ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cambridge University Press
  • Essen : Verl. Glückauf
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • 2005-2009  (7,387)
  • 1955-1959  (2,155)
Collection
Publisher
Language
Years
Year
  • 101
    Publication Date: 2009-10-19
    Description: We propose a new unified model for the small, intermediate and large-scale evolution of freely decaying two-dimensional turbulence in the inviscid limit. The new model's centerpiece is a recent theory of vortex self-similarity (Dritschel et al., Phys. Rev. Lett., vol. 101, 2008, no. 094501), applicable to the intermediate range of scales spanned by an expanding population of vortices. This range is predicted to have a steep k5 energy spectrum. At small scales, this gives way to Batchelor's (Batchelor, Phys. Fluids, vol. 12, 1969, p. 233) k3 energy spectrum, corresponding to the (forward) enstrophy (mean square vorticity) cascade or, physically, to thinning filamentary debris produced by vortex collisions. This small-scale range carries with it nearly all of the enstrophy but negligible energy. At large scales, the slow growth of the maximum vortex size (∼t1/6 in radius) implies a correspondingly slow inverse energy cascade. We argue that this exceedingly slow growth allows the large scales to approach equipartition (Kraichnan, Phys. Fluids, vol. 10, 1967, p. 1417; Fox & Orszag, Phys. Fluids, vol. 12, 1973, p. 169), ultimately leading to a k1 energy spectrum there. Put together, our proposed model has an energy spectrum (k, t) t1/3k1 at large scales, together with ξ(k, t) t2/3k5 over the vortex population, and finally ξ(k, t) ∝t1k3 over an exponentially widening small-scale range dominated by incoherent filamentary debris. Support for our model is provided in two parts. First, we address the evolution of large and ultra-large scales (much greater than any vortex) using a novel high-resolution vortex-in-cell simulation. This verifies equipartition, but more importantly allows us to better understand the approach to equipartition. Second, we address the intermediate and small scales by an ensemble of especially high-resolution direct numerical simulations. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2009-10-19
    Description: Using a combination of critical point theory of ordinary differential equations and numerical simulation for the three-dimensional unsteady NavierStokes equations, we study possible flow structures of the vortical flow, especially the unsteady vortex breakdown in the interaction between a normal shock wave and a longitudinal vortex. The topological structure contains two parts. One is the sectional streamline pattern in the cross-section perpendicular to the vortex axis. The other is the sectional streamline pattern in the symmetrical plane. In the cross-section perpendicular to the vortex axis, the sectional streamlines have spiral or centre patterns depending on a function λ(x, t) = 1/(∂/∂t+u∂/), where x is the coordinate corresponding to the vortex axis. If λ 〉 0, the sectional streamlines spiral inwards in the near region of the centre. If λ〈 0, the sectional streamlines spiral outwards in the same region. If λ= 0, the sectional streamlines form a nonlinear centre. If changes its sign along the vortex axis, one or more limit cycles appear in the sectional streamlines in the cross-section perpendicular to the vortex axis. Numerical simulation for two typical cases of shock induced vortex breakdown (Erlebacher, Hussaini & Shu, J. Fluid Mech., vol. 337, 1997, p. 129) is performed. The onset and time evolution of the vortex breakdown are studied. It is found that there are more limit cycles for the sectional streamlines in the cross-section perpendicular to the vortex axis. In addition, we find that there are quadru-helix structures in the tail of the vortex breakdown. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2009-10-16
    Description: Non-modal mechanisms underlying transient growth of propagating acoustic waves and non-propagating vorticity perturbations in an unbounded compressible shear flow are investigated, making use of closed form solutions. Propagating acoustic waves amplify mainly due to two mechanisms: growth due to advection of streamwise velocity that is typically termed as the lift-up mechanism leading for large Mach numbers to an almost linear increase in streamwise velocity with time and growth due to the downgradient irrotational component of the Reynolds stress leading to linear growth of acoustic wave energy for large times. Synergy between these mechanisms along with the downgradient solenoidal component of the Reynolds stress produces large and robust energy amplification. On the other hand, non-propagating vorticity perturbations amplify due to kinematic deformation of vorticity by the mean flow. For weakly compressible flows, an initial vorticity perturbation abruptly excites acoustic waves with exponentially small amplitude, and the energy gained by vorticity perturbations is transferred back to the mean flow. For moderate Mach numbers, a strong coupling between vorticity perturbations and acoustic waves is found with the energy gained by vorticity perturbations being transferred to acoustic waves that are abruptly excited by the vortex. Calculation of the optimal perturbations for a viscous flow shows that for low Mach numbers, acoustic wave excitation by vorticity perturbations and the subsequent growth of acoustic waves leads to robust energy growth of the order of Reynolds number, while for large Mach numbers, synergy between the lift-up mechanism and the downgradient solenoidal component of the Reynolds stress dominates the growth and leads to a comparable large amplification of streamwise velocity. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2009-10-14
    Description: The classic hydrodynamic Hele-Shaw problem is revisited in the context of evaluating the viscous resistance to low-Mach compressible viscous gas flows through shallow non-uniform micro-fluidic configurations. Our recent study of gas flows through constricted shallow micro-channels indicates that the failure of the standard Hele-Shaw approximation to satisfy the no-slip boundary condition at the sidewalls severely restricts its applicability. To overcome this we have extended the asymptotic scheme to incorporate an inner solution in the vicinity of the sidewalls (which, in turn, allows for the characterization of the effects of channel cross-section geometry) and its matching to an outer correction. We have compared the results of the present asymptotic analysis to existing exact analytic and numerical results for straight and uniform channels and to finite-element simulations for a 90° turn and a symmetric T-junction, which demonstrate a remarkably improved accuracy relative to the standard Hele-Shaw approximation. This suggests the present scheme as a viable alternative for the rapid performance estimate of micro-fluidic devices. © 2009 Copyright Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2009-10-20
    Description: A finite-amplitude propagating wave induces a drift in fluids. Understanding how drifts produced by many waves disperse pollutants has broad implications for geophysics and engineering. Previously, the effective diffusivity was calculated for a random set of small-amplitude surface and internal waves. Now, this is extended by Bhler & Holmes-Cerfon (J. Fluid Mech., 2009, this issue, vol. 638, pp. 526) to waves in a rotating shallow-water system in which the Coriolis force is accounted for, a necessary step towards oceanographic applications. It is shown that interactions of finite-amplitude waves affect particle velocity in subtle ways. An expression describing the particle diffusivity as a function of scale is derived, showing that the diffusivity can be substantially reduced by rotation. © 2009 Copyright Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 2009-11-10
    Description: The effects of adverse pressure gradients on turbulent structures were investigated by carrying out direct numerical simulations of turbulent boundary layers subjected to adverse and zero pressure gradients. The equilibrium adverse pressure gradient flows were established by using a power law free-stream distribution U∞∼ xm. Two-point correlations of velocity fluctuations were used to show that the spanwise spacing between near-wall streaks is affected significantly by a strong adverse pressure gradient. Low-momentum regions are dominant in the middle of the boundary layer as well as in the log layer. Linear stochastic estimation was used to provide evidence for the presence of low-momentum regions and to determine their statistical properties. The mean width of such large-scale structures is closely associated with the size of the hairpin-like vortices in the outer layer. The conditionally averaged flow fields around events producing Reynolds stress show that hairpin-like vortices are the structures associated with the production of outer turbulence. The shapes of the vortices beyond the log layer were found to be similar when their length scales were normalized according to the boundary layer thickness. Estimates of the conditionally averaged velocity fields associated with the spanwise vortical motion were obtained by using linear stochastic estimation. These results confirm that the outer region of the adverse pressure gradient boundary layer is populated with streamwise-aligned vortex organizations, which are similar to those of the vortex packet model proposed by Adrian, Meinhart & Tomkins (J. Fluid Mech., vol. 422, 2000, pp. 154). The adverse pressure gradient augments the inclination angles of the packets and the mean streamwise spacing of the vortex heads in the packets. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2009-11-10
    Description: We study steep capillary-gravity waves that form at the interface between two stably stratified layers of immiscible liquids in a horizontally oscillating vessel. The oscillatory nature of the external forcing prevents the waves from overturning, and thus enables the development of steep waves at large forcing. They arise through a supercritical pitchfork bifurcation, characterized by the square root dependence of the height of the wave on the excess vibrational Froude number (W, square root of the ratio of vibrational to gravitational forces). At a critical value Wc, a transition to a linear variation in W is observed. It is accompanied by sharp qualitative changes in the harmonic content of the wave shape, so that trochoidal waves characterize the weakly nonlinear regime, but finger-like waves form for W ≥ Wc. In this strongly nonlinear regime, the wavelength is a function of the product of amplitude and frequency of forcing, whereas for W 〈 Wc, the wavelength exhibits an explicit dependence on the frequency of forcing that is due to the effect of viscosity. Most significantly, the radius of curvature of the wave crests decreases monotonically with W to reach the capillary length for W = Wc, i.e. the lengthscale for which surface tension forces balance gravitational forces. For W 〈 Wc, gravitational restoring forces dominate, but for W ≥ Wc, the wave development is increasingly defined by localized surface tension effects. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2009-11-04
    Description: We consider shallow-water flow past a broad bottom ridge, localized in the flow direction, using the framework of the forced SuGardner (SG) system of equations, with a primary focus on the transcritical regime when the Froude number of the oncoming flow is close to unity. These equations are an asymptotic long-wave approximation of the full Euler system, obtained without a simultaneous expansion in the wave amplitude, and hence are expected to be superior to the usual weakly nonlinear Boussinesq-type models in reproducing the quantitative features of fully nonlinear shallow-water flows. A combination of the local transcritical hydraulic solution over the localized topography, which produces upstream and downstream hydraulic jumps, and unsteady undular bore solutions describing the resolution of these hydraulic jumps, is used to describe various flow regimes depending on the combination of the topography height and the Froude number. We take advantage of the recently developed modulation theory of SG undular bores to derive the main parameters of transcritical fully nonlinear shallow-water flow, such as the leading solitary wave amplitudes for the upstream and downstream undular bores, the speeds of the undular bores edges and the drag force. Our results confirm that most of the features of the previously developed description in the framework of the unidirectional forced Kortewegde Vries (KdV) model hold up qualitatively for finite amplitude waves, while the quantitative description can be obtained in the framework of the bidirectional forced SG system. Our analytic solutions agree with numerical simulations of the forced SG equations within the range of applicability of these equations. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2009-10-20
    Description: In this paper, the available potential energy (APE) framework of Winters et al. (J. Fluid Mech., vol. 289, 1995, p. 115) is extended to the fully compressible NavierStokes equations, with the aims of clarifying (i) the nature of the energy conversions taking place in turbulent thermally stratified fluids; and (ii) the role of surface buoyancy fluxes in the Munk & Wunsch (Deep-Sea Res., vol. 45, 1998, p. 1977) constraint on the mechanical energy sources of stirring required to maintain diapycnal mixing in the oceans. The new framework reveals that the observed turbulent rate of increase in the background gravitational potential energy GPEr, commonly thought to occur at the expense of the diffusively dissipated APE, actually occurs at the expense of internal energy, as in the laminar case. The APE dissipated by molecular diffusion, on the other hand, is found to be converted into internal energy (IE), similar to the viscously dissipated kinetic energy KE. Turbulent stirring, therefore, does not introduce a new APE/GPEr mechanical-to- mechanical energy conversion, but simply enhances the existing IE/GPEr conversion rate, in addition to enhancing the viscous dissipation and the entropy production rates. This, in turn, implies that molecular diffusion contributes to the dissipation of the available mechanical energy ME = APE + KE, along with viscous dissipation. This result has important implications for the interpretation of the concepts of mixing efficiency λ mixing and flux Richardson number Rf, for which new physically based definitions are proposed and contrasted with previous definitions. The new framework allows for a more rigorous and general re-derivation from the first principles of Munk & Wunsch (1998, hereafter MW98)'s constraint, also valid for a non-Boussinesq ocean: G(KE})≈ 1-ξRI/ξR fWr,forcing =1+(1-ξgamma;/ mixingξγmixingWr,forcing where G(KE) is the work rate done by the mechanical forcing, Wr, forcing is the rate of loss of GPEr due to high-latitude cooling and is a nonlinearity parameter such thatξ = 1 for a linear equation of state (as considered by MW98),ξ but 〈 1 otherwise. The most important result is that G(APE), the work rate done by the surface buoyancy fluxes, must be numerically as large as Wr,forcing and, therefore, as important as the mechanical forcing in stirring and driving the oceans. As a consequence, the overall mixing efficiency of the oceans is likely to be larger than the value γmixing = 0.2 presently used, thereby possibly eliminating the apparent shortfall in mechanical stirring energy that results from using γmixing = 0.2 in the above formula. © 2009 Copyright Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2009-10-13
    Description: The paper investigates the phenomena occurring in a TaylorCouette flow system subject to a steady axial pressure gradient in a small envelope of the TaylorReynolds state space under transitional regimes. A remarkable net power reduction necessary to simultaneously drive the two flows compared to that required to drive the TaylorCouette flow alone is documented under non-trivial conditions. The energy transfer process characterizing the large-scale coherent structures is investigated by processing a set of statistically independent realizations obtained from direct numerical simulation. The analysis is conducted with an incompressible three-dimensional NavierStokes flow solver employing a spectral representation of the unknowns. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2009-10-12
