiles and how it relates to the health of these populations. Here, we report results from the gut microbiome characterization of both a broad survey of herptiles, and the correlation between the fungus Basidiobolus, and the bacterial community supported by a deeper, more intensive sampling of Plethodon glutinosus, known as slimy salamanders. We demonstrate that bacterial communities sampled from frogs, lizards, and salamanders are structured by the host taxonomy and that Basidiobolus is a common and natural component of these wild gut microbiomes. Intensive sampling of multiple hosts across the ecoregions of Tennessee revealed that geography and host:geography interactions are strong predictors of distinct Basidiobolus operational taxonomic units present within a given host. Co-occurrence analyses of Basidiobolus and bacterial community diversity support a correlation and interaction between Basidiobolus and bacteria, suggesting that Basidiobolus may play a role in structuring the bacterial community. We further the hypothesis that this interaction is advanced by unique specialized metabolism originating from horizontal gene transfer from bacteria to Basidiobolus and demonstrate that Basidiobolus is capable of producing a diversity of specialized metabolites including small cyclic peptides.IMPORTANCEThis work significantly advances our understanding of biodiversity and microbial interactions in herptile microbiomes, the role that fungi play as a structural and functional members of herptile gut microbiomes, and the chemical functions that structure microbiome phenotypes. We also provide an important observational system of how the gut microbiome represents a unique environment that selects for novel metabolic functions through horizontal gene transfer between fungi and bacteria. Such studies are needed to better understand the complexity of gut microbiomes in nature and will inform conservation strategies for threatened species of herpetofauna. This work significantly advances our understanding of biodiversity and microbial interactions in herptile microbiomes, the role that fungi play as a structural and functional members of herptile gut microbiomes, and the chemical functions that structure microbiome phenotypes. We also provide an important observational system of how the gut microbiome represents a unique environment that selects for novel metabolic functions through horizontal gene transfer between fungi and bacteria. Such studies are needed to better understand the complexity of gut microbiomes in nature and will inform conservation strategies for threatened species of herpetofauna.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    Publication Date: 2024-04-09
    Description: Highlights • Developed an innovative weighted outlier detection function that adaptively selects the best outlier detection technique, markedly improving precision and robustness in multibeam echosounder data analysis. • Demonstrated superior performance of the weighted function over traditional methods, achieving higher precision, recall, and F1 scores, pivotal for accurate seafloor mapping. • Enhanced data quality for geoscientific applications by effectively identifying and removing outliers without introducing data voids, preserving the integrity of multibeam sonar data. • The function’s significance extends to supporting sustainable environmental and resource management practices through improved accuracy in seabed mapping. • Discussed the adaptability of the method to various outlier patterns and its limitations, highlighting the need for further research and validation across different marine environments and data types. Abstract Multibeam sonar data are a valuable tool for seafloor mapping and geological studies. However, the presence of outliers in multibeam data can distort the results of analyses and reduce the accuracy of seafloor maps. In this paper, we define a weighting function based on the performance of various outlier detection techniques (OTDs) for detecting outliers in multibeam data, which calculates an outlier probability score for each sounding. Our results show that each OTD has its own strengths and weaknesses, and that a combination of outlier detection techniques is promising to improve reproducibility, explainability and the accuracy of the detection process. To address the challenge of detecting outliers in multibeam data, we propose a weighted outlier detection function that outperforms individual outlier detection techniques in terms of precision, recall and F1 scores by considering their strengths and combining them in a way that accounts for variations in the data. The function detects various types of outliers with high precision and recall values, resulting in valuable improvements in outlier detection performance for multibeam data. Overall, our proposed workflow has the potential to significantly improve the way multibeam data cleaning is performed, with the weighted outlier detection function being applied first, detecting most of the outlier automatically, followed by a domain-expert review of a small group of soundings whose automatic outlier labelling is not unequivocal.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Publication Date: 2024-04-11
