ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell & Developmental Biology  (25,032)
  • Chemical Engineering  (17,982)
  • 101
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 214-219 
    ISSN: 0730-2312
    Keywords: nucleus ; nuclear envelope ; nuclear export ; nuclear import ; regulation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The control of transcription and translation is of fundamental importance in cell biology. In this regard, the nuclear envelope is in a unique position to contribute to the regulation of these events, by directing macromolecular exchanges between the nucleus and cytoplasm. Such exchanges occur through the nuclear pore complexes, mainly by signal-mediated processes. Different signals are required for import and export. Specific cytoplasmic or nuclear receptors initially bind the signal-containing substrate, and the complex subsequently interacts with the pores. Additional factors then assist in translocation across the envelope. Current research is focused mainly on further characterization of transport receptors, translocation factors, as well as components of the nuclear pore complex, i.e., the nucleoporins. The ultimate goal is to understand the molecular interactions that occur among the different components of the transport apparatus, the energy sources for transport, and how variations in transport capacity are generated. J. Cell. Biochem. Suppls. 30/31:214-219, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 220-231 
    ISSN: 0730-2312
    Keywords: nuclear architecture ; gene expression ; tumor cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Functional interrelationships between components of nuclear architecture and control of gene expression are becoming increasingly evident. There is growing appreciation that multiple levels of nuclear organization integrate the regulatory cues that support activation and suppression of genes as well as the processing of gene transcripts. The linear organization of genes and promoter elements provide the potential for responsiveness to physiological regulatory signals. Parameters of chromatin structure and nucleosome organization support synergism between activities at independent regulatory sequences and render promoter elements accessible or refractory to transcription factors. Association of genes, transcription factors, and the machinery for transcript processing with the nuclear matrix facilitates fidelity of gene expression within the three-dimensional context of nuclear architecture. Mechanisms must be defined that couple nuclear morphology with enzymatic parameters of gene expression. The recent characterization of factors that mediate chromatin remodeling and intranuclear targeting signals that direct transcription factors to subnuclear domains where gene expression occurs, reflect linkage of genetic and structural components of transcriptional control. Nuclear reorganization and aberrant intranuclear trafficking of transcription factors for developmental and tissue-specific control that occurs in tumor cells and in neurological disorders provides a basis for high resolution diagnostics and targeted therapy. J. Cell. Biochem. Suppls. 30/31:220-231, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 232-237 
    ISSN: 0730-2312
    Keywords: cytoskeleton, mechanotransduction, integrins, cell architecture, tensegrity ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The field of molecular cell biology has experienced enormous advances over the last century by reducing the complexity of living cells into simpler molecular components and binding interactions that are amenable to rigorous biochemical analysis. However, as our tools become more powerful, there is a tendency to define mechanisms by what we can measure. The field is currently dominated by efforts to identify the key molecules and sequences that mediate the function of critical receptors, signal transducers, and molecular switches. Unfortunately, these conventional experimental approaches ignore the importance of supramolecular control mechanisms that play a critical role in cellular regulation. Thus, the significance of individual molecular constituents cannot be fully understood when studied in isolation because their function may vary depending on their context within the structural complexity of the living cell. These higher-order regulatory mechanisms are based on the cell's use of a form of solid-state biochemistry in which molecular components that mediate biochemical processing and signal transduction are immobilized on insoluble cytoskeletal scaffolds in the cytoplasm and nucleus. Key to the understanding of this form of cellular regulation is the realization that chemistry is structure and hence, recognition of the importance of architecture and mechanics for signal integration and biochemical control. Recent work that has unified chemical and mechanical signaling pathways provides a glimpse of how this form of higher-order cellular control may function and where paths may lie in the future. J. Cell. Biochem. Suppls. 30/31:232-237, 1998. © 1998 Wiley-Liss, Inc.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 250-263 
    ISSN: 0730-2312
    Keywords: signal transduction ; cell adhesion complexes ; membrane skeleton ; nucleo-cytoplasmic translocation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Understanding how the information is conveyed from outside to inside the cell is a critical challenge for all biologists involved in signal transduction. The flow of information initiated by cell-cell and cell-extracellular matrix contacts is mediated by the formation of adhesion complexes involving multiple proteins. Inside adhesion complexes, connective membrane skeleton (CMS) proteins are signal transducers that bind to adhesion molecules, organize the cytoskeleton, and initiate biochemical cascades. Adhesion complex-mediated signal transduction ultimately directs the formation of supramolecular structures in the cell nucleus, as illustrated by the establishment of multi complexes of DNA-bound transcription factors, and the redistribution of nuclear structural proteins to form nuclear subdomains. Recently, several CMS proteins have been observed to travel to the cell nucleus, suggesting a distinctive role for these proteins in signal transduction. This review focuses on the nuclear translocation of structural signal transducers of the membrane skeleton and also extends our analysis to possible translocation of resident nuclear proteins to the membrane skeleton. This leads us to envision the communication between spatially distant cellular compartments (i.e., membrane skeleton and cell nucleus) as a bidirectional flow of information (a dynamic reciprocity) based on subtle multilevel structural and biochemical equilibria. At one level, it is mediated by the interaction between structural signal transducers and their binding partners, at another level it may be mediated by the balance and integration of signal transducers in different cellular compartments. J. Cell. Biochem. Suppls. 30/31:250-263, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 284-285 
    ISSN: 0730-2312
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: No abstract.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 297-303 
    ISSN: 0730-2312
    Keywords: tissue engineering ; biomaterials ; cell culture ; polymers ; transplants ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: This article reviews the important developments in the field of tissue engineering over the last 10 years. Research in the area of biomaterials is examined from the perspective of providing the foundation for the development of tissue engineering. Early efforts combining cells with biocompatible materials are described and applications of this technology presented, with particular focus on uses in orthopaedics and maxillofacial surgery. The basic principles of tissue engineering and state-of-the-art technology in cell biology and materials science as used currently in the field are presented. Finally, futures challenges are outlined from the perspective of integrating technologies from medicine, biology, and engineering, in hopes of translating tissue engineering to clinical applications. J. Cell. Biochem. Suppls. 30/31:297-303, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    ISSN: 0730-2312
    Keywords: EST ; cDNA microarray ; RDA ; osteoblast differentiation ; pax-6 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Elucidation of the changes in gene expression associated with biological processes is a central problem in biology. Advances in molecular and computational biology have led to the development of powerful, high-thoughput methods for the analysis of differential gene expression. These tools have opened up new opportunities in disciplines ranging from cell and developmental biology to drug development and pharmacogenomics. In this review, the attributes of five commonly used differential gene expression methods are discussed: expressed sequence tag (EST) sequencing, cDNA microarray hybridization, subtractive cloning, differential display, and serial analysis of gene expression (SAGE). The application of EST sequencing and microarray hybridization is illustrated by the discovery of novel genes associated with osteoblast differentiation. The application of subtractive cloning is presented as a tool to identify genes regulated in vivo by the transcription factor pax-6. These and other examples illustrate the power of genomics for discovering novel genes that are important in biology and which also represent new targets for drug development. The central theme of the review is that each of the approaches to identifying differentially expressed genes is useful, and that the experimental context and subsequent evaluation of differentially expressed genes are the critical features that determine success. J. Cell. Biochem. Suppls. 30/31:286-296, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 264-276 
    ISSN: 0730-2312
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Genes involved in chromosomal translocations, associated with the formation of fusion proteins in leukemia, are modular in nature and regulatory in function. It is likely that they are involved in the initiation and maintenance of normal hematopoiesis. A conceptual model is proposed by which disruption of these different genes leads to the development of acute leukemia. Central to this model is the functional interaction between the mammalian trithorax and polycomb group protein complexes. Many of the genes identified in leukemia-associated translocations are likely upstream regulators, co-participators or downstream targets of these complexes. In the natural state, these proteins interact with each other to form multimeric higher-order structures, which sequentially regulate the development of the normal hematopoietic state, either through HOX gene expression or other less defined pathways. The novel interaction domains acquired by the chimaeric fusion products subvert normal cellular control mechanisms, which result in both a failure of cell maturation and activation of anti-apoptotic pathways. The mechanisms by which these translocation products are able to affect these processes are thought to lie at the level of chromatin-mediated transcriptional activation and/or repression. The stimuli for proliferation and development of clinically overt disease may require subsequent mutations in more than one oncogene or tumor suppressor gene, or both. A more comprehensive catalogue of mutation events in malignant cells is therefore required to understand the key regulatory networks that serve to maintain multipotentiality and in particular the modifications which initiate and coordinate commitment in differentiating hematopoietic cells. We propose a model in which common pathways for leukemogenesis lie along the cell cycle control of chromatin structure in terms of transcriptional activation or repression. A clearer understanding of this cascade will provide opportunities for the design and construction of novel biological agents that are able to restore normal regulatory mechanisms. J. Cell. Biochem. Suppls. 30/31:264-276, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 313-336 