    Description: We consider the two-dimensional buoyancy driven flow of a fluid injected into a saturated semi-infinite porous medium bounded by a horizontal barrier in which a single line sink, representing a fissure some distance from the point of injection, allows leakage of buoyant fluid. Our studies are motivated by the geological sequestration of carbon dioxide (CO2) and the possibility that fissures in the cap rock may compromise the safe long-term storage of CO2. A theoretical model is presented that accounts for leakage through the fissure using two parameters, which characterize leakage driven both by the hydrostatic pressure within the overriding fluid and by the buoyancy of the fluid within the fissure. We determine numerical solutions for the evolution of both the gravity current within the porous medium and the volume of fluid that has escaped through the fissure as a function of time. A quantity of considerable practical interest is the efficiency of storage, which we define as the amount of fluid remaining in the porous medium relative to the amount injected. This efficiency scales like t1/2 at late times, indicating that the efficiency of storage ultimately tends to zero. We confirm the results of our model by comparison with an analogue laboratory experiment and discuss the implications of our two-dimensional model of leakage from a fissure for the geological sequestration of CO2. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2009-10-09
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2009-10-12
    Description: New explicit subgrid stress models are proposed involving the strain rate and rotation rate tensor, which can account for rotation in a natural way. The new models are based on the same methodology that leads to the explicit algebraic Reynolds stress model formulation for Reynolds-averaged NavierStokes simulations. One dynamic model and one non-dynamic model are proposed. The non-dynamic model represents a computationally efficient subgrid scale (SGS) stress model, whereas the dynamic model is the most accurate. The models are validated through large eddy simulations (LESs) of spanwise and streamwise rotating channel flow and are compared with the standard and dynamic Smagorinsky models. The proposed explicit dependence on the system rotation improves the description of the mean velocity profiles and the turbulent kinetic energy at high rotation rates. Comparison with the dynamic Smagorinsky model shows that not using the eddy-viscosity assumption improves the description of both the Reynolds stress anisotropy and the SGS stress anisotropy. LESs of rotating channel flow at Re = 950 have been carried out as well. These reveal some significant Reynolds number influences on the turbulence statistics. LESs of non-rotating turbulent channel flow at Re = 950 show that the new explicit model especially at coarse resolutions significantly better predicts the mean velocity, wall shear and Reynolds stresses than the dynamic Smagorinsky model, which is probably the result of a better prediction of the anisotropy of the subgrid dissipation. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2009-09-25
    Description: We study surface switching quantitatively in flows driven by the constant rotation of the endwall of an open cylindrical vessel reported by Suzuki, Iima & Hayase (Phys. Fluids, vol. 18, 2006, p. 101701): the deformed free surface switches between axisymmetric and non-axisymmetric shapes accompanied by irregular vertical oscillation. Detailed simultaneous measurements showed that the magnitude of the velocity fluctuations (turbulent intensity) temporally varies greatly and are strongly correlated with the surface height, suggesting that dynamic switching between laminar and turbulent states is accompanied by vessel-scale surface shape changes. The study also identified clear hysteresis in the turbulent intensity arising from changes in the Reynolds number; the bifurcation diagram consists of two overlapping branches representing a high-intensity (turbulent) state and a low-intensity (laminar) state. Based on the results, a switching mechanism is suggested. © 2009 Copyright Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2009-09-25
    Description: We examine the linear stability of a capillary rivulet under the assumption that it is shallow enough to be described by the lubrication approximation. It is shown that rivulets on a sloping plate are stable regardless of their parameters, whereas rivulets on the underside of a plate can be either stable or unstable, depending on their widths and the plate's slope. For the case of a horizontal plate, sufficiently narrow rivulets are shown to be stable and sufficiently wide ones unstable, with the threshold width being /2(/g) 1/2(and are the liquid's density and surface tension, g is the acceleration due to gravity). It is also shown that, even though the plate's slope induces in a rivulet a sheared flow (which would normally be viewed as a source of instability) in the present problem, it is a stabilizing factor. The corresponding stability criterion involving the rivulet's width and the plate's slope is computed, and it is demonstrated that, if the latter is sufficiently strong, all rivulets are stable regardless of their widths. © 2009 Copyright Cambridge University Press 2009.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 2009-10-01
    Description: A simplified one-dimensional partial differential equation for the integral axial momentum flux during the deceleration phase of single-pulsed transient incompressible jets is derived and solved analytically. The wave speed of the derived first-order nonlinear wave equation shows that the momentum flux transient from the deceleration phase propagates downstream at twice the initial jet penetration rate. Transient-jet velocity data from the existing literature is shown to be consistent with this derivation, and an algebraic analytical solution matches the measured timing and decay of axial velocity after the deceleration transient. The solution also shows that a wave of increased entrainment accompanies the deceleration transient as it travels downstream through the jet. In the long-time limit, the peak entrainment rate at the leading edge of this entrainment wave approaches an asymptotic value of three times that of the initial steady jet. The rate of approach to the asymptotic behaviour is controlled by the deceleration rate, which suggests that rate-shaping may be tailored to achieve a desired mixing state at a given time after the end of a single-pulsed jet. In the wake of the entrainment wave, the absolute entrainment rate eventually decays to zero. The local injected fluid concentration also decays, however, so that entrainment rate relative to the local concentration of injected fluid remains higher than in the initial steady jet. An analysis of diesel engine fuel-jets is provided as one example of a transient-jet application in which the considerable increase in the mixing rate after the deceleration phase has important implications. © 2009 Copyright Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2009-09-23
    Description: Elements of the first-principles-based theory of Wei et al. (J. Fluid Mech., vol. 522, 2005, p. 303), Fife et al. (Multiscale Model. Simul., vol. 4, 2005a, p. 936; J. Fluid Mech., vol. 532, 2005b, p. 165) and Fife, Klewicki & Wei (J. Discrete Continuous Dyn. Syst., vol. 24, 2009, p. 781) are clarified and their veracity tested relative to the properties of the logarithmic mean velocity profile. While the approach employed broadly reveals the mathematical structure admitted by the time averaged NavierStokes equations, results are primarily provided for fully developed pressure driven flow in a two-dimensional channel. The theory demonstrates that the appropriately simplified mean differential statement of Newton's second law formally admits a hierarchy of scaling layers, each having a distinct characteristic length. The theory also specifies that these characteristic lengths asymptotically scale with distance from the wall over a well-defined range of wall-normal positions, y. Numerical simulation data are shown to support these analytical findings in every measure explored. The mean velocity profile is shown to exhibit logarithmic dependence (exact or approximate) when the solution to the mean equation of motion exhibits (exact or approximate) self-similarity from layer to layer within the hierarchy. The condition of pure self-similarity corresponds to a constant leading coefficient in the logarithmic mean velocity equation. The theory predicts and clarifies why logarithmic behaviour is better approximated as the Reynolds number gets large. An exact equation for the leading coefficient (von Kármán coefficient κ) is tested against direct numerical simulation (DNS) data. Two methods for precisely estimating the leading coefficient over any selected range of y are presented. These methods reveal that the differences between the theory and simulation are essentially within the uncertainty level of the simulation. The von Krmn coefficient physically exists owing to an approximate self-similarity in the flux of turbulent force across an internal layer hierarchy. Mathematically, this self-similarity relates to the slope and curvature of the Reynolds stress profile, or equivalently the slope and curvature of the mean vorticity profile. The theory addresses how, why and under what conditions logarithmic dependence is approximated relative to the specific mechanisms contained within the mean statement of dynamics. © 2009 Copyright Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2009-06-01
    Description: Buffeting flow on transonic aerofoils serves as a model problem for the more complex three-dimensional flows responsible for aeroplane buffet. The origins of transonic aerofoil buffet are linked to a global instability, which leads to shock oscillations and dramatic lift fluctuations. The problem is analysed using the Reynolds-averaged Navier-Stokes equations, which for the foreseeable future are a necessary approximation to cover the high Reynolds numbers at which transonic buffet occurs. These equations have been shown to reproduce the key physics of transonic aerofoil flows. Results from global-stability analysis are shown to be in good agreement with experiments and numerical simulations. The stability boundary, as a function of the Mach number and angle of attack, consists of an upper and a lower branch - the lower branch shows features consistent with a supercritical bifurcation. The unstable modes provide insight into the basic character of buffeting flow at near-critical conditions and are consistent with fully nonlinear simulations. The results provide further evidence linking the transonic buffet onset to a global instability. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2009-06-01
    Description: A study of the Faraday instability of diffuse interfaces between pairs of miscible liquids of different densities, by means of experiments and by a nonlinear numerical model, is presented. The experimental set-up consisted of a rectangular cell in which the lighter liquid was placed above the denser one. The cell in this initially stable configuration was then subjected to vertical vibrations. The subsequent behaviour of the 'interface' between the two liquids was observed with a high-speed camera. This study shows that above a certain acceleration threshold an instability developed at the interface. The amplitude of the instability grew during the experiments which then led to the mixing of the liquids. The instability finally disappeared once the two liquids were fully mixed over a volume, considerably larger than the initial diffuse region. The results of a companion two-dimensional nonlinear numerical model that employs a finite volume method show very good agreement with the experiments. A physical explanation of the instability and the observations are advanced. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2009-06-01
    Description: Homogeneous, approximately isotropic turbulence at two Taylor-scale Reynolds numbers, Rλ = 50, 190, with a mean transverse temperature gradient is passed through an axisymmetric contraction. The effects of the straining on the velocity field, and on the passive scalar field, are investigated within the contraction as are the effects of releasing the strain in the post-contraction region. Components of the fluctuating velocity and scalar gradient covariance are measured in order to understand their relation to the large-scale anisotropy of the flow. The scale-dependent spectral evolution of the scalar is also determined. A tensor model is constructed to predict the evolution of the fluctuating scalar gradient covariance. The model constants are determined in the post-contraction relaxation region, where the flow geometry does not vary. The model is shown to perform well throughout the flow, even in the contraction in which the geometry varies. Rapid distortion theory is applied to the scalar field in the contraction, and its solutions are compared to the experimental results. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2009-06-01
    Description: In this paper we investigate the relationship between the large- and small-scale energy-containing motions in wall turbulence. Recent studies in a high-Reynolds-number turbulent boundary layer (Hutchins & Marusic, Phil. Trans. R. Soc. Lond. A, vol. 365, 2007 a, pp. 647-664) have revealed a possible influence of the large-scale boundary-layer motions on the small-scale near-wall cycle, akin to a pure amplitude modulation. In the present study we build upon these observations, using the Hilbert transformation applied to the spectrally filtered small-scale component of fluctuating velocity signals, in order to quantify the interaction. In addition to the large-scale log-region structures superimposing a footprint (or mean shift) on the near-wall fluctuations (Townsend, The Structure of Turbulent Shear Flow , 2nd edn., 1976, Cambridge University Press; Metzger & Klewicki, Phys. Fluids, vol. 13, 2001, pp. 692-701.), we find strong supporting evidence that the small-scale structures are subject to a high degree of amplitude modulation seemingly originating from the much larger scales that inhabit the log region. An analysis of the Reynolds number dependence reveals that the amplitude modulation effect becomes progressively stronger as the Reynolds number increases. This is demonstrated through three orders of magnitude in Reynolds number, from laboratory experiments at Reτ ∼ 103- 104 to atmospheric surface layer measurements at Reτ ∼ 106. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2009-06-01
    Description: Assuming that the sediment flux in the Exner equation can be linearly related to the local bed slope, we establish a one-dimensional model for the bed-load transport of sediment in a coastal-plain depositional system, such as a delta and a continental margin. The domain of this model is defined by two moving boundaries: the shoreline and the alluvial-bedrock transition. These boundaries represent fundamental transitions in surface morphology and sediment transport regime, and their trajectories in time and space define the evolution of the shape of the sedimentary prism. Under the assumptions of fixed bedrock slope and sea level the model admits a closed-form similarity solution for the movements of these boundaries. A mapping of the solution space, relevant to field scales, shows two domains controlled by the relative slopes of the bedrock and fluvial surface: one in which changes in environmental parameters are mainly recorded in the upstream boundary and another in which these changes are mainly recorded in the shoreline. We also find good agreement between the analytical solution and laboratory flume experiments for the movements of the alluvial-bedrock transition and the shoreline. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2009-06-01
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 2009-06-01
    Description: Lattice kinetic equations incorporating the effects of external/internal force fields via a shift of the local fields in the local equilibria are placed within the framework of continuum kinetic theory. The mathematical treatment reveals that in order to be consistent with the correct thermo-hydrodynamical description, temperature must also be shifted, besides momentum. New perspectives for the formulation of thermo-hydrodynamic lattice kinetic models of non-ideal fluids are then envisaged. It is also shown that on the lattice, the definition of the macroscopic temperature requires the inclusion of new terms directly related to discrete effects. The theoretical treatment is tested against a controlled case with a non-ideal equation of state. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2009-09-18