    Description: We present chromosome-level genome assemblies from representative species of three independently evolved seagrass lineages: Posidonia oceanica, Cymodocea nodosa, Thalassia testudinum and Zostera marina. We also include a draft genome of Potamogeton acutifolius, belonging to a freshwater sister lineage to Zosteraceae. All seagrass species share an ancient whole-genome triplication, while additional whole-genome duplications were uncovered for C. nodosa, Z. marina and P. acutifolius. Comparative analysis of selected gene families suggests that the transition from submerged-freshwater to submerged-marine environments mainly involved fine-tuning of multiple processes (such as osmoregulation, salinity, light capture, carbon acquisition and temperature) that all had to happen in parallel, probably explaining why adaptation to a marine lifestyle has been exceedingly rare. Major gene losses related to stomata, volatiles, defence and lignification are probably a consequence of the return to the sea rather than the cause of it. These new genomes will accelerate functional studies and solutions, as continuing losses of the ‘savannahs of the sea’ are of major concern in times of climate change and loss of biodiversity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    Publication Date: 2024-04-11
    Description: The zebra mussel Dreissena polymorpha is one of the most successful, notorious, and detrimental aquatic invasive non-native species worldwide, having invaded Europe and North America while causing substantial ecological and socio-economic impacts. Here, we investigated the spatiotemporal trends in this species' invasion success using 178 macroinvertebrate abundance time series, containing 1451 records of D. polymorpha collected across nine European countries between 1972–2019. Using these raw (absolute) abundance data, we examined trends and drivers of occurrences and relative abundances of D. polymorpha within invaded communities. Meta-regression models revealed non-significant trends both at the European level and for the majority of the invaded countries, except for France (significant decreasing trend) and Hungary (marginally positive trend). At the European level, the number of D. polymorpha occurrences over time followed a flat-top bell-shaped distribution, with a steep increase between 1973–1989 followed by a plateau phase prior to significantly declining post-1998. Using a series of climatic and hydromorphological site-specific characteristics of invaded and uninvaded sites from two periods (1998–2002; 2011–2015), we found that native richness, non-native abundance, distance to the next barrier, and elevation were associated with the occurrence of D. polymorpha. We also found that higher native richness and lower latitude were related to lower relative abundances. Using Cohen's D as a measure of D. polymorpha impact, we found that biodiversity within the invaded sites was initially higher than in uninvaded ones, but then declined, suggesting differences in biodiversity trends across invaded and uninvaded sites. While our results emphasise the high invasion success of D. polymorpha, increasing stressors within the context of global change – particularly ongoing climate change – are likely to enhance invasion rates and the impact of D. polymorpha in the near future, exacerbated by the lack of timely and effective management actions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
  • 198
    Publication Date: 2024-04-11
    Description: This cruise was conducted as part of the educational training of fishers in the framework of the transdisciplinary SeaRanger program which is scientifically accompanied by the Institute of marine ecosystem and fisheries Science (IMF) at the University of Hamburg (UHAM), the Christian-Albrechts University Kiel, Centre for Ocean and Society (CeOS), the Thuenen-Institute for Baltic Sea fisheries (TI-OF), and the German Centre for Integrative Biodiversity Research (iDiv) in the framework of the joint project SpaCeParti (Coastal Fishery, Biodiversity, Spatial Use and Climate Change: A Participative Approach to navigate the Western Baltic Sea into a Sustainable Future; Grant no. 03F0914) funded by the BMBF. In order to give the fishermen as realistic an application of the standard monitoring techniques as possible, the trip was planned in such a way that the training part was integrated into a scientific monitoring programme focussing on the spawning activity of fish in the Belt Sea. By sampling a standardised station grid contributing to the joint long-term sampling efforts in the Western Baltic Sea which are internationally coordinated by the WBCF (Western Baltic cod Forum), the fishers learned how plankton, fish and water samples are taken, preserved, and analysed and gained a comprehensive insight into the hydrography and fauna of the western Baltic. Similar to the previous cruise AL606 in January 2024 conducted by the IMF no cod larvae and generally less larvae compared to previous years were observed in the Bongo 500 μm net samples from the Plankton grid stations, potentially indicating a delayed spawning activity of fish in the Belt Sea potentially related to the comparably low water temperatures in winter 2023/24.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    Publication Date: 2024-04-11