    ISSN: 0730-2312
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: No abstract.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 338-340 
    ISSN: 0730-2312
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: No abstract.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 304-311 
    ISSN: 0730-2312
    Keywords: DNA vaccines ; gene therapy ; vectors ; immune response ; antigen presentation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Inoculations with antigen-expressing plasmid DNAs (DNA vaccines) in the production of protective immune responses. Since the initial development of DNA vaccines more than 5 years ago, major strides have been made in the design of efficient vaccine vectors and in the process of vaccine delivery. However, many questions remain regarding the mechanism of cellular transfection and in the development of immune responses. This review addresses functional aspects of DNA vaccines, including vector design and delivery, as well as cellular transfection and antigen presentation. J. Cell. Biochem. Suppls. 30/31:304-311, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    ISSN: 0730-2312
    Keywords: Ishikawa cells ; endometrium ; biotin ; multinucleated cells ; predomes ; domes ; pinopods ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Human Ishikawa endometrial cells form domes when confluent monolayers are stimulated with fresh fetal bovine serum. Extensive structural and biochemical changes have been detected during the approximately 30 h differentiation period. The earliest detectable change involves the formation of multinucleated structures and the appearance of “granules” that stain for biotin within those structures. Nuclei become associated with each other and are ultimately enclosed within a biotin-containing membrane. Aggregated membrane-sheathed nuclei and the cells containing them begin to elevate from the dish as biotin staining becomes apparent in apical membranes. The elevated structures are called predomes and consist of one or more very large cells containing the sheathed nuclei. Apical membranes of these unusual cells extend far out into the medium in structures that resemble endometrial pinopods. A lumen under the elevated cells fills with transcytosed fluid. As differentiation proceeds, highly concentrated chromatin material that was flattened against apical and lateral membranes of the predome cells begins to disperse. Small mononuclear cells evolve from larger predome cells. Apical membranes of predome and dome cells continue to stain for biotin. Gel electrophoresis of SDS-solubilized biotin-containing membranes, followed by Western blot analysis using avidin-linked peroxidase, resulted in three stained bands with molecular weights similar to those of the mitochondrial carboxylases: propionyl carboxylase, methylmalonyl carboxylase, and pyruvate carboxylase. J. Cell. Biochem. 71:400-415, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    ISSN: 0730-2312
    Keywords: opioids ; cathepsin D ; pS2 ; estrogen ; cancer ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: In many cancer cell lines, including breast, prostate, lung, brain, head and neck, retina, and the gastrointestinal tract, opioids decrease cell proliferation in a dose-dependent and reversible manner. Opioid and/ or other neuropeptide receptors mediate this decrease. We report that only the steroid-hormone-sensitive cell lines MCF7 and T47D respond to opioid growth inhibition in a dose-dependent manner. Therefore, an interaction of the opioid and steroid receptor system might exist, as is the case with insulin. To investigate this interaction, we have assayed two estrogen-inducible proteins (pS2 and the lysosomal enzyme cathepsin D) in MCF7 and T47D cells. When cells were grown in the presence of FBS (in which case a minimal quantity of estrogens and/ or opioids is provided by the serum), we observed either no effect of etorphine or ethylketocyclazocine (EKC) or an increase of secretion and/ or production of pS2 and cathepsin D. However, when cells were cultured in charcoal-stripped serum and in the absence of phenol red, the effect of the two opioids is different: EKC decreased the production and/ or secretion of pS2 and cathepsin D, whereas etorphine increased their synthesis and/ or secretion. The differential effect of the two general opioids was attributed to their different receptor selectivity. Furthermore, the variations of the ratio of secreted/ produced protein and the use of cycloheximide indicate that opioids selectively modify the regulatory pathway of each protein discretely. In conclusion, through the interaction with opioid and perhaps other membrane-receptor sites, opioid agonists modify in a dose-dependent manner the production and the secretion of two estrogen-regulated proteins. Opioids may therefore disturb hormonal signals mediated by the estrogen receptors. Hence, these chemicals may have potential endocrine disrupting activities. J. Cell. Biochem. 71:416-428, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    ISSN: 0730-2312
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Sackett RL, McCusker RH (1998): Multivalent cations depress ligand affinity of insulin-like growth factor-binding proteins-3 and -5 on human GM-10 fibroblast cell surfaces. J Cell Biochem 69:364-375.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 479-490 
    ISSN: 0730-2312
    Keywords: macrophages ; antioxidant status ; NOD mice ; immunocytochemistry ; type 1 diabetes ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: This study showed that citiolone (CIT), a free radical scavenger, significantly increased superoxide dismutase (P 〈 0.001 vs. untreated NOD, NMMA-treated, and silica-treated animals), catalase (P 〈 0.01 vs. untreated NOD), and glutathione peroxidase (P 〈 0.001 vs. untreated NOD and C57BL6/J) values. Silica treatment was capable of counteracting the plasma antioxidant capacity (TRAP) decrease observed in untreated NOD mice, although it did not block the blood glucose rise and insulitis progression in type 1 diabetes significantly. Conversely, early silica administration was able to deplete macrophages (as demonstrated by immunocytochemistry) and to block the rise in blood glucose levels and insulitis progression significantly. Silica-treated animals in this study showed the highest TRAP levels, demonstrating that depletion of macrophages also was able to improve the antioxidant status. This study suggested that macrophages are essential for type 1 diabetes development and showed that they also are involved when the antioxidant status is affected. The reported findings are significant in view of previous studies indicating that oxygen and/or nitrogen free radicals contribute to the islet β-cell destruction in type 1 diabetes animal models. J. Cell. Biochem. 71:479-490, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    ISSN: 0730-2312
    Keywords: proliferation ; maturation ; intracellular magnesium pools ; receptor-mediated stimuli ; cyclic-AMP ; IFN-α ; cell permeabilization ; ionophore A23187 ; Na-Mg antiporter ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Magnesium homeostasis in HL-60 promyelocytic leukemia cells was compared to that in neutrophyl-like HL-60 cells obtained by 1.3% DMSO treatment. Magnesium homeostasis was studied by the characterization of magnesium efflux, the identification of intracellular magnesium pools, and the regulation of intracellular ionized Mg2+. In both undifferentiated and neutrophyl-like HL-60 cells, magnesium efflux occurred via the Na-Mg antiporter which was inhibited by imipramine and stimulated by db cAMP and forskolin. Receptor-mediated signals such as ATP, IFN-α, or PGE1, which can trigger cAMP-dependent magnesium efflux, were ineffective in undifferentiated HL-60 cells but induced 60-70% increase of magnesium efflux in neutrophyl-like HL-60 cells. Selective membrane permeabilization by the cation ionophore A23187 induced a large magnesium release when cells were treated with rotenone. In both cell populations, the addition of glucose to rotenone-treated cells restored magnesium release to the control level. Permeabilization by 0.005% digitonin provoked the release of 90% cell total magnesium in both cell types. Intracellular [Mg2+]i was 0.15 and 0.26 mM in undifferentiated and neutrophyl-like HL-60 cells, respectively. Stimuli that triggered magnesium efflux, such as db cAMP in undifferentiated and IFN-α in neutrophyl-like HL-60 cells, induced a slow but consistent increase of [Mg2+]i which was independent from Ca2+movements. Overall, these data indicate that magnesium homeostasis is regulated by receptor-mediated magnesium efflux which was modified during differentiation of HL-60 cells. Stimulation of magnesium efflux is paralleled by an increase of [Mg2+]i which reflects a release of magnesium from the bound cation pool. J. Cell. Biochem. 71:441-448, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 491-501 
    ISSN: 0730-2312
    Keywords: diabetic microangiopathy ; endothelium ; HMEC-1 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Diabetic microangiopathy has been implicated as a fundamental feature of the pathological complications of diabetes including retinopathy, neuropathy, and diabetic foot ulceration. However, previous studies devoted to examining the deleterious effects of elevated glucose on the endothelium have been performed largely in primary cultured cells of macrovessel origin. Difficulty in the harvesting and maintenance of microvascular endothelial cells in culture have hindered the study of this relevant population. Therefore, the objective of this study was to characterize the effect of elevated glucose on the proliferation and involved signaling pathways of an immortalized human dermal microvascular endothelial cell line (HMEC-1) that possess similar characteristics to their in vivo counterparts. Human dermal microvascular endothelial cells (HMEC-1) were grown in the presence of normal (5 mM) or high D-glucose (20 mM) for 14 days. The proliferative response of HMEC-1 was compared under these conditions as well as the cAMP and PKC pathways by in vitro assays. Elevated glucose significantly inhibited (P 〈 0.05) HMEC-1 proliferation after 7, 10, and 14 days. This effect was not mimicked by 20 mM mannitol. The antiproliferative effect was more pronounced with longer exposure (1-14 days) to elevated glucose and was irreversible 4 days after a 10-day exposure. The antiproliferative effect was partially reversed in the presence of a PKA inhibitor, Rp-cAMP (10-50 μM), and/or a PKC inhibitor, Calphostin C (10 nM). HMEC-1 exposed to elevated glucose (20 mM) for 14 days caused an increase in cyclic AMP accumulation, PKA, and PKC activity but was not associated with the activation of downstream events such as CRE and AP-1 binding activity. These data support the hypothesis that HMEC-1 is a suitable model to study the deleterious effects of elevated glucose on microvascular endothelial cells. Continued studies with HMEC-1 may prove advantageous in delineation of the molecular pathophysiology associated with diabetic microangiopathy. J. Cell. Biochem. 71:491-501, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 1-7 
    ISSN: 0730-2312
    Keywords: S phase ; DNA replication ; gene replication ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Events in the S phase of the cell cycle have been investigated to a relatively limited extent in comparison with those in G1 and M phases. Four aspects of S are briefly discussed in this report: (1) the final biochemical step permitting initiation of DNA synthesis, (2) determination of replication timing of individual genes and its mechanism, (3) S phase processes that lead to the onset of M phase, and (4) resetting the S-phase machinery. J. Cell. Biochem. Suppls. 30/31:1-7, 1998. © 1999 Wiley-Liss, Inc.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 577-583 
    ISSN: 0730-2312