    Description: The problem of unsteady behaviour of a floating thin plate is solved. The simultaneous motion of the plate and the fluid is considered within the framework of linear shallow-water theory. It is assumed that the bottom is not uniform in depth under the heterogeneous plate represented by an infinitely extended strip of finite width. The elastic deflection of the plate is expressed by a superposition of modal functions of a homogeneous beam with free edge conditions. The time-dependent unknown amplitudes are determined from the solution of a linear set of ordinary differential equations with constant coefficients. The eigenvalues of this set are determined numerically. Proposed method is used for the solution of three unsteady problems: the scattering of localized surface wave by an elastic plate, decay of the initial deformation of the plate in the fluid at rest and the action of a periodic load on a plate. Numerical calculations are performed for the ice sheet with the variable thickness and various bottom topographies. © 2009 Copyright Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2009-09-18
    Description: The role of fluid motion in delivery of nutrients to phytoplankton cells is a fundamental question in biological and chemical oceanography. In the study of mass transfer to phytoplankton, diatoms are of particular interest. They are non-motile, are often the most abundant components in aggregates and often form chains, so they are the ones expected to benefit most from enhancement of nutrient flux due to dissipating turbulence. Experimental data to test the contribution of advection to nutrient acquisition by phytoplankton are scarce, mainly because of the inability to visualize, record and thus imitate fluid motions in the vicinities of cells in natural flows. Laboratory experiments have most often used steady Couette flows to simulate the effects of turbulence on plankton. However, steady flow, producing spatially uniform shear, fails to capture the diffusion of momentum and vorticity, the essence of turbulence. Thus, numerical modelling plays an important role in the study of effects of fluid motion on diffusive and advective nutrient fluxes. In this paper we use the immersed boundary method to model the interaction of rigid and flexible diatom chains with the surrounding fluid and nutrients. We examine this interaction in two nutrient regimes, a uniform background concentration of nutrients, such as might be typical of an early spring bloom, and a contrasting scenario in which nutrients are supplied as small, randomly distributed pulses, as is more likely for oligotrophic seas and summer conditions in coastal and boreal seas. We also vary the length and flexibility of chains, as whether chains are straight or bent, rigid or flexible will affect their behaviour in the flow and hence their nutrient fluxes. The results of numerical experiments suggest that stiff chains consume more nutrients than solitary cells. Stiff chains also experience larger nutrient fluxes compared to flexible chains, and the nutrient uptake per cell increases with increasing stiffness of the chain, suggesting a major advantage of silica frustules in diatoms. © 2009 Copyright Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    Publication Date: 2009-06-01
    Description: As a stepping stone towards understanding acoustic resonances in axial flow compressors, acoustic resonances are computed numerically in fixed single and tandem plate cascades in an infinitely long annular duct. Applying perfectly matched layer absorbing boundary conditions in the form of the complex scaling method of atomic and molecular physics to approximate the radiation condition the resonance problem is transformed into an eigenvalue problem. Of particular interest are resonances with zero radiation damping (trapped modes) or very small radiation damping (nearly trapped modes). Such resonances can be excited by wakes from compressor cascades or struts. If the shedding frequency is sufficiently close to an acoustic resonant frequency, the latter may control the vortex shedding causing high-intensity tonal noise or occasionally even blade failure. All resonances are computed for zero mean flow approximating low-Mach-number flows. The influence of various cascade parameters on the resonant frequencies is studied and, whenever possible, our numerical results are compared with published experimental findings. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2009-06-01
    Description: Rotating convection in cylindrical containers is a canonical problem in fluid dynamics, in which a variety of simplifying assumptions have been used in order to allow for low-dimensional models or linear stability analysis from trivial basic states. An aspect of the problem that has received only limited attention is the influence of the centrifugal force, because it makes it difficult or even impossible to implement the aforementioned approaches. In this study, the mutual interplay between the three forces of the problem, Coriolis, gravitational and centrifugal buoyancy, is examined via direct numerical simulation of the Navier-Stokes equations in a parameter regime where the three forces are of comparable strengths in a cylindrical container with the radius equal to the depth so that wall effects are also of order one. Two steady axisymmetric basic states exist in this regime, and the nonlinear dynamics of the solutions bifurcating from them is explored in detail. A variety of bifurcated solutions and several codimension-two bifurcation points acting as organizing centres for the dynamics have been found. A main result is that the flow has simple dynamics for either weak heating or large centrifugal buoyancy. Reducing the strength of centrifugal buoyancy leads to subcritical bifurcations, and as a result linear stability is of limited utility, and direct numerical simulations or laboratory experiments are the only way to establish the connections between the different solutions and their organizing centres, which result from the competition between the three forces. Centrifugal effects primarily lead to the axisymmetrization of the flow and a reduction in the heat flux. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 2009-06-01
    Description: Laboratory measurements of the post-breaking velocity field due to unsteady deep-water breaking are presented. Digital particle image velocimetry (DPIV) is used to measure the entire post-breaking turbulent cloud with high-resolution imagery permitting the measurement of scales from O (1m) down to O (1mm). Ensemble-averaged quantities including mean velocity, turbulent kinetic energy (TKE) density and Reynolds stress are presented and compare favourably with the results of Melville, Veron & White (J. Fluid Mech., vol. 454, 2002, pp. 203-233; MVW). However, due to limited resolution, MVW's measurements were not spatially coherent across the turbulent cloud, and this restricted their ability to compute turbulent wavenumber spectra. Statistical spatial quantities including the integral length scale L11, Taylor microscale λf and the Taylor microscale Reynolds number Reλ are presented. Estimation of an eddy viscosity for the breaking event is also given based on analysis of the image data. Turbulent wavenumber spectra are computed and within 12 wave periods after breaking exhibit what have been termed 'spectral bumps' in the turbulence literature. These local maxima in the spectra are thought to be caused by an imbalance between the transport of energy from large scales and the dissipation at small scales. Estimates of the dissipation rate per unit mass are computed using both direct and indirect methods. Horizontally averaged terms in the TKE budget are also presented up to 27 wave periods after breaking and are discussed with regard to the dynamics of the post-breaking flow. Comparisons of the TKE density in the streamwise and cross-stream planes with the three-dimensional full TKE density are given in an appendix. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2009-09-10
    Description: The flow of a partial-depth lock-exchange gravity current past an isolated bottom-mounted obstacle is studied by means of two-dimensional direct numerical simulations and steady shallow-water theory. The simulations indicate that the flux of the current downstream of the obstacle is approximately constant in space and time. This information is employed to extend the shallow-water models of Rottman et al. (J. Hazard. Mater., vol. 11, 1985, pp. 325340) and Lane-Serff, Beal & Hadfield (J. Fluid Mech., vol. 292, 1995, pp. 3953), in order to predict the height and front speed of the downstream current as functions of the upstream Froude number and the ratio of obstacle to current height. The model predictions are found to agree closely with the simulation results. In addition, the shallow-water model provides an estimate for the maximum drag that lies within 10% of the simulation results for obstacles much larger than the boundary-layer thickness. © 2009 Copyright Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2009-09-10
    Description: Two types of wall actuation in channel flow are considered: travelling waves of wall deformation (peristalsis) and travelling waves of blowing and suction. The flow response and its mechanisms are analysed using nonlinear and weakly nonlinear computations. We show that both actuations induce a flux in the channel in the absence of an imposed pressure gradient and can thus be characterized as pumping. In the context of flow control, pumping and drag reduction are strongly connected, and we seek to define them properly based on these two actuation examples. Movies showing the flow motion for the two types of actuation are available with the online version of this paper (journals.cambridge.org/FLM). © 2009 Copyright Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2009-09-10
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2009-09-10
    Description: The stabilization of buoyant flows by a magnetic field is an important matter for crystal growth applications. It is studied here when the cavity is an infinite channel with rectangular cross-section typical of horizontal Bridgman configurations and when the magnetic field is applied in the vertical and transverse directions. The steady basic flow solution is first calculated: the usual counter flow structure is modified by the magnetic field and evolves towards jets in the cross-section corners when the magnetic field is vertical and towards a more uniform structure in the transverse direction when the magnetic field is transverse. The stability results show a very good stabilization of the convective flows for a vertical magnetic field with exponential increases of the thresholds for any width of the channel and for various Prandtl numbers Pr. The results for a transverse magnetic field are more surprising as a destabilizing effect corresponding to an initial decrease of the thresholds is obtained at Pr=0 and for small channel widths. A kinetic energy budget at the thresholds reveals that the main destabilizing factor is connected to the vertical shear of the longitudinal basic flow and that it is the modifications affecting this shear energy which are mainly responsible for the variation of the thresholds when a magnetic field is applied. © 2009 Copyright Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2009-09-02
    Description: The majority of existing single-unit devices for extracting power from sea waves relies on resonance at the peak frequency of the incident wave spectrum. Such designs usually call for structural dimensions not too small compared to a typical wavelength and yield high efficiency only within a limited frequency band. A recent innovation in Norway departs from this norm by gathering many small buoys in a compact array. Each buoy is too small to be resonated in typical sea conditions. In this article a theoretical study is performed to evaluate this new design. Within the framework of linearization, we consider a periodic array of small buoys with similarly small separation compared to the typical wavelength. The method of homogenization (multiple scales) is used to derive the equations governing the macroscale behaviour of the entire array. These equations are then applied to energy extraction by an infinite strip of buoys, and by a circular array. In the latter case, advantages are found when compared to a single buoy of equal volume. © 2009 Copyright Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    Publication Date: 2009-08-28
    Description: Direct numerical simulation (DNS) is used to study the effects of mean lateral divergence and convergence on wall-bounded turbulence, by applying uniform irrotational temporal deformations to a plane-channel domain. This extends a series of studies of similar deformations. Fast and slow straining fields are considered, leading to a matrix of four cases, all corresponding to zero-pressure-gradient (ZPG) flows along the centreplane in ducts with constant rectangular cross-sectional area but varying aspect ratio. The results are used to address basic physical and modelling questions, and create a database that allows detailed yet straightforward testing of turbulence models. Initial tests of three representative one-point models reveal meaningful differences. The extra-strain effects introduced by the matrix of fast and slow divergence and convergence are documented, separating the direct effects of the strain from the indirect ones that alter the shear rate and change the distance from the wall. Some findings are predictable, and none contradict experimental findings. Others require more thought, notably an asymmetry between the effect of convergence and divergence on the peak turbulence kinetic energy. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 2009-08-26
    Description: By identifying the stratification which leads to maximal buoyancy flux in a stably-stratified plane Couette flow, we make a prediction of what bulk stratification (as a function of the shear) is optimal for turbulent mixing. A previous attempt to do this (Caulfield, Tang & Plasting, J. Fluid Mech., vol. 498, 2004, p. 315) failed due to an unexpected degeneracy in the variational problem. Here, we overcome this issue by parameterizing the variational problem implicitly with the overall mixing efficiency which is then optimized across to return a rigorous upper bound on the buoyancy flux. We find that the bulk Richardson number quickly approaches 1/6 in the asymptotic limit of high shear with the associated mixing efficiency tending to 1/3. The predicted mean profiles associated with the bound appear to have a layered structure, with the gradient Richardson number being low both in the interior, and in boundary layers near the walls, with a global maximum, also equal to 1/6, occurring at the edge of the boundary layers. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2009-08-26
    Description: In this work a two-dimensional laminar flow past a square cylinder is considered. Actuators placed on the cylinder enable active control by blowing and suction. Proportional feedback control is then applied using velocity measurements taken in the cylinder wake. Projection onto an empirical subspace is combined with a calibration technique to build a low-order model of the incompressible NavierStokes equations. This model is used within an optimization method to determine a set of feedback gains which reduces the unsteadiness of the wake at Re = 150. The resulting controlled flows are further characterized by computing the critical Reynolds numbers for the onset of the vortex shedding instability. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 2009-08-26
    Description: Radiometric force on a 0.12 m circular vane is studied experimentally and numerically over a wide range of pressures that cover the flow regimes from near free molecular to near continuum. In the experiment, the vane is resistively heated to about 419 K on one side and 394 K on the other side, and immersed in a rarefied argon gas. The radiometric force is then measured on a nano-Newton thrust stand in a 3 m vacuum chamber and compared with the present numerical predictions and analytical predictions proposed by various authors. The computational modelling is conducted with a kinetic approach based on the solution of ellipsoidal statistical BhatnagarGrossKrook (ES-BGK) equation. Numerical modelling showed the importance of regions with elevated pressure observed near the edges of the vane for the radiometric force production. A simple empirical expression is proposed for the radiometric force as a function of pressure that is found to be in good agreement with the experimental data. The shear force on the lateral side of the vane was found to decrease the total radiometric force. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Publication Date: 2009-06-01