    Description: Future changes in the southeastern tropical Atlantic interannual sea surface temperature (SST) variability in response to increasing greenhouse gas concentrations are investigated utilizing the global climate model FOCI. In that model, the Coastal Angola Benguela Area (CABA) is among the regions of the tropical Atlantic that exhibits the largest surface warming. Under the worst-case scenario of the Shared Socioeconomic Pathway 5-8.5 (SSP5-8.5), the SST variability in the CABA decreases by about 19% in 2070–2099 relative to 1981–2010 during the model’s peak interannual variability season May–June–July (MJJ). The weakening of the MJJ interannual temperature variability spans the upper 40 m of the ocean along the Angolan and Namibian coasts. The reduction in variability appears to be related to a diminished surface-layer temperature response to thermocline-depth variations, i.e., a weaker thermocline feedback, which is linked to changes in the mean vertical temperature gradient. Despite improvements made by embedding a high-resolution nest in the ocean a significant SST bias remains, which might have implications for the results.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    Publication Date: 2024-04-11
    Description: The study of offshore freshened groundwater (OFG) is gaining importance due to population growth and environmental pressure on coastal water resources. Marine controlled source electromagnetic (CSEM) methods can effectively map the spatial extent of OFG systems using electrical resistivity as a proxy. Integrating these resistivity models with sub-surface properties, such as host-rock porosity, allows for estimates of pore-water salinity. However, evaluating the uncertainty in pore-water salinity using resistivity models obtained from deterministic inversion approaches presents challenges, as they provide only one best-fit model, with no associated estimate of uncertainty. To address this limitation, we employ trans-dimensional Markov-Chain Monte-Carlo inversion on marine time-domain CSEM data, acquired in the Canterbury Bight, New Zealand. We integrate resistivity posterior probability distributions with borehole and seismic reflection data to estimate pore-water salinity with corresponding uncertainty estimates. The results highlight a low-salinity groundwater body in the center of the survey area, hosted by consecutive silty- and fine-sand layers approximately 20–60 km from the coast. The posterior probability distribution of resistivity models indicates freshening of the OFG body toward the shoreline within a permeable, coarse-sand layer 40–150 m beneath the seafloor, suggesting an active connection between the OFG body and the terrestrial groundwater system. The approach demonstrates how Bayesian inversion constrains the uncertainties in resistivity models and subsequently in pore-water salinity estimates. Our findings highlight the potential of Bayesian inversion to enhance our understanding of OFG systems and provide uncertainty constraints for hydrogeological modeling, thereby contributing to sustainable water resource development. Key Points A Bayesian workflow is employed to evaluate uncertainty in pore-water salinity estimates Offshore groundwater in Canterbury Bight stores freshened pore-water in fine-grained sediments, likely extending from the onshore aquifer Correlation between pore-water salinities and seismic-derived stratigraphy provides boundary conditions for hydrogeological modeling Plain Language Summary Geophysical methods that measure the electromagnetic properties of the Earth are effective in investigating freshwater sources beneath the seafloor. By combining the geophysical and geological information, we can better assess the quality of this groundwater. In this study, we develop a workflow that uses statistical methods to integrate electromagnetic observations with borehole and acoustic measurements along the eastern coast of the South Island of New Zealand. We aim to improve our understanding of the groundwater quality beneath the seafloor. Our research confirms the presence of freshened groundwater within the sandy seafloor up to 60 km from the coastline. Importantly, our observations indicate that the groundwater quality increases toward the coast. These findings are significant as they enhance the hydrogeological modeling of the groundwater system and suggest its potential as a source of freshwater.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...