    Keywords: hsp70 ; translation ; heat shock proteins ; stress response ; restimulation ; feedback inhibition ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: To develop an alternative to hyperthermia for the induction of hsp70 for presurgical cytoprotection, we investigated the optimal exposure conditions for magnetic field induction of hsp70. Normal human breast cells (HTB124) were exposed to 60-Hz magnetic fields and hsp70 levels were measured following three different exposure conditions: continuous exposure up to 3 h, a single 20-min exposure, and a single 20-min exposure followed by repeated 20-min exposures at different field strengths. In cells exposed continuously for 3 h, hsp70 levels peaked (46%) within 20 min and returned to control levels by 2 h. Following a single 20-min exposure, the return of hsp70 levels to control values extended to more than 3 h. When cells underwent a 20-min exposure followed by repeated 20-min exposures (restimulation) with different field strengths, additional increases in hsp70 levels were induced: 31% at 1 h, 41% at 2 h, and 30% at 3 h. J. Cell. Biochem. 71:577-583, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. iv 
    ISSN: 0730-2312
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: No abstract.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 137-146 
    ISSN: 0730-2312
    Keywords: G proteins ; signal transduction ; protein tyrosine kinases ; PMN ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Complex cellular responses involve the integration of heterotrimeric G protein systems with protein kinase signal transduction pathways. Key in this integration is the control of small GTP-binding proteins including Ras and Rho family members. In this paper, we discuss the control of signal transduction pathways by G proteins and their integration with specific tyrosine kinases. The integration of G proteins, kinases, and small GTP-binding proteins in controlling cellular responses is illustrated through the newly defined Gα12/13-regulated pathways. Furthermore, the polymorphonuclear leukocyte provides a primary cell system for analyzing the integration of G proteins, kinases, and small GTP-binding proteins in controlling cellular functions such as superoxide production, adherence, chemotaxis, and granule secretion. J. Cell. Biochem. Suppls. 30/31:137-146, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 158-167 
    ISSN: 0730-2312
    Keywords: peroxisomes ; lipid metabolism ; H2O2 metabolism ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Gene targeting and the elucidation of mutations underlying inherited peroxisomal diseases have provided new insights in peroxisomal lipid metabolism in vivo. The work led to the identification of a novel peroxisomal β-oxidation pathway and established clearly that genes, which are required for efficient peroxisomal oxidation of fatty acids, at the same time are key regulators of PPARα function in vivo. The new mouse models may provide helpful tools in the search for unknown natural PPARα agonists and in screening for in vivo PPARα antagonists. J. Cell Biochem. Suppls. 30/31:158-167, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 147-157 
    ISSN: 0730-2312
    Keywords: LPA ; S1P ; G protein ; intracellular signaling pathways ; Edg receptors ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) are potent phospholipid mediators with diverse biological activities. Their appearance and functional properties suggest possible roles in development, wound healing, and tissue regeneration. The growth-stimulating and other complex biological activities of LPA and S1P are attributable in part to the activation of multiple G protein-mediated intracellular signaling pathways. Several heterotrimeric G proteins, as well as Ras- and Rho-dependent pathways play central roles in the cellular responses to LPA and S1P. Recently, several G protein-coupled receptors encoded by a family of endothelial differentiation genes (edg) have been shown to bind LPA or S1P and transduce responses of cAMP, Ca2+, MAP kinases, Rho, and gene transcription. This review summarizes our current understanding of signaling pathways critical for cellular responses to LPA and S1P and of recent progress in the molecular biological analyses of the Edg receptors. J. Cell. Biochem. Suppls. 30/31:147-157, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 515-523 
    ISSN: 0730-2312
    Keywords: binding ; complex formation ; retinoic X receptor ; TFIIB ; vitamin D receptor ; VDRE ; steroid receptor ; nuclear extract ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The vitamin D receptor (VDR) elicits a transcriptional response to 1,25-dihydroxyvitamin D3 by binding to specific response elements (VDRE) in the promoter of target genes. Retinoic X receptor (RXR) is required for formation of the VDR-VDRE complex when VDR is supplied at physiologic concentrations. When porcine intestinal nuclear extract is used as a source of VDR, two distinct complexes are always observed with native gel electrophoresis. Both complexes contain VDR and RXR. We now show that the faster-migrating complex requires another heretofore unknown nuclear factor for its formation. In addition, we provide evidence that the formation of the slower-migrating complex is enhanced by transcription factor IIB (TFIIB). Using ligand binding assays, we determined that both complexes contain the same ratio of VDR to VDRE. Using RXR subtype-specific antibodies in gel shift assays, we show that the complexes contain more than one RXR subtype. Therefore, the present results demonstrate VDR-RXR-VDRE complexes formed with pig intestinal nuclear extracts contain other proteins and that the complexes formed between VDR and VDRE are not simply heterodimers of VDR and RXR. J. Cell. Biochem. 71:515-523, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    ISSN: 0730-2312
    Keywords: intestinal epithelium ; cell growth ; cell differentiation ; HIEC ; Caco-2 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The integrin α9β1 is one of the recently identified integrins whose expression is restricted to specialized tissues. Its exact function is still unknown. In the present study, we have analyzed the expression of the α9 subunit in human fetal and adult small intestinal and colonic epithelia as well as in intestinal cell lines by indirect immunofluorescence, immunoprecipitation, Western blot, and Northern blot. In intact tissues, the antigen was restricted to the basolateral domain of epithelial cells in intestinal crypts at the fetal stage and was absent in the adult. The α9β1 integrin was also detected in the intestinal cell lines HIEC-6 and Caco-2/15. The presence of α9β1 in HIEC-6 was found to be consistent with their proliferative crypt-like status. In Caco-2/15 cells, the integrin was present at high levels in proliferating cells but was downregulated when cells cease to grow and undertake their differentiation. EGF treatment, which is known to maintain Caco-2/15 cells in a proliferative state, resulted in higher levels of α9 as compared to control cells. Taken together, these observations suggest a relation between integrin α9β1 expression and proliferation in human intestinal cells. J. Cell. Biochem. 71:536-545, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    ISSN: 0730-2312
    Keywords: matrix metalloproteinase ; sea urchin ; development ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We have purified and characterized a collagenase/gelatinase activity expressed during sea urchin embryonic development. The native molecular mass was determined to be 160 kDa, while gelatin substrate gel zymography revealed an active species of 41 kDa, suggesting that the native enzyme is a tetramer of active subunits. Incubation in the presence of EGTA resulted in nearly complete loss of activity and this effect could be reversed by calcium. Calcium-induced reactivation appeared to be cooperative and occurred with an apparent kd value of 3.7 mM. Two modes of calcium binding to the 41-kDa subunit were detected; up to 80 moles of calcium bound with a kd value of 0.5 mM, while an additional 120 moles bound with a kd value of 5 mM. Amino acid analysis revealed a carboxy plus carboxyamide content of 24.3 mol/100 mol, indicating the availability of substantial numbers of weak Ca2+-binding sites. Calcium binding did not result in either secondary or quaternary structural changes in the collagenase/gelatinase, suggesting that Ca2+ may facilitate activation through directly mediating the binding of substrate to the enzyme. The collagenase/gelatinase activity was detected in blastocoelic fluid and in the hyalin fraction dissociated from 1-h-old embryos. Immunolocalization studies revealed two storage compartments in the egg; cortical granules and small granules/vesicles dispersed throughout the cytoplasm. After fertilization, the antigen was detected in both the apical and basal extracellular matrices, the hyaline layer, and basal lamina, respectively. J. Cell. Biochem. 71:546-558, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 524-535 
    ISSN: 0730-2312
    Keywords: caveolae ; caveolin-1 ; tyrosine kinase ; cell transformation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Members of the nonreceptor tyrosine kinase family appear to be targeted to caveolae membrane. We have used a Rat-1 cell expressing a temperature sensitive pp60v-src kinase to assess the initial changes that take place in caveolae after kinase activation. Within 24-48 h after cells were shifted to the permissive temperature, a set of caveolae-specific proteins became phosphorylated on tyrosine. During this period there was a decline in the caveolae marker protein, caveolin-1, a loss of invaginated caveolae, and a 70% decline in the sphingomyelin content of the cell. One of the phosphorylated proteins was caveolin-1 but it was associated in coimmunoprecipitation assays with both a 30 kDa and a 27 kDa tyrosine-phosphorylated protein. Finally, the cells changed from having a typical fibroblast morphology to a rounded shape lacking polarity. In light of the recent evidence that diverse signaling events originate from caveolae, pp60v-src kinase appears to cause global changes to this membrane domain that might directly contribute to the transformed phenotype. J. Cell. Biochem. 71:524-535, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 559-568 
    ISSN: 0730-2312
    Keywords: plasma cell ; CD19 ; CD38 ; naphthol AS-D chloroacetate esterase ; B cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: This study demonstrates that the multiple myeloma cell (MMC) in its plasma cell form is morphologically indistinguishable from human osteoclast-like cells that form in culture when peripheral blood mononuclear cells (PBMCs) are plated at high density in serum containing medium. MM has been described as a disease of B-cell lineage, monoclonal immunoglobulin (Ig) producing cells with unique properties: MM precursor cells lodge in bone, where they proliferate and differentiate into plasma cell tumors. Then, by some mechanism, presumably involving cytokines, these cells mediate an increase in neighboring osteoclast numbers and activity, leading to excessive bone erosion and hypercalcemia. Three days after plating PBMCs, tartrate resistant acid phosphatase- (TRAP-) blasts as well as TRAP+ cells, each with an eccentric nucleus, appear in culture. By day 10, TRAP+, vitronectin+ (VR+) cells, appear to be morphologically indistinguishable from multiple myeloma plasma cells (MMPCs) on cytocentrifuge preparations. These cells are CD19- and CD38++, as are MMCs reported by others. Other surface markers are also shared. Furthermore, Ig mRNA is demonstrated in the cytoplasm of cells at 8 days by in situ hybridization with the IgG FcA3 sequence. This novel finding is not unusual, in light of reports, demonstrating non-B-lineage Ig-producing cells. Thus, this study raises some serious questions about the true nature of MMCs. J. Cell. Biochem. 71:559-568, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 71 (1998), S. 569-576 
    ISSN: 0730-2312