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Publication Date: 2009-05-25
    Description: A wave basin experiment has been performed in the MARINTEK laboratories, in one of the largest existing three-dimensional wave tanks in the world. The aim of the experiment is to investigate the effects of directional energy distribution on the statistical properties of surface gravity waves. Different degrees of directionality have been considered, starting from long-crested waves up to directional distributions with a spread of ±30° at the spectral peak. Particular attention is given to the tails of the distribution function of the surface elevation, wave heights and wave crests. Comparison with a simplified model based on second-order theory is reported. The results show that for long-crested, steep and narrow-banded waves, the second-order theory underestimates the probability of occurrence of large waves. As directional effects are included, the departure from second-order theory becomes less accentuated and the surface elevation is characterized by weak deviations from Gaussian statistics. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 2009-05-25
    Description: We study the classical problem of planar shock refraction at an oblique density discontinuity, separating two gases at rest. When the shock impinges on the density discontinuity, it refracts, and in the hydrodynamical case three signals arise. Regular refraction means that these signals meet at a single point, called the triple point. After reflection from the top wall, the contact discontinuity becomes unstable due to local Kelvin-Helmholtz instability, causing the contact surface to roll up and develop the Richtmyer-Meshkov instability (RMI). We present an exact Riemann-solver-based solution strategy to describe the initial self-similar refraction phase, by which we can quantify the vorticity deposited on the contact interface. We investigate the effect of a perpendicular magnetic field and quantify how its addition increases the deposition of vorticity on the contact interface slightly under constant Atwood number. We predict wave-pattern transitions, in agreement with experiments, von Neumann shock refraction theory and numerical simulations performed with the grid-adaptive code AMRVAC. These simulations also describe the later phase of the RMI. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    Publication Date: 2009-08-26
    Description: The quasi-steady migration and deformation of bubbles rising in a wall-bounded linear shear flow are investigated experimentally in the low-but-finite-Reynolds-number regime. A travelling optical device that follows the bubble is used for this purpose. This apparatus allows us to determine accurately the bubble radius, contour and rising speed, together with the distance between the bubble and the wall. Thereby the transverse component of the hydrodynamic force is obtained for Reynolds numbers Re (based on the bubble diameter and slip velocity of the bubble in the undisturbed shear flow) less than 5. The results indicate that in the range 0.5 〈 Re 〈 1.5, the transverse force acting on a spherical bubble agrees well with an extension of the theoretical solution obtained by McLaughlin (J. Fluid Mech., vol. 246, 1993, pp. 249-265) for rigid spheres, whereas it becomes larger than the theoretical prediction for Re 〉 1.5. In the regime in which bubble deformation is significant, the shape of the bubble and the deformation-induced transverse force are determined both experimentally and computationally, using a spectral boundary element method. Both estimates are found to be in good agreement with each other, while the theory of Magnaudet, Takagi & Legendre (J. Fluid Mech., vol. 476, 2003, pp. 115-157) is found to predict accurately the deformation but fails to predict quantitatively the deformation-induced transverse force. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    Publication Date: 2009-08-26
    Description: In order to predict response and wake modes for elastically mounted circular cylinders in a fluid flow, we employ controlled-vibration experiments, comprised of prescribed transverse vibration of a cylinder in the flow, over a wide regime of amplitude and frequency. A key to this study is the compilation of high-resolution contour plots of fluid force, in the plane of normalized amplitude and wavelength. With such resolution, we are able to discover discontinuities in the force and phase contours, which enable us to clearly identify boundaries separating different fluid-forcing regimes. These appear remarkably similar to boundaries separating different vortex-formation modes in the map of regimes by Williamson & Roshko (J. Fluids Struct., vol. 2, 1988, pp. 355381). Vorticity measurements exhibit the 2S, 2P and P + S vortex modes, as well as a regime in which the vortex formation is not synchronized with the body vibration. By employing such fine-resolution data, we discover a high-amplitude regime in which two vortex-formation modes overlap. Associated with this overlap regime, we identify a new distinct mode of vortex formation comprised of two pairs of vortices formed per cycle, where the secondary vortex in each pair is much weaker than the primary vortex. This vortex mode, which we define as the 2POVERLAP mode (2PO), is significant because it is responsible for generating the peak resonant response of the body. We find that the wake can switch intermittently between the 2P and 2PO modes, even as the cylinder is vibrating with constant amplitude and frequency. By examining the energy transfer from fluid to body motion, we predict a free-vibration response which agrees closely with measurements for an elastically mounted cylinder. In this work, we introduce the concept of an energy portrait, which is a plot of the energy transfer into the body motion and the energy dissipated by damping, as a function of normalized amplitude. Such a plot allows us to identify stable and unstable amplitude-response solutions, dependent on the rate of change of net energy transfer with amplitude (the sign of dE*/dA*). Our energy portraits show how the vibration system may exhibit a hysteretic mode transition or intermittent mode switching, both of which correspond with such phenomena measured from free vibration. Finally, we define the complete regime in the amplitudewavelength plane in which free vibration may exist, which requires not only a periodic component of positive excitation but also stability of the equilibrium solutions. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    Publication Date: 2009-08-26
    Description: The stability of electrohydrodynamic flow between two horizontal plates with a vertical electrical conductivity gradient has been investigated in the presence of an imposed weak shear flow. The weak shear flow is driven by the horizontal pressure gradient, and the electrical conductivity gradient is generated by the concentration variation of the charge-carrying solute. An external electric field is applied across the fluid layer, and then the interaction between the unstable stratification of electrohydrodynamic flow and the shear arising from the plane Poiseuille flow is studied. A linear stability analysis has been implemented by considering both the longitudinal and transverse modes. Unlike the thermally stratified plane Poiseuille flow in which the longitudinal mode always dominates the onset of instability and is virtually unaffected by the superimposed shear flow, the instability of this mixed electrohydrodynamicPoiseuille flow system is found to depend heavily on the shear flow, and the transverse mode may prevail over the longitudinal mode when the momentum of shear flow is sufficiently small. Particularly, an oscillatory longitudinal mode is found to exist, and it may become the critical mode when the conductivity gradient is small enough. The present results verify that an imposed weak shear flow may enhance the electrohydrodynamic instability in a fluid layer with electrical conductivity gradient. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2009-08-26
    Description: A theory on weakly rarefied low-Mach-number flows with surface reactions based on small sticking coefficients was formulated for a binary gas mixture with an irreversible surface reaction, and then extended to a multicomponent mixture with multi-step surface reactions for the situation when all chemically active species are small in concentration compared to a major inert species. Particular interest was placed on the interaction between the Knudsen layer and the surface reactions. Results show that the Knudsen layer modifies not only the incident flux of the molecules striking the surface but also the temperature-sensitive sticking coefficients, and consequently the surface reaction rates. The surface reactions in turn modify the flow structure in the Knudsen layer through the non-zero net flux at the surface. The rate expressions for the surface reactions based on sticking coefficients were derived, and the slip boundary conditions for the temperature and the species concentration suitable for application were established. The widely used Motz-Wise correction formula for the surface reaction rate was revised and the underlying assumptions leading to its derivation were shown to be inappropriate. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2009-08-25
    Description: We report an investigation of temperature profiles in turbulent Rayleigh-Bénard convection of water based on direct numerical simulations (DNS) for a cylindrical cell with unit aspect ratio for the same Prandtl number Pr and similar Rayleigh numbers Ra as used in recent high-precision measurements by Funfschilling et al. (J. Fluid Mech., vol. 536, 2005, p. 145). The Nusselt numbers Nu computed for Pr = 4.38 and Ra = 108 3 × 108, 5 × 108, 8 × 108 and 109 are found to be in excellent agreement with the experimental data corrected for finite thermal conductivity of the walls. Based on this successful validation of the numerical approach, the DNS data are used to extract vertical profiles of the mean temperature. We find that near the heating and cooling plates the non-dimensional temperature profiles Θ(y) (where y is the non-dimensional vertical coordinate), obey neither a logarithmic nor a power law. Moreover, we demonstrate that the Prandtl-Blasius boundary layer theory cannot predict the shape of the temperature profile with an error less than 7.9% within the thermal boundary layers (TBLs). We further show that the profiles can be approximated by a universal stretched exponential of the form Θ(y) ≈ 1 -exp(-y -0.5y2) with an absolute error less than 1.1% within the TBLs and 5.5% in the whole Rayleigh cell. Finally, we provide more accurate analytical approximations of the profiles involving higher order polynomials in the approximation. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2009-08-26
    Description: The onset of compressible convection in rapidly rotating spherical shells is studied in the anelastic approximation. An asymptotic theory valid at low Ekman number is developed and compared with numerical solutions of the full equations. Compressibility is measured by the number of density scale heights in the shell. In the Boussinesq problem, the location of the onset of convection is close to the tangent cylinder when there is no internal heating only a heat flux emerging from below. Compressibility strongly affects this result. With only a few scale heights or more of density present, there is onset of convection near the outer shell. Compressibility also strongly affects the frequencies and preferred azimuthal wavenumbers at onset. Compressible convection, like Boussinesq convection, shows strong spiralling in the equatorial plane at low Prandtl number. We also explore how higher-order linear modes penetrate inside the tangent cylinder at higher Rayleigh numbers and compare modes both symmetric and antisymmetric about the equator. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2009-08-26
    Description: Theoretical investigation of acoustic wave interactions with turbulent premixed flames was conducted to evaluate the acoustic energy amplification and/or damping due to the interaction of low-frequency acoustic waves with turbulent flames in three-dimensional space. Such amplified or damped acoustic energy is either coherent or incoherent as wrinkled flames cause coherent energy of a monochromatic acoustic wave to be damped into incoherent energy of spatially diffused and spectrally broadened acoustic waves. Small perturbation method (SPM) up to the second order was utilized to analyse net coherent and incoherent acoustic energies of the reflected and transmitted waves scattered from a weakly wrinkled turbulent flame surface in random motion. General formulations for net coherent and incoherent energy budget of the scattered fields were derived that can be applied to any type of flame height statistics. Production and/or damping of acoustic energy scattered from a turbulent flame is attributed to two effects: one is the acoustic velocity jump due to flame's unsteady heat release and the other is the flame's wrinkling due to its unsteady motion. Dimensionless parameters that govern net acoustic energy budget were derived in case of Gaussian statistics of flame surface behaviour: the r.m.s. and correlation length of flame height, the frequency ratio of the incidence frequency to the flame's correlation frequency, the time ratio of the flame's diffusion to correlation time and the incidence angle. The results of the scattered acoustic energy budget showed that noticeable amplification of acoustic energy was obtained either for a small frequency ratio (〈1) at the critical incidence angle or for a large frequency ratio and time ratio (〉1), while damping was obtained for a small frequency ratio at off-critical incidence angles. The relative importance of unsteady heat release (the jump effect) and unsteady motion (the wrinkling effect) to net acoustic energy is controlled mainly by the frequency ratio: The unsteady heat release effect dominates the wrinkling effect at a large frequency ratio, and vice versa at a small frequency ratio. The energy transfer from coherent to incoherent energy is due to flame surface wrinkling and is enhanced with the square of the flame's r.m.s. height. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Publication Date: 2009-08-25
    Description: An algebraic heat flux truncation model was derived for high-speed gaseous shear flows. The model was developed for high-temperature gases with caloric imperfections. Fluctuating dilatation moments were modelled via conservation of mass truncations. The present model provided significant improvements, up to 20%, in the temperature predictions over the gradient diffusion model for a Mach number ranging from 0.02 to 11.8. Analyses also showed that the near-wall dependence of the algebraic model agreed with expected scaling, where the constant Prandtl number model did not. This led to a simple modification of the turbulent Prandtl number model. Compressibility led to an explicit pressure gradient dependency with the present model. Analyses of a governing parameter indicated that these terms are negligibly small for low speeds. However, they may be important for high-speed flow. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Publication Date: 2009-05-25
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Publication Date: 2009-08-25