    Keywords: regucalcin ; calmodulin ; protein kinase ; calcium-binding protein ; liver nuclei ; regenerating rat liver ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The effect of Ca2+-binding protein regucalcin on protein kinase activity in the nuclei of normal and regenerating rat livers was investigated. Protein kinase activity in the nuclei isolated from normal rat liver was significantly increased by addition of Ca2+ (500 μM) and calmodulin (10 μg/ml) in the enzyme reaction mixture. Nuclear protein kinase activity was significantly decreased in the presence of EGTA (1.0 mM), trifluoperazine (TFP; 20 μM), dibucaine (10-4 M), or staurosporine (10-7 M), indicating that Ca2+-dependent protein kinases are present in the nuclei. Protein kinase activity was significantly elevated in the liver nuclei obtained at 6 to 48 h after a partial hepatectomy. Hepatectomy-increased nuclear protein kinase activity was significantly decreased in the presence of EGTA (1.0 mM), TFP (20 μM), or staurosporine (10-7 M) in the enzyme reaction mixture. The presence of regucalcin (0.1-0.5 μM) caused a significant decrease in protein kinase activity in the nuclei obtained from normal and regenerating rat livers. Meanwhile, the nuclear protein kinase activity from normal and regenerating livers was significantly elevated in the presence of anti-regucalcin monoclonal antibody (50-200 ng/ml). The present study suggests that regucalcin plays a role in the regulation of protein kinase activity in the nuclei of proliferative liver cells. J. Cell. Biochem. 71:569-576, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 18-29 
    ISSN: 0730-2312
    Keywords: mammalian DNA replication fork ; DNA synthesome ; PCNA ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The process of DNA replication in mammalian cells is highly complex and has several unique features that distinguish it from simpler prokaryotic systems. The study of mammalian DNA replication lagged behind that of prokaryotes for many years. This was because of the lack of a reliable and efficient mammalian cell-based in vitro DNA replication system. In 1984, the first mammalian-based DNA replication system that initiated DNA synthesis successfully in vitro was developed. The employment of the mammalian in vitro DNA replication system has led to the identification of several DNA replication proteins. This article describes the current knowledge regarding the proteins mediating mammalian DNA replication, as well as how they are proposed to function during DNA synthesis. There is also a discussion of the role the mammalian cell nuclear architecture plays in DNA replication. The evidence for the existence of an organized DNA replication machine in mammalian cells is also presented. J. Cell. Biochem. Suppls. 30/31:18-29, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 30-36 
    ISSN: 0730-2312
    Keywords: tumor suppressor family ; regulatory mechanisms ; retinoblastoma ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The intense investigation of the retinoblastoma “tumor suppressor family” members, pRb, pRb2/p130, and p107, has revealed impressive mechanisms evolved to safeguard development and homeostasis in higher eukaryotes. Members of the retinoblastoma family are involved in implementing and controlling three major aspects of cellular life: (1) proliferative growth, (2) differentiation, and (3) apoptosis. The activities of these proteins are highly regulated, enabling them to precisely establish control. The pRb protein is well understood in its regulatory abilities and is considered a classical tumor suppressor. The role of pRb2/p130 protein in growth suppression and its potential as a tumor suppressor have been established during the last few years. The p107 protein, structurally and functionally similar to, but yet distinctive from, pRb2/p130, is characterized at a more rudimentary level. In this report, we review the latest data on the retinoblastoma protein family and its web of regulatory mechanisms. J. Cell. Biochem. Suppls. 30/31:30-36, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 43-49 
    ISSN: 0730-2312
    Keywords: tumor suppression ; p53 ; angiogenesis ; signal transduction ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Tumor suppressors act along diverse biochemical pathways to function as safeguards against cancer. This review summarizes how these pathways can be regulated, primarily by focusing on the well-characterized wild-type p53 tumor suppressor as a paradigm. Specifically, we discuss recent data linking p53 to the processes of signal transduction and angiogenesis. J. Cell. Biochem. Suppls. 30/31:43-49, 1998 © 1998 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 37-42 
    ISSN: 0730-2312
    Keywords: cyclin-dependent kinases ; cell growth ; genomic stability ; restriction point control ; tumorigenesis ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: No abstract.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 50-54 
    ISSN: 0730-2312
    Keywords: p53 ; cell cycle regulation ; p21 ; wip21 ; cancer ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: No abstract.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 55-61 
    ISSN: 0730-2312
    Keywords: osteoblasts ; osteoclasts ; osteoporosis ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Bone is subject to continuous breakdown (resorption) by osteoclasts and rebuilding (formation) by osteoblasts in order to fulfill its functions. Most bone diseases including osteoporosis are due to excessive bone resorption relative to formation. Recent research has generated new insights into the regulation of osteoclast and osteoblast differentiation and function and the interaction between the two cell types. There is increased awareness of the role of mechanical stimuli in bone homeostasis and by inference the function of bone cells. This information can lead to new therapeutic modalities for maintaining a healthy skeleton into old age. J. Cell. Biochem. Suppls. 30/31:55-61, 1998. © 1998 Wiley-Liss, Inc.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 62-72 
    ISSN: 0730-2312
    Keywords: osteocalcin gene ; osteoblast growth ; osteoblast differentiation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The bone tissue-specific osteocalcin gene remains one of a few genes that exhibits osteoblast-restricted expression. Over the last decade, characterization of the promoter regulatory elements and complexes of factors that control suppression of the osteocalcin gene in osteoprogenitor cells and transactivation in mature osteoblasts has revealed transcriptional regulatory mechanisms that mediate development of the osteoblast phenotype. In this review, we have focused on emerging concepts related to molecular mechanisms supporting osteoblast growth and differentiation based on the discoveries that the osteocalcin gene is regulated by homeodomain factors, AP-1 related proteins, and the bone restricted Cbfa1/AML3 transcription factor. J. Cell. Biochem. Suppls. 30/31:62-72, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 203-213 
    ISSN: 0730-2312
    Keywords: histone acetylation and phosphorylation ; coactivators ; corepressors ; transcriptional activation and repression ; histone acetyltransferase ; histone deacetylase ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Histone acetylation and phosphorylation destablizes nucleosome and chromatin structure. Relaxation of the chromatin fiber facilitates transcription. Coactivator complexes with histone acetyltransferase activity are recruited by transcription factors bound to enhancers or promoters. The recruited histone acetyltransferases may acetylate histone or nonhistone chromosomal proteins, resulting in the relaxation of chromatin structure. Alternatively, repressors recruit corepressor complexes with histone deacetylase activity, leading to condensation of chromatin.This review highlights the recent advances made in our understanding of the roles of histone acetyltransferases, histone deacetylases, histone kinases, and protein phosphatases in transcriptional activation and repression. Exciting reports revealing mechanistic connections between histone modifying activities and the RNA polymerase II machinery, the coupling of histone deacetylation and DNA methylation, the possible involvement of histone deacetylases in the organization of nuclear DNA, and the role of chromatin modulators in oncogenesis are discussed. J. Cell. Biochem. Suppls. 30/31:203-213, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 238-242 
    ISSN: 0730-2312
    Keywords: nuclear matrix ; DNA replication sites ; transcription sites ; confocal microscopy ; nuclear domains ; higher-level nuclear organization ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: A new view of the cell nucleus is emerging based on the functional dynamics of nuclear architecture. The striking structural preservation of a variety of genomic processes on the nuclear matrix provides an important approach for correlating nuclear form and function. In situ labeling coupled with three-dimensional microscopy and computer imaging techniques shows that DNA replication and transcription sites are organized into higher-order units, or “zones,” in the cell nucleus. The dynamic interplay and “re-zoning” of replication and transcription regions during the cell cycle may form the structural basis for the elaborate global coordination of replicational and transcriptional programs in the mammalian cell. J. Cell. Biochem. Suppls. 30/31:238-242, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 277-283 
    ISSN: 0730-2312
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: No abstract.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 243-249 
    ISSN: 0730-2312
    Keywords: functional organization ; nucleus ; targeting sequence ; DNA replication ; nuclear matrix ; cell cycle ; DNA methyltransferase ; DNA ligase I ; PCNA ; DNA replication factors ; GFP ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Mammalian nuclei are highly organized into functional compartments. Major nuclear processes like DNA replication and RNA processing take place in distinct foci. These microscopically visible foci are formed by the assembly of, for example, DNA replication factors and associated proteins into megadalton complexes often referred to as protein machines or factories. Thus far, two proteins, DNA ligase I and DNA methyltransferase (DNA MTase), have been analyzed in greater detail. In both cases, the assembly process appears to be controlled by distinct targeting sequences that were attached to the catalytic protein core in the course of evolution and mediate the association with replication factories in mammalian cells. The dynamics of these nuclear structures throughout the cell cycle are analyzed using green fluorescent protein (GFP). Further studies are needed to elucidate the architecture, regulation, and role of these subnuclear structures. J. Cell. Biochem. Suppls. 30/31:243-249, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 1-7 
    ISSN: 0730-2312
    Keywords: cell stress ; heat shock ; σ32 ; magnetic fields ; ribonuclease protection assay ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The mechanism of interaction between weak electromagnetic fields and cells is not understood. As a result, the health effect(s) induced by exposure to these fields remains unclear. In addition to questions relating to the site of initial magnetic field (MF) interactions, the nature of the cell's response to these perturbations is also unclear. We examined the hypothesis that the cells respond to MFs in a manner similar to other environmental stressors such as heat. Using the bacterium Escherichia coli, we examined the mRNA levels of σ32, a protein that interacts with RNA polymerase to help it recognize a variety of stress promoters in the cell. Our data show that the intracellular level of σ32 mRNA is enhanced following a 15-min exposure to a 60 Hz, 1.1 mT magnetic field. J. Cell. Biochem. 68:1-7, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    ISSN: 0730-2312