    Description: The selection of long air bubbles propagating steadily in a strongly collapsed fluid-filled elastic tube is investigated experimentally in a benchtop model of airway reopening. Localized regions of strong collapse are likely in the lung, because collapsing fluid-elastic instabilities promote extensive deformation of the airway cross-section beyond the point of opposite wall contact. We find that radical changes in the reopening mechanics occur at this point. We build on the recent identification by Heap & Juel (Phys. Fluids, vol. 20, 2008, article no. 081702) of three different steadily propagating bubbles (asymmetric, double-tipped and pointed) that are selected successively for increasing values of the capillary number (Ca, ratio of viscous to surface tension forces) in tubes initially collapsed beyond the point of opposite wall contact. The asymmetric bubble is also observed in less collapsed tubes for small values of Ca, and we show that it bifurcates super-critically from the usual parabolic-tipped bubble as Ca increases. We also characterize the mechanisms underlying the discontinuous transitions between asymmetric and double-tipped bubbles, and double-tipped and pointed bubbles. In particular, we find that the tube must reopen to a critical height for double-tipped bubbles to be selected. The length of the precursor fingers in the double-tipped bubble decreases with Ca, and the bubble loses stability to pointed bubbles when this length is less than the height of the tube at the point where the fingers merge. By contrast with the asymmetric and double-tipped bubbles, the pointed bubble infiltrates the most collapsed part of the tube to yield the rapid reopening of the airway at low pressure, with the potential to reduce ventilation-induced lung damage. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    Publication Date: 2009-08-25
    Description: Previous laboratory measurements on drag of tandem rigid bodies moving in viscous incompressible fluids found that a following body experienced less drag than a leading one. Very recently a laboratory experiment (Ristroph & Zhang, Phys. Rev. Lett., vol. 101, 2008) with deformable bodies (rubble threads) revealed just the opposite the leading body had less drag than the following one. The Reynolds numbers in the experiment were around 104. To find out how this qualitatively different phenomenon may depend on the Reynolds number, a series of numerical simulations are designed and performed on the interaction of a pair of tandem flexible flags separated by a dimensionless vertical distance (0≤ D≤ 5.5) in a flowing viscous incompressible fluid at lower Reynolds numbers (40≤ Re≤ 220) using the immersed boundary (IB) method. The dimensionless bending rigidity Ǩb and dimensionless flag mass density used in our work are as follows: 8.6 10 5 Ǩb 1.8 103, 0.8≤Mcaron;≤ 1.0. We obtain an interesting result within these ranges of dimensionless parameters: when Re is large enough so that the flapping of the two flags is self-sustained, the leading flag has less drag than the following one; when Re is small enough so that the flags maintain two nearly static line segments aligned with the mainstream flow, the following flag has less drag than the leading one. The transitional range of Re separating the two differing phenomena depends on the value of Ǩb. With Re in this range, both the flapping and static states are observed depending on the separation distance D. When D is small enough, the flags are in the static state and the following flag has less drag; when D is large enough the flags are in the constant flapping state and the leading flag has less drag. The critical value of D depends on Ǩb. © 2009 Copyright Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    Publication Date: 2009-08-25
    Description: The prevailing view of the dynamics of flapping flags is that the onset of motion is caused by temporal instability of the initial planar state. This view is re-examined by considering the linearized two-dimensional motion of a flag immersed in a high-Reynolds-number flow and taking account of forcing by a street of vortices shed periodically from its cylindrical pole. The zone of nominal instability is determined by analysis of the self-induced motion in the absence of shed vorticity, including the balance between flag inertia, bending rigidity, varying tension and fluid loading. Forced motion is then investigated by separating the flag deflection into vortex-induced and self components. The former is related directly to the motion that would be generated by the shed vortices if the flag were absent. This component serves as an inhomogeneous forcing term in the equation satisfied by the self motion. It is found that forced flapping is possible whenever the Reynolds number based on the pole diameter ReD≥ 100, such that a wake of distinct vortex structures is established behind the pole. Such conditions typically prevail at mean flow velocities significantly lower than the critical threshold values predicted by the linear theory. It is therefore argued that analyses of the onset of flag motion that are based on ideal, homogeneous flag theory are incomplete and that consideration of the pole-induced fluid flow is essential at all relevant wind speeds. © 2009 Copyright Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    Publication Date: 2009-08-26
    Description: We reconsider exact solutions to the Navier-Stokes equations that describe a vortex in a viscous, incompressible fluid. This type of solution was first introduced by Long (J. Atmos. Sci., vol. 15 (1), 1958, p. 108) and is parameterized by an inverse Reynolds number ε. Long's attention (and that of many subsequent investigators) was centred upon the quasi-cylindrical (QC) case corresponding to ε= 0. We show that the limit ε→0 is not straightforward, and that it reveals other solutions to this fundamental exact reduction of the NavierStokes system (which are not of QC form). Through careful numerical investigation, supported by asymptotic descriptions, we identify new solutions and describe the full parameter space that is spanned by and the pressure at the vortex core. Some erroneous results that exist in the literature are corrected. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    Publication Date: 2009-08-25
    Description: We consider the steady flow near a free surface at intermediate to high Reynolds numbers, both experimentally and theoretically. In our experiment, an axisymmetric capillary meniscus is suspended from a cylindrical tube, held slightly above a horizontal water surface. A flow of dyed water is released through the tube into the reservoir, and flow lines are thus recorded. At low Reynolds numbers, flow lines follow the free surface, and injected water spreads horizontally inside the container. Increasing the Reynolds number, the injected fluid penetrates to a certain distance into the bath, but ultimately follows the free surface. Above a critical Reynolds number of approximately 60, the flow separates from the free surface in the meniscus region and a jet projects vertically into the bath. We find no indication that the flow reattaches at higher Reynolds numbers, nor are our findings sensitive to surface contamination. We show theoretically and confirm experimentally that the separating streamline forms a right angle with the free surface. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2009-05-10
    Description: To reduce the costs of construction, operation, maintenance, energy storage and grid connection, some devices for extracting energy from sea waves are likely to be installed on the coast. We study theoretically a single oscillating water column (OWC) installed at the tip of a long and thin breakwater. The linearized problems of radiation and scattering for a hollow cylinder with an open bottom are then solved by the usual method of eigenfunction expansions and integral equations. Since a thin breakwater is the limit of a wedge, an exact solution for the diffraction by a solid cylinder at the tip of a wedge is derived to facilitate the analysis. Following Sarmento & Falcão (J. Fluid Mech., vol. 150, 1985, pp. 467-485), power takeoff by Wells turbines is modelled by including air compressibility in the chamber above the water surface. The effects of air compressibility on the extraction efficiency is studied. It is shown that for this simple geometry the angle of incidence affects the waves outside the structure but not the extracted power. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Publication Date: 2009-08-25
    Description: The wall-shear stress distribution in turbulent duct flow has been assessed using the micro-pillar shear-stress sensor MPS3 The spatial resolution of the sensor line is 10.8 l+ (viscous units) and the total field of view of 120 l+ along the spanwise direction allows to capture characteristic dimensions of the wall-shear stress distribution at sufficiently high resolution. The results show the coexistence of low-shear and high-shear regions representing 'footprints' of near-wall coherent structures. The regions of low shear resemble long meandering bands locally interrupted by areas of higher shear stress. Conditional averages of the flow field indicate the existence of nearly streamwise counter-rotating vortices aligned in the streamwise direction. The results further show periods of very strong spanwise wall-shear stress to be related to the occurrence of high streamwise shear regions and momentum transfer towards the wall. These events go along with a spanwise oscillation and a meandering of the low-shear regions. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 2009-08-25
    Description: The creeping motion of a hydrodynamically 'Janus' spherical particle, whose surface is partitioned into two distinct regions, is investigated. On one region, fluid adjacent to the particle obeys the no-slip condition, whereas on the other, fluid slips past the particle. The fore-aft asymmetry of this 'slip-stick' sphere (Swan & Khair, J. Fluid Mech., vol. 606, 2008, p. 115) leads to a number of interesting results when it is placed in different flows, which is illustrated by computing the particle motion to first order in the ratio of slip length to particle radius. For example, in a pure straining field the sphere attains an equilibrium orientation either along the compressional or extensional axis of the flow, depending on the ratio of slip-to-stick surface areas. In a simple shear flow, on the other hand, the slip-stick sphere undergoes a periodic rotational motion, or Jeffrey orbit. Moreover, depending on its initial orientation, the particle can either follow a periodic {translational} orbit or undergo a net displacement along the flow direction. Lastly, to first order in the volume fraction of slip-stick spheres, the suspension rheology is non-Newtonian, with non-zero first and second normal stress differences. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2009-07-27
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 2009-07-27
    Description: Recent microfluidic experiments by Bremond, Thiam & Bibette (Phys. Rev. Lett., vol. 100, 2008, paper no. 024501), along with simulations by Yoon et al. (Phys. Fluid, vol. 19, 2007, paper no. 102102) and near-contact experiments and simulations by Manica et al. (Langmuir, vol. 24, 2008, pp. 1381-1390), have demonstrated that two droplets can coalesce as they are separating rather than upon their collision. We analyse the experimental microfluidic flow configuration for the approach to contact with a two-dimensional model: we apply a lubrication analysis followed by the method of domain perturbation to determine the droplet deformation as a function of time. We find the approximate shape for the deformed droplet at the time of contact. In particular, for droplets of radius R, moving apart according to h0(t) = h0(0) + αt2, where 2h0(t) is the separation distance, we define a non-dimensional arameter A = 4 C μ R2α1/2/πγ[h0 (0)]3/2, where μ is the viscosity of the continuous phase; γ is the interfacial tension; and C depends on the viscosity ratio between the droplets and the continuous phase. Our model suggests that there exists a critical value Acrit = 16/33/2 ≈ 3.0792, below which separation is unlikely to facilitate the coalescence of the droplets. The predictions are in good agreement with available experimental data. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2009-07-27
    Description: Development of coherent structures in the separated shear layer and wake of an airfoil in low-Reynolds-number flows was studied experimentally for a range of airfoil chord Reynolds numbers, 55 × 103 ≤ Rec ≤ 210 × 103, and three angles of attack, α = 0°, 5° and 10°. To illustrate the effect of separated shear layer development on the characteristics of coherent structures, experiments were conducted for two flow regimes common to airfoil operation at low Reynolds numbers: (i) boundary layer separation without reattachment and (ii) separation bubble formation. The results demonstrate that roll-up vortices form in the separated shear layer due to the amplification of natural disturbances, and these structures play a key role in flow transition to turbulence. The final stage of transition in the separated shear layer, associated with the growth of a sub-harmonic component of fundamental disturbances, is linked to the merging of the roll-up vortices. Turbulent wake vortex shedding is shown to occur for both flow regimes investigated. Each of the two flow regimes produces distinctly different characteristics of the roll-up and wake vortices. The study focuses on frequency scaling of the investigated coherent structures and the effect of flow regime on the frequency scaling. Analysis of the results and available data from previous experiments shows that the fundamental frequency of the shear layer vortices exhibits a power law dependency on the Reynolds number for both flow regimes. In contrast, the wake vortex shedding frequency is shown to vary linearly with the Reynolds number. An alternative frequency scaling is proposed, which results in a good collapse of experimental data across the investigated range of Reynolds numbers. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2009-07-27
    Description: Global absolute and convective stability analysis of flow past a circular cylinder with symmetry conditions imposed along the centreline of the flow field is carried out. A stabilized finite element formulation is used to solve the eigenvalue problem resulting from the linearized perturbation equation. All the computations carried out are in two dimensions. It is found that, compared to the unrestricted flow, the symmetry conditions lead to a significant delay in the onset of absolute as well as convective instability. In addition, the onset of absolute instability is greatly affected by the location of the lateral boundaries and shows a non-monotonic variation. Unlike the unrestricted flow, which is associated with von Kármán vortex shedding, the flow with centreline symmetry becomes unstable via modes that are associated with low-frequency large-scale structures. These lead to expansion and contraction of the wake bubble and are similar in characteristics to the low-frequency oscillations reported earlier in the literature. A global linear convective stability analysis is utilized to find the most unstable modes for different speeds of the disturbance. Three kinds of convectively unstable modes are identified. The ones travelling at very low streamwise speed are associated with large-scale structures and relatively low frequency. Shear layer instability, with relatively smaller scale flow structures and higher frequency, is encountered for disturbances travelling at relatively larger speed. For low blockage a new type of instability is found. It travels at relatively high speed and resembles a swirling flow structure. As opposed to the absolute instability, the convective instability appears at much lower Re and its onset is affected very little by the location of the lateral boundaries. Analysis is also carried out for determining the convective stability of disturbances that travel in directions other than along the free stream. It is found that the most unstable disturbances are not necessarily the purely streamwise travelling ones. Disturbances that move purely in the cross-stream direction can also be convectively unstable. The results from the linear stability analysis are confirmed by carrying out direct time integration of the linearized disturbance equations. The disturbance field shows transient growth by several orders of magnitude confirming that such flows act as amplifiers. Direct time integration of the Navier-Stokes equation is carried out to track the time evolution of both the large-scale low-frequency oscillations and small-scale shear layer instabilities. The critical Re for the onset of convective instability is compared with earlier results from local analysis. Good agreement is found. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    Publication Date: 2009-07-27