    Keywords: cathepsin-B ; tissue transglutaminase ; mesangial cell apoptosis ; mRNA expression ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Mesangial matrix is a dynamic structure which modulates mesangial cell function. Since accumulation of matrix precedes the development of focal glomerulosclerosis, we studied the effect of different matrices on mesangial cell (MC) apoptosis. Suspended mesangial cells became apoptotic in a time dependent manner. Collagen type III did not modulate MC apoptosis when compared to cells grown on plastic. MCs grown on Matrigel, collagen type I and IV showed an increased number of apoptotic cells when compared to MCs grown on plastic. DNA end-labeling further confirmed these observations. MCs grown on Matrigel showed enhanced (P 〈 0.05) mRNA expression for tissue transglutaminase (TTG) and cathepsin-B. Mesangial cells grown on Matrigel also showed enhanced expression of superoxide dismutase (SOD). We conclude that mesangial cells require attachment to the matrix for their survival and alteration of the quality of matrix modulates mesangial cell apoptosis. J. Cell. Biochem. 68:22-30, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    ISSN: 0730-2312
    Keywords: gap junctions ; dye-coupling ; connexin43 ; parathyroid hormone ; prostaglandin E2 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Connexin43 (Cx43) forms gap junctions that mediate intercellular communication between osteoblasts. We have examined the effects of prostaglandin E2 (PGE2) and parathyroid hormone (PTH) on gap junctional communication in the rat osteogenic sarcoma cells UMR 106-01. Incubation with either PGE2 or PTH rapidly (within 30 min) increased transfer of negatively charged dyes between UMR 106-01 cells. This stimulatory effect lasted for at least 4 h. Both PGE2 and PTH increased steady-state levels of Cx43 mRNA, but only after 2-4 h of incubation. Transfection with a Cx43 gene construct linked to luciferase showed that this effect of PTH was the result of transcriptional upregulation of Cx43 promoter. Stimulation of dye coupling and Cx43 gene transcription were reproduced by forskolin and 8Br-cAMP. Exposure to PGE2 for 30 min increased Cx43 abundance at appositional membranes in UMR 106-01, whereas total Cx43 protein levels increased only after 4-6 h of incubation with either PGE2 or PTH. Inhibition of protein synthesis by cycloheximide did not affect this early stimulation of dye coupling, but it significantly inhibited the sustained effect of PTH and forskolin on cell coupling. In summary, both PTH and PGE2, presumably through cAMP production, enhance gap junctional communication in osteoblastic cell cultures via two mechanisms: initial rapid redistribution of Cx43 to the cell membrane, and later stimulation of Cx43 gene expression. Modulation of intercellular communication represents a novel mechanism by which osteotropic factors regulate the activity of bone forming cells. J. Cell. Biochem. 68:8-21, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 50-61 
    ISSN: 0730-2312
    Keywords: Sp1 ; p62 ; interaction assay ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The transcription factor Sp1 plays an important role in the expression of many cellular genes. In studies of proteins that associate with Sp1, a 62-kDa glycoprotein was found in immunoprecipitates of Sp1. This protein was detected in these immunoprecipitates by the monoclonal antibody, RL2, which was originally raised against nuclear pore proteins but was subsequently found to recognize an epitope that contains O-linked N-acetylglucosamine (O-GlcNAc). The association of this protein with Sp1 could be blocked by SDS denaturation of the protein complex. Western blot analysis of the Sp1 immunoprecipitate using antibodies to p62 nucleoporin indicated that this nuclear pore protein associates with Sp1. Furthermore, immunoprecipitation of p62 nucleoporin resulted in the coprecipitation of Sp1. Recombinant p62, expressed as a GST-fusion protein using a vaccinia virus system, also interacted with both recombinant and native Sp1. This interaction between p62 and Sp1 required the C-terminus of p62 and the C-terminus was able to bind Sp1, albeit less efficiently than native p62. A mammalian two-hybrid interaction assay was devised in which p62 was fused to the Gal4 DNA-binding domain. This system also indicated that p62, through its C-terminus, interacts with Sp1 in the living cell. We propose that this interaction of a nuclear pore protein with Sp1 may reflect the nuclear organization required to bring transcribable DNA in contact with the transcription factors. J. Cell. Biochem. 68:50-61, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 31-49 
    ISSN: 0730-2312
    Keywords: Bax ; Bcl-2 ; Bcl-X ; bone ; programmed cell death ; p53 ; c-fos ; Msx-2 ; differentiation ; IRF-1 ; IRF-2 ; collagenase gene expression ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We present evidence of cell death by apoptosis during the development of bone-like tissue formation in vitro. Fetal rat calvaria-derived osteoblasts differentiate in vitro, progressing through three stages of maturation: a proliferation period, a matrix maturation period when growth is downregulated and expression of the bone cell phenotype is induced, and a third mineralization stage marked by the expression of bone-specific genes. Here we show for the first time that cells differentiating to the mature bone cell phenotype undergo programmed cell death and express genes regulating apoptosis. Culture conditions that modify expression of the osteoblast phenotype simultaneously modify the incidence of apoptosis. Cell death by apoptosis is directly demonstrated by visualization of degraded DNA into oligonucleosomal fragments after gel electrophoresis. Bcl-XL, an inhibitor of apoptosis, and Bax, which can accelerate apoptosis, are expressed at maximal levels 24 h after initial isolation of the cells and again after day 25 in heavily mineralized bone tissue nodules. Bcl-2 is expressed in a reciprocal manner to its related gene product Bcl-XL with the highest levels observed during the early post-proliferative stages of osteoblast maturation. Expression of p53, c-fos, and the interferon regulatory factors IRF-1 and IRF-2, but not cdc2 or cdk, were also induced in mineralized bone nodules. The upregulation of Msx-2 in association with apoptosis is consistent with its in vivo expression during embryogenesis in areas that will undergo programmed cell death. We propose that cell death by apoptosis is a fundamental component of osteoblast differentiation that contributes to maintaining tissue organization. J. Cell. Biochem. 68:31-49, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 83-89 
    ISSN: 0730-2312
    Keywords: pH ; osteoblasts ; collagen synthesis ; alkaline phosphatase activity ; glycolysis ; DNA synthesis ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The effect of medium pH on the activity of cultured human osteoblasts was investigated in this study. Osteoblasts derived from explants of human trabecular bone were grown to confluence and subcultured. The first-pass cells were incubated in Hepes-buffered media at initial pHs adjusted from 7.0 to 7.8. Osteoblast function was evaluated by measuring lactate production, alkaline phosphatase activity, proline hydroxylation, DNA content, and thymidine incorporation. Changes in medium pH were determined from media pHs recorded at the beginning and end of the final 48 h incubation period. As medium pH increased through pH 7.6, collagen synthesis, alkaline phosphatase activity, and thymidine incorporation increased. DNA content increased from pH 7.0 to 7.2, plateaued from pH 7.2 to 7.6, and increased again from pH 7.6 to 7.8. The changes in the medium pH were greatest at pHs 7.0 and 7.8, modest at pHs 7.4 and 7.6, and did not change at 7.2, suggesting that the pHs are migrating towards pH 7.2. Lactate production increased at pH 7.0 but remained constant from 7.2 to 7.8. These results suggest that in the pH range from 7.0-7.6 the activity of human osteoblasts increases with increasing pH, that this increase in activity does not require an increase in glycolytic activity, and that pH 7.2 may be the optimal pH for these cells. J. Cell. Biochem. 68:83-89, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    ISSN: 0730-2312
    Keywords: retinoic acid ; matrix metalloproteinases ; chondrocytes ; mRNA levels ; growth plate ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Matrix metalloproteinases (MMPs) play a crucial role in tissue remodeling. In growth plate (GP) cartilage, extensive remodeling occurs at the calcification front. To study the potential involvement of MMPs in retinoic acid (RA) regulation of skeletal development, we studied the effect of all-trans-RA on MMPs levels in mineralizing chicken epiphyseal chondrocyte primary cultures. When treated for 4 day periods on days 10 and 17, RA increased levels of an ∼70 kDa gelatinase activity. The N-terminal sequence of the first 20 amino acid residues of the purified enzyme was identical to that deduced from chicken MMP-2 cDNA. Time-course studies indicated that RA elevated MMP-2 activity levels in the cultures within 16 h. This increase was inhibited by cycloheximide and was enhanced by forskolin. The increase in MMP-2 activity induced by RA was accompanied by an increase in MMP-2 mRNA levels and was abolished by treatment with cycloheximide. This upregulation of MMP levels by RA in GP chondrocytes is consistent with its effects on osteoblasts and osteosarcoma cells and opposite its inhibitory effects on fibroblasts and endothelial cells. It may well be related to the breakdown of the extracellular matrix in the GP and would be governed by the availability of RA at the calcification front where extensive vascularization also occurs. J. Cell. Biochem. 68:90-99, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    ISSN: 0730-2312
    Keywords: somatostatin ; receptor isotypes ; adenylyl cyclase ; Interleukin-2 (IL-2) ; proliferation ; Jurkat cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The neuropeptide somatostatin (SRIF) modulates normal and leukemia T cell proliferation. However, neither molecular isotypes of receptors nor mechanisms involved in these somatostatin actions have been elucidated as yet. Here we show by using RT-PCR approach that mitogen-activated leukemia T cells (Jurkat) express mRNA for a single somatostatin receptor, sst3. This mRNA is apparently translated into protein since specific somatostatin binding sites (KI1 = 78 ± 3 pM) were detected in semipurified plasma membrane preparations by using 125I-Tyr1-SRIF14 as a radioligand. Moreover, somatostatin inhibits adenylyl cyclase activity with similar efficiency (IC50 = 23 ± 4 pM) thus strongly suggesting a functional coupling of sst3 receptor to this transduction pathway. The involvement of sst3 receptor in immuno-modulatory actions of somatostatin was assessed by analysis of neuropeptide effects on IL-2 secretion and on proliferation of mitogen-activated Jurkat cells. Our data show that in the concentrations comprised between 10 pM and 10 nM, somatostatin potentiates IL-2 secretion. This effect is correlated with somatostatin-dependent increase of Jurkat cell proliferation since the EC50 concentrations for both actions were almost identical (EC50 = 22 ± 9 pM and EC50 = 12 ± 1 pM for IL-2 secretion and proliferation, respectively). Altogether, these data strongly suggest that in mitogen-activated Jurkat cells, somatostatin increases cell proliferation through the increase of IL-2 secretion via a functional sst3 receptor negatively coupled to the adenylyl cyclase pathway. J. Cell. Biochem. 68:62-73, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 74-82 
    ISSN: 0730-2312
    Keywords: cell culture ; nuclei ; nuclear degradation ; endonucleases ; polycytosine degradation ; differentiation ; cornification ; stratum corneum ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Desquamin is a glycoprotein that we have isolated from the upper granular layer and the stratum corneum of human epidermis; it is not ordinarily expressed in submerged cultures, whose terminal differentiation stops short of formation of these layers. The exogenous addition of desquamin to human cultured keratinocytes extended their maturation, and hematoxylin staining indicated a loss of cell nuclei. For confirmation, cultured cells were lysed in situ, and the nuclei were incubated with desquamin for several days, then stained with hematoxylin. Damage to the nuclei was evident: the nuclear inclusions remained intact, while the surrounding basophilic nuclear matrix was degraded. Desquamin was then tested directly for nuclease activity. Ribonuclease activity was determined by incubating desquamin with human epidermal total RNA and monitoring the dose-dependent disappearance of the 28S and 18S ribosomal RNA bands in an agarose/formaldehyde gel. On RNA-containing zymogels, we confirmed the RNase activity to be specific to desquamin. Using synthetic RNA homopolymers, we found the active RNase domains to be limited to cytosine residues. On the contrary, DNA was not degraded by an analogous procedure, even after strand-separation by denaturation. J. Cell. Biochem. 68:74-82, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 100-109 
    ISSN: 0730-2312
    Keywords: carcinogens ; mitochondrial DNA ; nuclear DNA ; LINE ; mobile elements ; cancer ; Huntington's disease ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The nuclear DNA of normal and tumor mouse and rat tissue was examined for mitochondrial-DNA-like inserts by means of the Southern blot technique. The two probes were 32P-labeled cloned mitochondrial DNA. KpnI, which doesn't cut either mitochondrial DNA, was one of the restriction enzymes, while the enzymes that fragment mitochondrial DNA were for mouse and rat PstI and BamHI, respectively. When KpnI alone was used in the procedure a nuclear LINE family whose elements had mitochondrial-DNA-like insertions was selected. Such elements were much more abundant in tumor than in normal tissue. The results with PstI alone and BamHI alone and each combined with KpnI indicated that there were mobile LINE elements with mitochondrial-DNA-like inserts in the nuclear genome of tumor. The mouse tissues were normal liver and a transplantable lymphoid leukemic ascites cell line L1210 that had been carried for 40 years. The rat tissues were normal liver and a hepatoma freshly induced by diethylnitrosoamine in order to minimize the role of 40 years of transplantation. Our unitary hypothesis for carcinogenesis of 1971, which suggested these experiments, has been augmented to include mobile nuclear elements with inserts of mitochondrial-DNA-like sequences. Such elements have been related to diseases of genetic predisposition such as breast cancer and Huntington's disease. J. Cell. Biochem. 68:100-109, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 128-137 
    ISSN: 0730-2312
    Keywords: oligodendrocytes ; cell cycle ; differentiation ; cyclin-dependent kinases ; cdk5 ; cdk2 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Oligodendrocytes, the myelinating cells of the central nervous system, are terminally differentiated cells that originate through asynchronous waves of proliferation and differentiation of precursors present at birth. Withdrawal from cell cycle and onset of differentiation are tightly linked and depend on an intrinsic program modulated by the action of growth factors. p27 plays a central and obligatory role in the initiation of oligodendrocyte differentiation and cessation of proliferation. In this paper, we have characterized the role of modulation of cdk2 and cdk5 kinase activity during the process of oligodendrocyte precursor differentiation. As rat primary oligodendrocytes differentiate in culture there is a fall in cdk2 activity and a rise in cdk5 activity as well as an increase in the cdk inhibitor, p27 protein. The decline in cdk2 activity is not accompanied by a drop in cdk2 protein level, suggesting that it results from inhibition of cdk2 activation rather than decreased protein expression. Taken together, these data suggest that oligodendrocytes may withdraw from the cell cycle at G1-S transition through inactivation of cdk2 activity, possibly initiated by increasing amount of p27, and that cdk5 may have a role until now unrecognized in the differentiation of oligodendrocytes. J. Cell. Biochem. 68:128-137, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 121-127 
    ISSN: 0730-2312
    Keywords: heme oxygenase ; stress protein ; overexpression ; oxidative injury ; endothelial cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Heme oxygenase (HO-1) is a stress protein that has been suggested to participate in defense mechanisms against agents that induce oxidative injury such as hemoglobin/heme, hypoxia-ischemia and cytokines. Overexpression of HO-1 in endothelial cells (EC) might, therefore, protect against oxidative stress produced under these pathological conditions, by generation of CO, a vasodilator, and bilirubin, which has antioxidant properties that enhance blood vessel formation to counteract hypoxia-induced injury. A plasmid containing the cytomegalovirus promoter (pCMV) neomycin human HO-1 gene complexed to cationic liposomes, lipofectin, was used to transfect rabbit coronary microvessel EC. Cells transfected with human HO-1 gene demonstrated a twofold increase in HO activity and maintained a similar phenotype as in the nontransfected cells. Cell number in transfected cells with human HO-1 gene increased by about 45%, as compared to nontransfected or those transfected with control pCMV. Transfected and nontransfected EC revealed a similar response to basic fibroblast growth factor (bFGF) in capillary formation. However, transfected cells with the human HO-1 gene exhibited a twofold increase in blood vessel formation. The angiogenic response of EC to overexpression of HO-1 gene provides direct evidence that the inductive form of HO-1 following injury represents an important tissue adaptive mechanism for moderating the severity of cell damage produced in inflammatory reaction sites of hemorrhage, thrombosis and hypoxic-ischemia. Thus, HO-1 may participate in the regulation of EC activation, proliferation and angiogenesis. J. Cell. Biochem. 68:121-127, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 110-120 
    ISSN: 0730-2312
    Keywords: cadmium ; zinc ; cell culture ; mineralization ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Following exposure to cadmium or zinc, chickens were sacrificed and the liver, kidney, and bone epiphyseal growth plates harvested. When cytosolic extracts of the growth plate cartilage were fractionated by gel filtration chromatography, a protein with high metal-binding capacity and low ultraviolet (UV) absorbance eluted in the same position as liver metallothionein (MT) and a MT standard. Cd or Zn treatment resulted in a 25-fold or 5-fold induction in growth plate MT, respectively. In liver the greatest level of MT induction was seen with short-term Cd exposures. In contrast, MT levels in the growth plate increased as the duration of Cd exposure increased. Induction of MT in growth plate chondrocyte cell cultures was observed for media Cd concentrations of ≥0.1 μM and Zn concentrations of ≥100 μM. Basal and inducible levels of MT declined through the culture period and were lowest in the terminally differentiated mineralized late stages of the culture. Alkaline phosphatase activity was also lowest in the late-stage cultures, while total cellular protein increased throughout the culture period. Treatment of chondrocytes with Zn prior to Cd exposure resulted in a protective induction of MT. Pre-treatment of chondrocytes with dexamethasone resulted in suppressed synthesis of MT upon Cd exposure and greater Cd toxicity. Both Cd and Zn resulted in significantly increased levels of MT mRNA in chondrocyte cell cultures. Dexamethasone treatment resulted in an approximate 2- to 3-fold increase in MT mRNA. This is contrary to the finding that MT protein levels were decreased by dexamethasone. The findings suggest that an increased rate of MT degradation in dexamethasone-treated and late-stage chondrocyte cultures may be associated with the terminally differentiated phenotype. J. Cell. Biochem. 68:110-120, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 164-173 
    ISSN: 0730-2312
    Keywords: melittin ; flow cytometry ; cytotoxicity ; immunotoxin ; HMy2 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We have examined the cytolytic effects of the membrane-active peptide, melittin, on a human lymphoblastoid cell line (HMy2) in the context of the use of melittin as the toxic component of an immunotoxin. The toxicity of melittin for HMy2 cells was linear over the concentration range 0.875-3.5 μM. Increased incubation times failed to result in significant cell death at concentrations of melittin below 0.875 μM. Kinetic analysis revealed that the cytolytic activity of melittin was independent of time of exposure beyond 90 min. Flow cytometric analysis of HMy2 cells incubated with FITC-labeled melittin demonstrated that the cells could incorporate up to 2.5 × 105 FITC-melittin molecules per cell with no reduction in viability. Extrapolation of this data indicates that 106 melittin molecules per cell are required for maximum cytotoxicity to HMy2 cells. Further analysis of HMy2 cells that incorporated melittin, but that remained viable, revealed that these cells were able to reduce the number of melittin molecules per cell over time. The data indicate a potential threshold value for the number of melittin molecules that may be required to be delivered to the cell surface in the form of an immunotoxin if effective selective cell death is to be achieved. J. Cell. Biochem. 68:164-173, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    ISSN: 0730-2312
    Keywords: tyrosine phosphorylation ; insulin signaling ; tyrosine kinase ; confocal microscopy ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The recently identified 53-kDa substrate of the insulin receptor family was further characterized in several retroviral-generated stable cell lines overexpressing the wild type and various mutant forms of the protein. To facilitate the study of its subcellular localization in NIH3T3 cells overexpressing insulin receptor, a myc epitope-tag was added to the carboxy terminus of the 53-kDa protein. Like the endogenous protein in Chinese hamster ovary cells, the expressed myc-tagged 53-kDa protein was found partially in the particulate fraction and was tyrosine phosphorylated in insulin-stimulated cells. Immunofluorescence studies showed for the first time that a fraction of the 53-kDa protein was localized to the plasma membrane. Confocal microscopy of cells double-labeled with antibodies to the insulin receptor and the myc epitope showed the two proteins co-localize at the plasma membrane at the level of light microscopy. Further analyses of the protein sequence of the 53-kDa substrate revealed the presence of a putative SH3 domain and two proline-rich regions, putative binding sites for SH3 and WW domains. Disruption of these three motifs by the introduction of previously characterized point mutations did not affect the membrane localization of the 53-kDa protein, its ability to serve as substrate of the insulin receptor, or its colocalization with the insulin receptor, suggesting these domains are not important in the subcellular targeting of the protein and instead may function in the interaction with subsequent signaling proteins. J. Cell. Biochem. 68:139-150, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 174-185 
    ISSN: 0730-2312
    Keywords: metallothionein ; isoform ; differential expression ; autoregulation ; Chinese hamster ovary cell ; cadmium-resistant cell ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Transcription regulation of metallothionein (MT) isoform promoters was investigated in Chinese hamster ovary (CHO) K1 and MT gene amplified, cadmium-resistant (CdR) cells. The transfected promoter of Chinese hamster MTI and MTII genes can be activated in both cell lines by stimulation with Cd or Zn ions, although no MT mRNA can be detected in CHO K1 cells after challenge with metal ions. Neither MT promoter used in this study can be activated by induction with dexamethasone, regardless of whether a sequence homologous to glucocorticoid responsive element is present. During induction by metal ions, differential promoter activities of the MT genes occurs in both CHO K1 and CdR cells where MTII promoter has a stronger activity than that of MTI. As indicated by a time course study in both cell lines, the relative induction ratios of both MTI and MTII promoters are similar at each time interval. This result is consistent with a differential transcriptional factor-promoter interaction for the two MT promoters. By using the CHO K1 and CdR cells as a model system, the occurrence of autoregulation for yeast CUP1 (MT) gene was examined in mammalian cells. Both MT promoters consistently show a lower basal activity but a higher induction ratio in CHO K1 than CdR cells; a result different from that of yeast CUP1 gene. When MTF-1 mRNA was examined, no difference in relative quantity was observed in CHO K1 and in CdR cells treated with metal ions or with metal ions absent. J. Cell. Biochem. 68:174-185, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 151-163 