    Description: Shear flows of inelastic spheres in three dimensions in the volume fraction range 0.4-0.64 are analysed using event-driven simulations. Particle interactions are considered to be due to instantaneous binary collisions, and the collision model has a normal coefficient of restitution en (negative of the ratio of the post- and pre-collisional relative velocities of the particles along the line joining the centres) and a tangential coefficient of restitution et (negative of the ratio of post- and pre-collisional velocities perpendicular to the line joining the centres). Here, we have considered both et = +1 and et = en (rough particles) and et = -1 (smooth particles), and the normal coefficient of restitution en was varied in the range 0.6-0.98. Care was taken to avoid inelastic collapse and ensure there are no particle overlaps during the simulation. First, we studied the ordering in the system by examining the icosahedral order parameter Q6 in three dimensions and the planar order parameter q6 in the plane perpendicular to the gradient direction. It was found that for shear flows of sufficiently large size, the system continues to be in the random state, with Q6 and q6 close to 0, even for volume fractions between φ = 0.5 and φ = 0.6; in contrast, for a system of elastic particles in the absence of shear, the system orders (crystallizes) at φ = 0.49. This indicates that the shear flow prevents ordering in a system of sufficiently large size. In a shear flow of inelastic particles, the strain rate and the temperature are related through the energy balance equation, and all time scales can be non-dimensionalized by the inverse of the strain rate. Therefore, the dynamics of the system are determined only by the volume fraction and the coefficients of restitution. The variation of the collision frequency with volume fraction and coefficient of restitution was examined. It was found, by plotting the inverse of the collision frequency as a function of volume fraction, that the collision frequency at constant strain rate diverges at a volume fraction φad (volume fraction for arrested dynamics) which is lower than the random close-packing volume fraction 0.64 in the absence of shear. The volume fraction φad decreases as the coefficient of restitution is decreased from en = 1; φad has a minimum of about 0.585 for coefficient of restitution en in the range 0.6-0.8 for rough particles and is slightly larger for smooth particles. It is found that the dissipation rate and all components of the stress diverge proportional to the collision frequency in the close-packing limit. The qualitative behaviour of the increase in the stress and dissipation rate are well captured by results derived from kinetic theory, but the quantitative agreement is lacking even if the collision frequency obtained from simulations is used to calculate the pair correlation function used in the theory. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2009-07-27
    Description: The distribution of relative velocities between colliding particles in shear flows of inelastic spheres is analysed in the volume fraction range 0.4-0.64. Particle interactions are considered to be due to instantaneous binary collisions, and the collision model has a normal coefficient of restitution en (negative of the ratio of the post- and pre-collisional relative velocities of the particles along the line joining the centres) and a tangential coefficient of restitution et (negative of the ratio of post- and pre-collisional velocities perpendicular to line joining the centres). The distributionof pre-collisional normal relative velocities (along the line joining the centres of the particles) is found to be an exponential distribution for particles with low normal coefficient of restitution in the range 0.6-0.7. This is in contrast to the Gaussian distribution for the normal relative velocity in an elastic fluid in the absence of shear. A composite distribution function, which consists of an exponential and a Gaussian component, is proposed to span the range of inelasticities considered here. In the case of rough particles, the relative velocity tangential to the surfaces at contact is also evaluated, and it is found to be close to a Gaussian distribution even for highly inelastic particles. Empirical relations are formulated for the relative velocity distribution. These are used to calculate the collisional contributions to the pressure, shear stress and the energy dissipation rate in a shear flow. The results of the calculation were found to be in quantitative agreement with simulation results, even for low coefficients of restitution for which the predictions obtained using the Enskog approximation are in error by an order of magnitude. The results are also applied to the flow down an inclined plane, to predict the angle of repose and the variation of the volume fraction with angle of inclination. These results are also found to be in quantitative agreement with previous simulations. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2009-07-17
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    Publication Date: 2009-07-27
    Description: Differential solar heating can result from shading by rooted emergent aquatic plants, producing a temperature difference between vegetated and unvegetated regions of a surface water body. This temperature difference will promote an exchange flow between the vegetation and open water. Drag associated with the submerged portion of the plants modifies this exchange, specifically, changing the dominant velocity scale. Scaling analysis predicts several distinct flow regimes, including inertia-dominated, drag-dominated and energy-limiting regimes. After a constant heat source is initiated, the flow is initially inertial, but quickly transitions to the drag-dominated regime. The energy-limiting regime is not likely to occur in the presence of rooted vegetation. Laboratory experiments describe the exchange flow and confirm the scaling analysis. Particle Imaging Velocimetry (PIV) was used to quantify the velocity field. Once the exchange flow enters the drag-dominated regime, the intrusion velocity uV is steady. The intrusion velocity decreases with increasing density of vegetation. The thickness of the intruding layer is set by the length scale of light penetration. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2009-07-17
    Description: A general method is suggested for deriving exact solutions to the Stokes equations in spherical geometries. The method is applied to derive exact solutions for a class of flows in and around a sphere or between concentric spheres, which are generated by meridional driving on the spherical boundaries. The resulting flow fields consist of toroidal eddies or pairs of counter-rotating toroidal eddies. For the concentric sphere case the exact solution when the inner sphere is in instantaneous translation is also derived. Although these solutions are axisymmetric, they can be combined with swirl about a different axis to generate fully three-dimensional fields described exactly by simple formulae. Examples of such complex fields are given. The solutions given here should be useful for, among other things, studying the mixing properties of three-dimensional flows. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    Publication Date: 2009-07-17
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2009-07-17
    Description: An experimental study is carried out to elucidate the structure of a high Reynolds number (∼105) turbulent pulsed jet. Particle image velocimetry measurements showed that the near flow field is dominated by a series of vortex rings with jet-like flows in between. The data show that the vortex rings convect at nearly constant speed of 0.6 Uj (Uj: mean jet exit velocity) and the spacing between the rings assumes a value of about 0.6/St (St: Strouhal number = fd/Uj, where f is the pulsing frequency and d is the nozzle exit diameter). With increasing Strouhal number, the rings are closely spaced and the flow tends to assume a steady jet character at five diameters downstream of the nozzle exit. At lower Strouhal numbers there is a distinct region of jet flow in between the rings. Many of the global characteristics, entrainment, mass and momentum flux are essentially determined by the strength and spacing of the rings which, in turn, depend on St. We show that the increase in momentum is due to both increased momentum flux and overpressure at the exit in accordance with Krueger & Gharib (AIAA J., vol. 43 (4), 2005, p. 792). This increase in momentum comes at the expense of higher energy required to produce the jet. We also present results of organized and random components of the fluctuations and production of the random turbulence in a pulsed jet. The two regions of dominant turbulence production are identified with the ring and the trailing jet shear layers. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    Publication Date: 2009-07-17
    Description: The hydrodynamics of a highly deformable fish pectoral fin used by a bluegill sunfish (Lepomis macrochirus) during steady forward swimming are examined in detail. Low-dimensional models of the fin gait based on proper orthogonal decomposition (POD) are developed, and these are subjected to analysis using an incompressible Navier - Stokes flow solver. The approach adopted here is primarily motivated by the quest to develop insights into the fin function and associated hydrodynamics, which are specifically useful for the design of a biomimetic, pectoral fin propulsor. The POD analysis shows that the complex kinematics of the pectoral fin can be described by a few (〈5) POD modes and that the first three POD modes are highly distinct. The significance of these modes for thrust production is examined by synthesizing a sequence of fin gaits from these modes and simulating the flow associated with these gaits. We also conduct a scale study of the pectoral fin in order to understand the effect of the two key non-dimensional parameters, Reynolds number and Strouhal number, on the propulsive performance. The implications of the POD analysis and performance scaling on the design of a robotic pectoral fin are discussed. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    Publication Date: 2009-07-27
    Description: Molecular mixing measurements are reported for a high-Schmidt-number (Sc ∼ 103), small-Atwood-number (A ≈ 7.5 × 10-4) buoyancy-driven turbulent Rayleigh-Taylor (RT) mixing layer in a water channel facility. Salt was added to the top water stream to create the desired density difference. The degree of molecular mixing was measured as a function of time by monitoring a diffusion-limited chemical reaction between the two fluid streams. The pH of each stream was modified by the addition of acid or alkali such that a local neutralization reaction occurred as the two fluids molecularly mixed. The progress of this neutralization reaction was tracked by the addition of phenolphthalein - a pH-sensitive chemical indicator - to the acidic stream. Accurately calibrated backlit optical techniques were used to measure the average concentration of the coloured chemical indicator. Comparisons of chemical product formation for pre-transitional buoyancy- and shear-driven mixing layers are given. It is also shown that experiments performed at different equivalence ratios (acid/alkali concentrations) can be combined to obtain a mathematical relationship between the coloured product formed and the density variance. This relationship was used to obtain high-fidelity quantitative measures of the degree of molecular mixing which are independent of probe resolution constraints. The dependence of molecular mixing on the Schmidt and Reynolds numbers is examined by comparing the current Sc ∼ 103 measurements with previous Sc = 0.7 gas-phase and Pr = 7 (where Pr is the Prandtl number) liquid-phase measurements. This comparison indicates that the Schmidt number has a large effect on the quantity of mixed fluid at small Reynolds numbers Reh 〈 103. At larger Reynolds numbers, corresponding to later times in this experiment, all mixing parameters indicated a greater degree of molecular mixing and a decreased Schmidt number dependence. Implications for the development and quantitative assessment of turbulent transport and mixing models appropriate for RT instability-induced mixing are discussed. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Publication Date: 2009-07-27
    Description: A linear study is carried out for the axisymmetric and non-axisymmetric instability of a viscous coaxial jet in a radial electric field. The outer liquid is considered to be a leaky dielectric and the inner a perfect dielectric. The generalized eigenvalue problem is solved and the growth rate of disturbance is obtained by using Chebyshev spectral collocation method. The effects of the radial electric field, liquid viscosity, surface tension as well as other parameters on the instability of the jet are investigated. The radial electric field is found to have a strong destabilizing effect on non-axisymmetric modes, especially those having smaller azimuthal wavenumbers. The helical mode becomes prevalent over other modes when the electric field is sufficiently large. Non-axisymmetric modes with high azimuthal wavenumbers may be the most unstable at zero wavenumber. Liquid viscosity has a strong stabilizing effect on both the axisymmetric and non-axisymmetric instability. Relatively, the helical instability is less suppressed and therefore becomes predominant at high liquid viscosity. Surface tension promotes the instability of the para-sinuous mode and meanwhile suppresses the helical and the other non-axisymmetric modes in long wavelength region. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    Publication Date: 2009-07-17
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Publication Date: 2009-07-27
    Description: This paper is a direct sequel to Bewley & Aamo (J. Fluid Mech., vol. 499, 2004, pp. 183-196). It was conjectured in that paper, based on the numerical evidence available at that time, that the minimum drag of a constant mass flux channel flow might in fact be that of the laminar flow. This conjecture turned out to be false; Min et al. (J. Fluid Mech., vol. 558, 2006, 309318) discovered a curious control strategy which in fact reduces the time-averaged drag to sub-laminar levels. The present paper establishes rigorously that the power of the control input applied at the walls is always larger than the power saved (due to drag reduction below the laminar level) for any possible control distribution, including that proposed by Min et al. (2006), thus establishing that, energetically (that is accounting for the power saved due to drag reduction and the power exerted by application of the control), the optimal control solution is necessarily to relaminarize the flow. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    Publication Date: 2009-07-17
    Description: We consider the solution in the time domain of water-wave scattering by arrays of bottom-mounted cylinders. It has already been shown that near trapping occurs for certain arrangements of cylinders and we are especially focused on this phenomenon. We begin with the well-known single-frequency solution to the problem of a group of cylinders, and the extension of this solution to complex frequencies. It has been shown that singularities (scattering frequencies or resonances) occur for certain values of the complex frequency and these singularities are associated with the near-trapped mode. We show that it is possible to approximate the solution near these singularities, and produce a modal shape which is associated with the near-trapped mode. We then consider the time-dependent problem, beginning with the well-known incident plane wave packet solution. We also show how the problem of an arbitrary initial displacement can be found using the single-frequency solutions. This latter result relies on a special inner product which gives a generalized eigenfunction expansion (because the operator has a continuous spectrum). We then consider the approximation of the time-dependent motion using special mode shapes associated with the scattering frequencies. This approximation relies on the scattering frequencies lying close to the real axis. We present numerical results which show that this approximation is accurate for sufficiently large time. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    Publication Date: 2009-07-17