    ISSN: 0730-2312
    Keywords: Type I procollagen ; proto-oncogenes ; steroid ; calcitriol ; osteoblast ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Changes in the synthesis of type I collagen, the major extracellular matrix component of skin and bone, are associated with normal growth, tissue repair processes, and several pathological conditions. Expression of the COL 1A1 gene is regulated by transcriptional and post-transcriptional mechanisms. However, the hormonal regulation of type I collagen synthesis in human bone has not been well characterized. We have studied the influence of calcitriol, dexamethasone, retinoic acid, and estradiol on the COL 1A1 gene expression by determining the secretion of the C-terminal propeptide (PICP) and the levels of α1(I) procollagen mRNA in cultured human MG-63 and SaOs-2 osteoblast-like osteosarcoma cells. Similar experiments were also performed with respect to expression of the nuclear proto-oncogenes, c-fos and c-jun, in MG-63 cells.In MG-63 cells, calcitriol stimulated the synthesis and secretion of PICP. The α1(I) procollagen mRNA level was elevated with no effect on message stability, indicating a transcriptional mechanism of regulation. In contrast, dexamethasone treatment was accompanied by an accelerated rate of α1(I) procollagen mRNA turnover, observed as decreased amounts of the message and the secreted PICP, implying a posttranscriptional regulation. Retinoic acid, in turn, decreased the levels of α1(I) procollagen mRNA and secreted PICP by slowing down transcription of the COL1A1 gene without any effect on message stability. The ability of these hormones to regulate the α1(I) transcripts was sensitive to puromycin treatment, suggesting an involvement of an induced mediator protein in the action of the hormones on the COL1A1 gene. Both dexamethasone and calcitriol rapidly but transiently increased the expression of the c-fos and c-jun proto-oncogenes. Neither proto-oncogene responded to retinoic acid treatment with significant changes in mRNA levels. Estradiol treatment was found to have no influence on type I procollagen synthesis.In SaOs-2 cells, which are not as well differentiated as the MG-63 cells, calcitriol and dexamethasone did not influence type I procollagen synthesis. Retinoic acid as well as estradiol reduced collagen gene expression in these cells.These findings suggest that hormonal effects on type I procollagen synthesis may depend on the maturational state of the osteoblastic cells that express different regulatory factors and receptors, resulting in, in each case, a finely adjusted rate of gene expression. J. Cell. Biochem. 68:151-163, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 195-199 
    ISSN: 0730-2312
    Keywords: 14-3-3 protein ; developmental regulation ; heart development ; Raf-1 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Human heart cDNA sequencing yielded a cDNA clone that is similar in DNA and amino acid sequences to that of mouse 14-3-3 ε isoform. The 6xHis-tagged H1433ε recombinant protein was expressed in Escherichia coli and its size was approximately 30 kDa. From Northern blot results with human multiple tissues, human skeletal muscle was found to have the highest level of h1433ε mRNA expression, whereas Northern blots of human cancer cell lines detected the highest mRNA level of h1433ε in colorectal adenocarcinoma SW480. The protein expression level of h1433ε and Raf-1 is found to be regulated coordinately during rat heart development, and their protein expression was highest from 14.5 to 16.5 days postcoitum. J. Cell. Biochem. 68:195-199, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    ISSN: 0730-2312
    Keywords: osteoprogenitors ; marrow-stroma ; alkaline phosphatase ; bisphosphonates ; cell proliferation ; mineralization ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Bisphosphonates (BPs) are inhibitors of bone resorption and soft tissue calcification. The biological effects of the BPs in calcium-related disorders are attributed mainly to their incorporation in bone, enabling direct interaction with osteoclasts and/or osteoblasts through a variety of biochemical pathways. Structural differences account for the considerable differences in the pharmacological activity of BPs. We compared the effects of two structurally different compounds, alendronate and 2-(3′-dimethylaminopyrazinio)ethylidene-1,1-bisphosphonic acid betaine (VS-6), in an osteoprogenitor differentiation system. The BPs were examined in a bone marrow stromal-cell culture system, which normally results in osteoprogenitor differentiation. The drugs were present in the cultures from days 2 to 11 of osteogenic stimulation, a period estimated as being comparable to the end of proliferation and the matrix-maturation stages. We found that the two different BPs have opposing effects on specific alkaline phosphatase (ALP) activity, on stromal-cell proliferation, and on cell-mediated mineralization. These BPs differentially interact with cell-associated phosphohydrolysis, particularly at a concentration of 10-2 of ALP Km, in which alendronate inhibits whereas VS-6 did not inhibit phosphatase activity. VS-6 treatment resulted in similar and significantly increased mineralization at 10 and 1 μM drug concentrations, respectively. In contrast, mineralization was similar to control, and significantly decreased at 10 and 1 μM drug concentrations, respectively, under alendronate treatment. J. Cell. Biochem. 68:186-194, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 200-212 
    ISSN: 0730-2312
    Keywords: polyamines ; chromatin structure ; micrococcal nuclease ; cell cycle ; apoptosis ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Several studies suggest that polyamines may stabilize chromatin and play a role in its structural alterations. In line with this idea, we found here by chromatin precipitation and micrococcal nuclease (MNase) digestion analyses, that spermidine and spermine stabilize or condense the nucleosomal organization of chromatin in vitro. We then investigated the possible physiological role of polyamines in the nucleosomal organization of chromatin during the cell cycle in Chinese hamster ovary (CHO) cells deficient in ornithine decarboxylase (ODC) activity. An extended polyamine deprivation (for 4 days) was found to arrest 70% of the odc- cells in S phase. MNase digestion analyses revealed that these cells have a highly loosened and destabilized nucleosomal organization. However, no marked difference in the chromatin structure was detected between the control and polyamine-depleted cells following the synchronization of the cells at the S-phase. We also show in synchronized cells that polyamine deprivation retards the traverse of the cells through the S phase already in the first cell cycle. Depletion of polyamines had no significant effect on the nucleosomal organization of chromatin in G1-early S. The polyamine-deprived cells were also capable of condensing the nucleosomal organization of chromatin in the S/G2 phase of the cell cycle. These data indicate that polyamines do not regulate the chromatin condensation state during the cell cycle, although they might have some stabilizing effect on the chromatin structure. Polyamines may, however, play an important role in the control of S-phase progression. J. Cell Biochem. 68:200-212, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 213-225 
    ISSN: 0730-2312
    Keywords: glutamine ; glutamate ; mitochondria ; metabolism ; HeLa cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The oxidative metabolism of glutamine in HeLa cells was investigated using intact cells and isolated mitochondria. The concentrations of the cytoplasmic amino acids were found to be aspartate, 8.0 mM; glutamate, 22.2 mM; glutamine, 11.3 mM; glycine, 9.8 mM; taurine, 2.3 mM; and alanine, 〈1 mM. Incubation of the cells with [14C]glutamine gave steady-state recoveries of 14C-label (estimated as exogenous glutamine) in the glutamine, glutamate, and aspartate pools, of 103%, 80%, and 25%, respectively, indicating that glutamine synthetase activity was absent and that a significant proportion of glutamate oxidation proceeded through aspartate aminotransferase. No label was detected in the alanine pool, suggesting that alanine aminotransferase activity was low in these cells. The clearance rate of [14C]glutamine through the cellular compartment was 65 nmol/min per mg protein. There was a 28 s delay after [14C]glutamine was added to the cell before 14C-label was incorporated into the cytoplasm, while the formation of glutamate commenced 10 s later.Aspartate was the major metabolite formed when the mitochondria were incubated in a medium containing either glutamine, glutamate, or glutamate plus malate. The transaminase inhibitor AOA inhibited both aspartate efflux from the mitochondria and respiration. The addition of 2-oxoglutarate failed to relieve glutamate plus malate respiration, indicating that 2-oxoglutarate is part of a well-coupled truncated cycle, of which aspartate aminotransferase has been shown to be a component [Parlo and Coleman (1984): J Biol Chem 259:9997-10003]. This was confirmed by the observation that, although it inhibited respiration, AOA did not affect the efflux of citrate from the mitochondria. Thus citrate does not appear to be a cycle component and is directly transported to the medium. Therefore, it was concluded that the truncated TCA cycle in HeLa cells is the result of both a low rate of citrate synthesis and an active citrate transporter. DNP (10 μM) induced a state III-like respiration only in the presence of succinate, which supports the evidence that NAD-linked dehydrogenases were not coupled to respiration, and suggests that these mitochondria may have a defect in complex I of the electron transport chain. Arising from the present results with HeLa cells and results extant in the literature, it has been proposed that a major regulating mechanism for the flux of glutamate carbon in tumour cells is the competitive inhibition exerted by 2-oxoglutarate on aspartate and alanine aminotransferases. This has been discussed and applied to the data. J. Cell. Biochem. 68:213-225, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 247-258 
    ISSN: 0730-2312
    Keywords: SMCs ; bFGF ; collagen fibril structure ; mRNA ; atherosclerotic lesion ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Vascular smooth muscle cells (SMCs), the major cellular constituent of an artery, synthesize the bulk of fibrillar collagens, including type V/XI, which regulates heterotypic collagen fibril assembly. Basic fibroblast growth factor (bFGF) is a heparin-binding polypeptide growth factor that has been implicated in important events during the development of atherosclerosis, such as early intimal SMC proliferation. Here we have investigated the effects of bFGF on aortic SMC expression of type V/XI collagen. Treatment of exponentially growing or serum-deprived subconfluent cultures of bovine aortic SMCs with bFGF decreased the steady-state levels of the mRNAs for collagen type V/XI, including α1(V), α2(V), and α1(XI). The effect of bFGF was time dependent with a two- and a fourfold decrease in α2(V) mRNA observed after treatment for 24 and 48 h, respectively. This decrease resulted from a drop in the rate of α2(V) gene transcription; no change was observed in the stability of the α2(V) mRNA. Furthermore, accumulation of collagen protein decreased upon bFGF treatment. As expected, treatment with bFGF increased the rate of proliferation of serum-deprived SMCs, as judged by DNA content in the cultures, thymidine incorporation, and steady-state mRNA levels of the S-phase-expressed histone H3.2. These results suggest that bFGF plays an important role in the regulation of collagen fibril structure, with potential implications for the development and organization of an atherosclerotic lesion. J. Cell. Biochem. 68:247-258, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    ISSN: 0730-2312