    Description: The development of instabilities under the joint action of the van der Waals forces and Marangoni stresses in a two-layer film in the presence of an inclined temperature gradient is investigated. The problem is solved by means of a linear stability theory and nonlinear simulations. It has been found that for sufficiently large values of the ratio between the longitudinal and transverse Marangoni numbers, the real part of the linear growth rate does not depend on the direction of the wavenumber, except the case of nearly longitudinal disturbances. Numerous types of nonlinear evolution have been observed, among them are ordered systems of droplets, 'splashes', oblique waves, modulated transverse and longitudinal structures. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    Publication Date: 2009-12-10
    Description: We investigate thermally driven convection in a rotating spherical shell subject to inhomogeneous heating on the outer boundary, extending previous results to more rapid rotation rates and larger amplitudes of the boundary heating. The analysis explores the conditions under which steady flows can be obtained, and the stability of these solutions, for two boundary heating modes: first, when the scale of the boundary heating corresponds to the most unstable mode of the homogeneous problem; second, when the scale is larger. In the former case stable steady solutions exhibit a two-layer flow pattern at moderate rotation rates, but at very rapid rotation rates no steady solutions exist. In the latter case, stable steady solutions are always possible, and unstable solutions show convection rolls that cluster into nests that are out of phase with the boundary anomalies and remain trapped for many thermal diffusion times. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    Publication Date: 2009-12-24
    Description: We report direct numerical simulation (DNS) and large-eddy simulation (LES) of statistically stationary buoyancy-driven turbulent mixing of an active scalar. We use an adaptation of the fringe-region technique, which continually supplies the flow with unmixed fluids at two opposite faces of a triply periodic domain in the presence of gravity, effectively maintaining an unstably stratified, but statistically stationary flow. We also develop a new method to solve the governing equations, based on the HelmholtzHodge decomposition, that guarantees discrete mass conservation regardless of iteration errors. Whilst some statistics were found to be sensitive to the computational box size, we show, from inner-scaled planar spectra, that the small scales exhibit similarity independent of Reynolds number, density ratio and aspect ratio. We also perform LES of the present flow using the stretched-vortex subgrid-scale (SGS) model. The utility of an SGS scalar flux closure for passive scalars is demonstrated in the present active-scalar, stably stratified flow setting. The multi-scale character of the stretched-vortex SGS model is shown to enable extension of some second-order statistics to subgrid scales. Comparisons with DNS velocity spectra and velocity-density cospectra show that both the resolved-scale and SGS-extended components of the LES spectra accurately capture important features of the DNS spectra, including small-scale anisotropy and the shape of the viscous roll-off. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    Publication Date: 2009-12-24
    Description: A study of the flow past an oscillatory rotating cylinder has been conducted, where the frequency of oscillation has been matched to the natural frequency of the vortex street generated in the wake of a stationary cylinder, at Reynolds number 300. The focus is on the wake transition to three-dimensional flow and, in particular, the changes induced in this transition by the addition of the oscillatory rotation. Using Floquet stability analysis, it is found that the fine-scale three-dimensional mode that typically dominates the wake at a Reynolds number beyond that at the second transition to three-dimensional flow (referred to as mode B) is suppressed for amplitudes of rotation beyond a critical amplitude, in agreement with past studies. However, the rotation does not suppress the development of three-dimensionality completely, as other modes are discovered that would lead to three-dimensional flow. In particular, the longer-wavelength mode that leads the three-dimensional transition in the wake of a stationary cylinder (referred to as mode A) is left essentially unaffected at low amplitudes of rotation. At higher amplitudes of oscillation, mode A is also suppressed as the two-dimensional near wake changes in character from a single-to a double-row wake; however, another mode is predicted to render the flow three-dimensional, dubbed mode D (for double row). This mode has the same spatio-temporal symmetries as mode A. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    Publication Date: 2009-12-23
    Description: The present paper is devoted to the formation of sand patterns by laminar flows. It focuses on the rhomboid beach pattern, formed during the backswash. A recent bedload transport model, based on a moving-grains balance, is generalized in three dimensions for viscous flows. The water flow is modelled by the full incompressible NavierStokes equations with a free surface. A linear stability analysis then shows the simultaneous existence of two distinct instabilities, namely ripples and bars. The comparison of the bar instability characteristics with laboratory rhomboid patterns indicates that the latter could result from the nonlinear evolution of unstable bars. This result, together with the sensibility of the stability analysis with respect to the parameters of the transport law, suggests that the rhomboid pattern could help improving sediment transport models, so critical to geomorphologists. © 2010 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    Publication Date: 2009-12-24
    Description: We consider the propagation of a non-Boussinesq gravity current in an axisymmetric configuration (full cylinder or wedge). The current of density c is released from rest from a lock of radius r0 and height h0 into an ambient fluid of density a in a container of height H. When the Reynolds number is large, the resulting flow is governed by the parameters pc/pa and H* = H/h 0. We show that the one-layer shallow-water model, carefully combined with a Benjamin-type front condition, provides a versatile formulation for the thickness and speed of the current, without any adjustable constants. The results cover in a continuous manner the range of light pc/pa〈1, Boussinesq pc/pa≈1, and heavy pc/pa*GT;1 currents in a fairly wide range of depth ratio, H*. We obtain finite-difference solutions for the propagation and show that a self-similar behaviour develops for large times. This reveals the main features, in particular: (a) The heavy current propagates faster and its front is thinner than that for the light counterpart; (b) For large time, t, both the heavy and light currents spread like t1/2, but the thickness profiles display significant differences; (c) The energy-constrained propagation with the thickness of half-ambient-depth (when H* is close to 1) is a very limited occurrence, in contrast to the rectangular geometry counterpart in which this effect plays a major role. The predictions of the simple model are supported by some axisymmetric NavierStokes finite-difference simulations. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Publication Date: 2009-12-23
    Description: The boundary value problem for the nonlinear shallow-water equations with a beach source term is solved by direct use of physical variables, so that solutions are more easily inspected than those obtained by means of hodograph transformations. Beyond an overall description of the near-shoreline flows in terms of the nonlinear shallow-water equations, significant results are provided by means of a perturbation approach which enables much of the information on the flow to be retained. For sample waves of interest (periodic and solitary), first-order solutions of the shoreline motion and of the near-shoreline flows are computed, illustrated and successfully compared with the equivalent ones obtained through a hodograph transformation method previously developed by the authors. Wavewave interaction, both at the seaward boundary and within the domain, is also accurately described. Analytical conditions for wave breaking within the domain are provided. These, compared with the authors' hodograph model, show that the first-order condition of the present model is comparable to the second-order condition of that model. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    Publication Date: 2009-12-23
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    Publication Date: 2009-12-17
    Description: A numerical study based on large eddy simulation is performed to investigate a bottom boundary layer under an oscillating tidal current. The focus is on the boundary layer response to an external stratification. The thermal field shows a mixed layer that is separated from the external stratified fluid by a thermocline. The mixed layer grows slowly in time with an oscillatory modulation by the tidal flow. Stratification strongly affects the mean velocity profiles, boundary layer thickness and turbulence levels in the outer region although the effect on the near-bottom unstratified fluid is relatively mild. The turbulence is asymmetric between the accelerating and decelerating stages. The asymmetry is more pronounced with increasing stratification. There is an overshoot of the mean velocity in the outer layer; this jet is linked to the phase asymmetry of the Reynolds shear stress gradient by using the simulation data to examine the mean momentum equation. Depending on the height above the bottom, there is a lag of the maximum turbulent kinetic energy, dissipation and production with respect to the peak external velocity and the value of the lag is found to be influenced by the stratification. Flow instabilities and turbulence in the bottom boundary layer excite internal gravity waves that propagate away into the ambient. Unlike the steady case, the phase lines of the internal waves change direction during the tidal cycle and also from near to far field. The frequency spectrum of the propagating wave field is analysed and found to span a narrow band of frequencies clustered around 45. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    Publication Date: 2009-12-02
    Description: Taylor's hypothesis, relating temporal to spatial fluctuations in turbulent flows is investigated using powerful numerical computations by del lamo & Jimnez (J. Fluid Mech., 2009, this issue, vol. 640, pp. 526). Their results cast doubt on recent interpretations of bimodal spectra in relation to very large-scale turbulent structures in experimental measurements in turbulent shear flows. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    Publication Date: 2009-11-25
    Description: Steady dipolar vortices continuously driven by electromagnetic forcing in a shallow layer of an electrolytic fluid are studied experimentally and theoretically. The driving Lorentz force is generated by the interaction of a dc uniform electric current injected in the thin layer and the non-uniform magnetic field produced by a small dipolar permanent magnet (0.33 T). Laminar velocity profiles in the neighbourhood of the zone affected by the magnetic field were obtained with particle image velocimetry in planes parallel and normal to the bottom wall. Flow planes at different depths of the layer were explored for injected currents ranging from 10 to 100 mA. Measurements of the boundary layer attached to the bottom wall reveal that owing to the variation of the field in the normal direction, a slightly flattened developing profile with no shear stresses at the free surface is formed. A quasi-two-dimensional magnetohydrodynamic numerical model that introduces the non-uniformity of the magnetic field, particularly its decay in the normal direction, was developed. Vertical diffusion produced by the bottom friction was modelled through a linear friction term. The model reproduces the main characteristic behaviour of the electromagnetically forced flow. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    Publication Date: 2009-12-01
    Description: Wall-bounded turbulence in pressure gradients is studied using direct numerical simulation (DNS) of a CouettePoiseuille flow. The motivation is to include adverse pressure gradients, to complement the favourable ones present in the well-studied Poiseuille flow, and the central question is how the scaling laws react to a gradient in the total shear stress or equivalently to a pressure gradient. In the case considered here, the ratio of local stress to wall stress, namely τ+, ranges from roughly 2/3 to 3/2 in the wall region. By this we mean the layer believed not to be influenced by the opposite wall and therefore open to simple, universal behaviour. The normalized pressure gradients p+≡dτ+/dy+ at the two walls are 0.00057 and +0.0037. The outcome is in broad agreement with the findings of Galbraith, Sjolander & Head (Aeronaut. Quart. vol. 27, 1977, pp. 229242) relating to boundary layers (based on measured profiles): the logarithmic velocity profile is much more resilient than two other, equally plausible assumptions, namely universality of the mixing length l = y and that of the eddy viscosity vt = uτy. In pressure gradients, with τ+≠ 1, these three come into conflict, and our primary purpose is to compare them. We consider that the Krmn constant is unique but allow a range from 0.38 to 0.41, consistent with the current debates. It makes a minor difference in the interpretation. This finding of resilience appears new as a DNS result and is free of the experimental uncertainty over skin friction. It is not as distinct in the (rather strong) adverse gradient as it is in the favourable one; for instance the velocity U+ at y+ = 50 is lower by 3% on the adverse gradient side. A plausible cause is that the wall shear stress is small and somewhat overwhelmed by the stress and kinetic energy in the bulk of the flow. The potential of a correction to the law of the wall based purely on p+ is examined, with mixed results. We view the preference for the log law as somewhat counter-intuitive in that the scaling law is non-local but also as becoming established and as highly relevant to turbulence modelling. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Publication Date: 2009-11-23
    Description: For the Rayleigh-number range 107 ≲ Ra ≲ 10 11 we report measurements of the Nusselt number Nu and of properties of the large-scale circulation (LSC) for cylindrical samples of helium gas (Prandtl number Pr = 0.674) that have aspect ratio γ ≡ D/L = 0.50 (D and L are the diameter and the height respectively) and are heated from below. The results for Nu are consistent with recent direct numerical simulations. We measured the amplitude σ of the azimuthal temperature variation induced by the LSC at the sidewall, and the LSC circulation-plane orientation θ0, at three vertical positions. For the entire Ra range the LSC involves a convection roll that is coherent over the height of the system. However, this structure frequently collapses completely at irregular time intervals and then reorganizes from the incoherent flow. At σ small the probability distribution p(σ) increases linearly from zero; for θ= 1 and Pr = 4.38 this increase is exponential. No evidence of a two-roll structure, with one above the other, was observed. This differs from recent direct numerical simulations for θ= 0.5 and Pr = 0.7, where a one-roll LSC was found to exist only for Ra ≲ 109 to 1010, and from measurements for θ = 0.5 and Pr ̃ 5, where one-and two-roll structures were observed with transitions between them at random time intervals. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    Publication Date: 2009-11-23
    Description: Do tidal channels have a characteristic length? Given the sediment characteristics, the inlet conditions and the degree of channel convergence, can we predict it? And how is this length affected by the presence of tidal flats adjacent to the channel? We answer the above questions on the basis of a fully analytical treatment, appropriate for the short channels typically observed in coastal wetlands. The equilibrium length of non-convergent tidal channels is found to be proportional to the critical flow speed for channel erosion. Channel convergence causes concavity of the bed profile. Tidal flats shorten equilibrium channels significantly. Laboratory and field observations substantiate our findings. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    Publication Date: 2009-11-16
    Description: A recent experiment has shown inverted drafting in flags: the drag force on one flag is increased by excitation from the wake of another. Here we use vortex sheet simulations to show that inverted drafting occurs when the flag wakes add coherently to form strong vortices. By contrast, normal drafting occurs for higher frequency oscillations, when the vortex wake becomes more complex and mixed on the scale of the flag. The types of drafting and dynamics (synchronization and erratic flapping) depend on the separation distance between the flags. For both tandem and side-by-side flags in synchronized flapping, the phase difference depends nearly monotonically on separation distance. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Publication Date: 2009-11-19
    Description: Stirring and sedimentation of solid inertial particles in low-Reynolds-number flows has acquired great relevance in multiple environmental, industrial and microfluidic systems, but few detailed numerical studies have focused on chaotically advected experimentally realizable flows. We carry out one-way coupling simulations to study the dynamics of inertial particles in the steady three-dimensional flow in a cylindrical container with exactly counter-rotating lids, which was recently studied by Lackey & Sotiropoulos (Phys. Fluids, vol. 18, 2006, paper no. 053601). We elucidate the rich Lagrangian dynamics of the flow in the vicinity of toroidal invariant regions and show that depending on the Stokes number inertial particles could get trapped for long times in different equilibrium positions inside integrable islands. In the chaotically advected region of the flow the balance between inertia and gravity forces (represented by the settling velocity) can produce a striking fractal sedimentation regime, characterized by a sequence of discrete deposition events of seemingly random number of particles separated by hiatuses of random duration. The resulting staircase-like distribution of the time series of the number of particles in suspension is shown to be a devil's staircase whose fractal dimension is equal to the 0.87 value found in multiple dissipative dynamical systems in nature. Our work sheds new light on the complex mechanisms governing the stirring and deposition of inertial particles and provides new information about the parameters that are relevant in the characterization of particle dynamics in different regions of chaotically advected flows. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    Publication Date: 2009-11-16
    Description: We report the first experimental observation of a bistable dynamo regime. A turbulent flow of liquid sodium is generated between two disks in the von Krmn geometry (VKS experiment). When one disk is kept at rest, bistability is observed between a stationary and an oscillatory magnetic field. The stationary and oscillatory branches occur in the vicinity of a codimension-two bifurcation that results from the coupling between two modes of magnetic field. We present an experimental study of the two regimes and study in detail the region of bistability that we understand in terms of dynamical system theory. Despite the very turbulent nature of the flow, the bifurcations of the magnetic field are correctly described by a low-dimensional model. In addition, the different regimes are robust; i.e. turbulent fluctuations do not drive any transition between the oscillatory and stationary states in the region of bistability. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    Publication Date: 2009-11-16
    Description: Measurements of fluctuations and convection patterns in horizontal layers of fluid heated from below and near the onset of RayleighBnard convection (RBC) are reported under conditions where the fluid properties vary strongly over the temperature range δT = Tb-Tt (Tb and Tt are the temperatures at the bottom and top of the sample, respectively). To facilitate a comparison with the data, the theory of Busse (J. Fluid Mech., vol. 30, 1967, p. 625) of these so called non-OberbeckBoussinesq (NOB) effects, which applies to the case of relatively weak (and linear) temperature dependences, was extended to arbitrary variations with temperature. It is conceptually useful to divide the variations with temperature of the fluid properties into two disjunct parts. One part is chosen so that it preserves the reflection symmetry of the system about the horizontal midplane, while the remainder breaks that symmetry. The latter, exclusively considered by Busse, leads (in contrast to the formation of the typical convection rolls in RBC) to hexagons immediately above the transition to convection at the critical temperature difference δTc. The symmetric part, on the other hand, does not prevent the bifurcation to rolls, but may become very important for the determination of δTc. In the experiment the fluid was sulfur hexafluoride at temperatures above but close to the gasliquid critical point, where all fluid properties vary strongly with temperature. All measurements were done along isobars by varying δT. Patterns were observed above onset (δT ≥ δTc), while for the conduction state at δT 〈 δTc there were only fluctuations induced by Brownian motion. When the mean temperature Tm = (Tb + Tt)/2 was such that the density at Tm was equal to the critical density*, the mirror symmetry about the horizontal midplane of the sample was essentially preserved. In that case, as expected, we found a direct transition to rolls and the critical temperature difference δTc was considerably shifted compared to the critical value δTc,OB in the absence of NOB effects. When, on the other hand, Tm was not located on the critical isochore, the NOB effects broke the reflection symmetry and led to a hysteretic transition from fluctuations to hexagonal patterns. In this latter case the hexagonal pattern, the observed hysteresis at onset and the transition from hexagons to rolls at larger δT were consistent with the classical predictions by Busse. © 2010 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    Publication Date: 2009-11-12
    Description: The electrical streaming potential generated by a two-phase pressure-driven Stokes flow in a cylindrical capillary is computed numerically. The potential difference δφbetween the two ends of the capillary, proportional to the pressure difference p δp for single-phase flow, is modified by the presence of a suspended drop on the centreline of the capillary. We determine the change in δφcaused by the presence of an uncharged insulating neutrally buoyant drop at a small electric Hartmann number, i.e. when the perturbation to the flow field caused by electric stresses is negligible. The drop velocity and deformation, and the consequent changes in the pressure difference δp and streaming potential δφ, depend upon three independent parameters: the size a of the undeformed drop relative to the radius R of the capillary; the viscosity ratio between the drop phase and the continuous phase; and the capillary number Ca which measures the ratio of viscous to capillary forces. We investigate how the streaming potential depends on these parameters: purely hydrodynamic aspects of the problem are discussed by Lac & Sherwood (J. Fluid Mech., doi:10.1017/S0022112009991212). The potential on the capillary wall is assumed sufficiently small so that the electrical double layer is described by the linearized PoissonBoltzmann equation. The Debye length characterizing the thickness of the charge cloud is taken to be small compared with all other length scales, including the width of the gap between the drop and the capillary wall. The electric potential satisfies Laplace's equation, which we solve by means of a boundary integral method. The presence of the drop increases |δφ| when the drop is more viscous than the surrounding fluid (λ〉 1), though the change in |δφ| can take either sign for λ〈 1. However, the difference between δφ and δp (suitably non-dimensionalized) is always positive. Asymptotic predictions for the streaming potential in the case of a vanishingly small spherical droplet, and for large drops at high capillary numbers, agree well with computations. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Publication Date: 2009-10-27
    Description: The classical problem of Taylor (Proc. Lond. Math. Soc., vol. 20, 1921, pp. 148181) of Kelvin wave reflection in a semi-enclosed rectangular basin of uniform depth is extended to account for horizontally viscous effects. To this end, we add horizontally viscous terms to the hydrodynamic model (linearized depth-averaged shallow-water equations on a rotating plane, including bottom friction) and introduce a no-slip condition at the closed boundaries. In a straight channel of infinite length, we obtain three types of wave solutions (normal modes). The first two wave types are viscous Kelvin and Poincar modes. Compared to their inviscid counterparts, they display longitudinal boundary layers and a slight decrease in the characteristic length scales (wavelength or along-channel decay distance). For each viscous Poincar mode, we additionally find a new mode with a nearly similar lateral structure. This third type, entirely due to viscous effects, represents evanescent waves with an along-channel decay distance bounded by the boundary-layer thickness. The solution to the viscous Taylor problem is then written as a superposition of these normal modes: an incoming Kelvin wave and a truncated sum of reflected modes. To satisfy no slip at the lateral boundary, we apply a Galerkin method. The solution displays boundary layers, the lateral one at the basin's closed end being created by the (new) modes of the third type. Amphidromic points, in the inviscid and frictionless case located on the centreline of the basin, are now found on a line making a small angle to the longitudinal direction. Using parameter values representative for the Southern Bight of the North Sea, we finally compare the modelled and observed tide propagation in this basin. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    Publication Date: 2009-10-27
    Description: The transport of momentum and a passive scalar (temperature) in a three-dimensional transitional wake of a heated square cylinder has been carried out through direct numerical simulations using the lattice Boltzmann method at a Reynolds number Rd = 200 (d is the cylinder diameter) and a Prandlt number of 0.7. The simulations shows that while momentum and heat are transported by vortical structures, heat is in general more effectively transported than momentum. It is argued that the nature of the structural flow is responsible for the longitudinal heat flux uø being larger than the lateral one øv in the wake region extending up to 45d. It was shown that a gradient transport model could, to a first-order approximation, be used to model uv but would be less accurate for modelling v. Also the Reynolds analogy between momentum and heat transports is not verified in this flow. The fluctuating temperature field presents thermal structures similar to the velocity structures with, however, a different spatial organization. In addition the analogy between fluctuating turbulent kinetic energy and the temperature variance is relatively well satisfied throughout the wake flow. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    Publication Date: 2009-10-21
    Description: The non-uniqueness of Zakharov's kernel T(ka, kb, ka, kb) for gravity waves in water of finite depth is resolved. This goal is achieved by the physical insight gained from the study of the induced mean flow generated by two interacting wavetrains. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    Publication Date: 2009-11-02
    Description: Embedding colloidal particles in polymeric hydrogels often endows the polymer skeleton with appealing characteristics for microfluidics and biosensing applications. This theoretical study provides a rigorous foundation for interpreting active electrical microrheology and electroacoustic experiments on such materials. In addition to viscoelastic properties of the composites, these techniques sense physicochemical characteristics of the particlepolymer interface. Wang & Hill (Soft Matter, vol. 4, 2008, p. 1048) studied the steady response of a rigid, impenetrable sphere in a compressible hydrogel skeleton. Here, we extend their analysis to arbitrary frequencies, showing, in general, how the frequency response depends on the particle size and charge, ionic strength of the electrolyte and elastic and hydrodynamic characteristics of the polymer skeleton. Our calculations capture the transition from quasi-steady compressible to quasi-steady incompressible dynamics as the frequency passes through the reciprocal draining time of the gel. Above the reciprocal draining time, the skeleton and fluid move in unison, so the dynamics are incompressible and, thus, given to an excellent approximation by the well-known dynamic electrophoretic mobility but with the Newtonian shear viscosity replaced by a complex, frequency-dependent value. © 2009 Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    Publication Date: 2009-10-20
    Description: The response of the Blasius boundary layer to free-stream vortical disturbances of the convected gust type is studied. The vorticity signature of the boundary layer is computed through the boundary-region equations, which are the rigorous asymptotic limit of the NavierStokes equations for low-frequency disturbances. The method of matched asymptotic expansion is employed to obtain the initial and outer boundary conditions. For the case of forcing by a two-dimensional gust, the effect of a wall-normal wavelength comparable with the boundary-layer thickness is taken into account. The gust viscous dissipation and upward displacement due to the mean boundary layer produce significant changes on the fluctuations within the viscous region. The same analysis also proves useful for computing to second-order accuracy the boundary-layer response induced by a three-dimensional gust with spanwise wavelength comparable with the boundary-layer thickness. It also follows that the boundary-layer fluctuations of the streamwise velocity match the corresponding free-stream velocity component. The velocity profiles are compared with experimental data, and good agreement is attained. The generation of TollmienSchlichting waves by the nonlinear mixing between the two-dimensional unsteady vorticity fluctuations and the mean flow distortion induced by localized wall roughness and suction is also investigated. Gusts with small wall-normal wavelengths generate significantly different amplitudes of the instability waves for a selected range of forcing frequencies. This is primarily due to the disparity between the streamwise velocity fluctuations in the free stream and within the boundary layer. © 2009 Copyright Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    Publication Date: 2009-10-01
    Description: In agreement with a recent experimental discovery by Xi et al. (Phys. Rev. Lett., vol. 102, 2009, paper no. 044503), we also find a sloshing mode in experiments on the large-scale circulation (LSC) of turbulent RayleighBnard convection in a cylindrical sample of aspect ratio one. The sloshing mode has the same frequency as the torsional oscillation discovered by Funfschilling & Ahlers (Phys. Rev. Lett., vol. 92, 2004, paper no. 1945022004). We show that both modes can be described by an extension of a model developed previously Brown & Ahlers (Phys. Fluids, vol. 20, 2008, pp. 105105-1105105-15; Phys. Fluids, vol. 20, 2008, pp. 075101-1075101-16). The extension consists of permitting a lateral displacement of the LSC circulation plane away from the vertical centreline of the sample as well as a variation of the displacement with height (such displacements had been excluded in the original model). Pressure gradients produced by the sidewall of the container on average centre the plane of the LSC so that it prefers to reach its longest diameter. If the LSC is displaced away from this diameter, the walls provide a restoring force. Turbulent fluctuations drive the LSC away from the central alignment, and combined with the restoring force they lead to oscillations. These oscillations are advected along with the LSC. This model yields the correct wavenumber and phase of the oscillations, as well as estimates of the frequency, amplitude and probability distributions of the displacements. © 2009 Copyright Cambridge University Press.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...