    Keywords: transforming growth factor-β ; tumor necrosis factor-α ; phospholipase A2 ; arachidonic acid ; AACOCF3 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The steroid derivative 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) is a regulator of bone biology, and there is evidence that 1,25(OH)2D3 modulates arachidonic acid metabolism in osteoblastic cell model systems and in bone organ cultures. In the present studies, 1,25(OH)2D3 decreased prostaglandin (PG) biosynthesis by normal adult human osteoblast-like (hOB) cell cultures by about 30%. The decrease was observed under basal incubation conditions, or in specimens stimulated by transforming growth factor-β1 (TGF-β) or by tumor necrosis factor-α (TNF). The inhibition of the TGF-β-stimulated PG production appeared to reflect a diminished efficiency of arachidonic acid conversion into PGs by the cells, while the efficiency of substrate utilization for PG biosynthesis was unaffected by 1,25(OH)2D3 pretreatment in the unstimulated samples, or in samples stimulated with TNF or with TNF plus TGF-β. Free arachidonic acid levels were decreased following 1,25(OH)2D3 pretreatment in the TNF stimulated samples. hOB cell phospholipase A2 activity was measured in subcellular fractions, and this activity was decreased by 20-25% in the 1,25(OH)2D3 pretreated samples. The addition of the selective inhibitor AACOCF3 to the phospholipase A2 assays provided evidence that it was the cytoplasmic isoform of the enzyme that was affected by the 1,25(OH)2D3 pretreatment of the hOB cells. Thus, 1,25(OH)2D3 regulation of hOB cell biology includes significant effects on arachidonic acid metabolism. In turn, this could influence the effects of other hormones and cytokines whose actions include the stimulated production of bioactive arachidonic acid metabolites. J. Cell. Biochem. 68:237-246, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    ISSN: 0730-2312
    Keywords: TGF-β ; transcription factor ; rapid regulation ; tumor suppressor ; osteoblasts ; immunohistochemistry ; breast cancer stage ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: This laboratory has previously identified a novel TGF-β inducible early gene (TIEG) in human osteoblasts [Subramaniam et al. (1995): Nucleic Acids Res 23:4907-4912]. Using TIEG specific polyclonal antibody and immunoprecipitation methods in normal human fetal osteoblast cells (hFOB cells), we have now demonstrated that TIEG encodes a 72-kDa protein whose levels are transiently increased at as early as 2 h of TGF-β treatment. Polarized confocal microscopic analysis of hFOB cells shows a nuclear localized TIEG protein in untreated cells under the conditions described under Methods. Interestingly, the levels of TIEG protein in the nuclei increase when the cells are treated with TGF-β1 for 2 h. In contrast, similar analyses of untreated human keratinocytes show a cytoplasmic localized TIEG protein that appears to be translocated to the nucleus after H2O2 treatment. Additional immunohistochemical studies have demonstrated that TIEG protein is expressed in epithelial cells of the placenta, breast, and pancreas, as well as in osteoblast cells of bone and selected other cells of the bone marrow and cerebellum with some cells showing a cytoplasmic localization and others a nuclear localization. All cells of the kidney display negative staining for this protein. Interestingly, a stage specific expression of TIEG protein is found in a dozen breast cancer biopsies, using immunohistochemistry. The cells in normal breast epithelium displays a high expression of TIEG protein, those in the in situ carcinoma display less than one-half of the levels, and those in the invasive carcinoma show a complete absence of the TIEG protein. TIEG has been localized to chromosome 8q22.2 locus, the same locus as the genes involved in osteopetrosis and acute myeloid leukemia and close to the c-myc gene locus and a locus of high polymorphism in cancer biopsies. The correlation between the levels of TIEG protein and the stage of breast cancer, its prime location in human chromosome 8q22.2, and past studies with pancreatic carcinoma, suggests that TIEG may play a role in tumor suppressor gene activities, apoptosis, or some other regulatory function of cell cycle regulation. J. Cell. Biochem. 68:226-236, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 259-268 
    ISSN: 0730-2312
    Keywords: multifunctional Ca2+/calmodulin-dependent protein kinase ; cardiac isoforms ; muscle differentiation ; cell line Hgc2 ; adult rat heart ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Despite their important role in controlling the cardiac Ca2+ homeostasis, presence and functions of individual isoforms of the multifunctional Ca2+/calmodulin-dependent protein kinase in the heart are not well studied. Here we report on expression of isoforms of the δ class in two differentiation states of the embryonic rat heart-derived cell line H9c2 compared to adult rat heart. Reverse transcription coupled polymerase chain reaction analysis revealed specific expression patterns of four variants of the δ class (δB, δC, δ4, δ9) in adult rat heart, H9c2 myoblasts, and skeletal muscle-like H9c2 myotubes. δC was identified as a common isoform with higher amounts in H9c2 cells and the prominent one in myoblasts. In contrast, expression of δ9 accompanied cardiac as well as skeletal muscle differentiation. Expression of δB, however, was representative for differentiated cardiac muscle, whereas δ4 expression coincided with differentiation into the skeletal muscle-like state. Our results demonstrate differentiation-dependent isoform expression of the δ class of the multifunctional Ca2+/calmodulin-dependent protein kinase of muscle. The identification of cardiac target proteins for this kinase, e.g. the α1-subunit of the L-type Ca2+ channel, the sarcoplasmic reticulum Ca2+-ATPase, phospholamban and the ryanodine receptor define H9c2 myoblasts as a suitable model system for further functional characterization of the identified cardiac δ isoforms. J. Cell. Biochem. 68:259-268, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    ISSN: 0730-2312
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We are using viral oncogene probes to study the pathways by which osteoblast-specific gene expression is induced in ascorbic acid-treated MC3T3-E1 cells. The 12S product of the adenovirus E1A gene binds directly to key cellular regulators and, as a result, represses tissue specific gene expression and blocks differentiation in a wide variety of cell types. The main cellular targets of the E1A 12S product are the pRB family and p300/CBP family. The p300 family appears to be the primary target for E1A-mediated repression of tissue-specific gene expression in a variety of cell types. We have generated MC3T3-E1 cell lines that stably express either the wild-type 12S product or a mutant that targets p300/CBP, but not the pRB family. Using these constructs to dissect osteoblast differentiation, we found that targeting of p300/CBP appears to be sufficient to repress alkaline phosphatase expression, although a low but functional level of expression can be maintained if the pRB family is not targeted as well. Induction of alkaline phosphatase expression and activity can be dissociated from expression of late-stage markers such as osteocalcin and osteopontin. Surprisingly, cell lines exhibiting severe repression of alkaline phosphatase activity differentiate to a mineral-secreting phenotype much like normal MC3T3-E1 cells. Osteopontin induction is dependent on at least a minimal level of alkaline phosphatase activity, although it is not dependent on induction of alkaline phosphatase at the RNA level. If alkaline phosphatase is supplied exogenously, osteopontin expression can be induced in conditions in which endogenous alkaline phosphatase is severely repressed. J. Cell. Biochem. 68:269-280, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 281-285 
    ISSN: 0730-2312
    Keywords: QM ; large P-antigen ; 60S ribosomal subunit ; colocalization ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: QM is a human cDNA originally isolated as a transcript elevated in a nontumorigenic Wilms' tumor microcell hybrid, relative to the tumorigenic parental cell line. The QM gene encodes a 24 kDa basic protein that peripherally associates with the ribosomes. Recently, the gene for this protein has also been shown in Saccharomyces cerevisiaeto encode an essential 60S ribosomal subunit protein that is required for the joining of the 40S and 60S subunits. Since the association of QM with ribosomes can be disrupted with 1M NaCl, which has no effect on the association of core ribosomal proteins, indirect immunofluorescent cell staining was performed to colocalize the QM protein with the human large P-antigen, a core ribosomal protein of the 60S subunit, and to determine whether the assembly of the QM protein onto the 60S ribosomal subunit occurs in the nucleolus or in the cytoplasm. Our results reveal that QM co-localizes with the large P-antigen only to the cytoplasm where the rough endoplasmic reticulum is found and not to the nucleolus where ribosome assembly occurs. This finding suggests that the QM protein is most likely involved in a late step of the 60S subunit assembly and is added to the 60S ribosomal subunit in the cytoplasm and not in the nucleolus. J. Cell. Biochem. 68:281-285, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 309-327 
    ISSN: 0730-2312
    Keywords: in vitro replication ; ors8 ; Oct-1 transcription factor ; POU domain ; mammalian autonomously replicating DNA sequence ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: A 186-base pair fragment of ors8, a mammalian autonomously replicating DNA sequence isolated by extrusion of nascent monkey DNA in early S phase, has previously been identified as the minimal sequence required for replication function in vitro and in vivo. This 186-base pair fragment contains, among other sequence characteristics, an imperfect consensus binding site for the ubiquitous transcription factor Oct-1. We have investigated the role of Oct-1 protein in the in vitro replication of this mammalian origin. Depletion of the endogenous Oct-1 protein, by inclusion of an oligonucleotide comprising the Oct-1 binding site, inhibited the in vitro replication of p186 to approximately 15-20% of the control, whereas a mutated Oct-1 and a nonspecific oligonucleotide had no effect. Furthermore, immunodepletion of the Oct-1 protein from the HeLa cell extracts by addition of an anti-POU antibody to the in vitro replication reactioninhibited p186 replication to 25% of control levels. This inhibition of replication could be partially reversed to 50-65% of control levels, a two- to threefold increase, upon the addition of exogenous Oct-1 POU domain protein.Site-directed mutagenesis of the octamer binding site in p186 resulted in a mutant clone, p186-MutOct, which abolished Oct-1 binding but was still able to replicate as efficiently as the wild-type p186. The results suggest that Oct-1 protein is an enhancing component in the in vitro replication of p186 but that its effect on replication is not caused through direct binding to the octamer motif. J. Cell. Biochem. 68:309-327, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    ISSN: 0730-2312
    Keywords: PEPCK ; adipocytes ; transcription ; fatty acids ; fibrates ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Phosphoenolpyruvate carboxykinase (PEPCK) exerts a glyceroneogenic function in adipocytes in which transcription of its gene is increased by unsaturated fatty acids and fibrates. We used cultured rat adipose tissue fragments and 3T3-F442A adipocytes to show that the antidiabetic thiazolidinedione BRL 49653, a ligand and an activator of the γ isoform of peroxisome proliferator activated receptors (PPARγ), is a potent inducer of PEPCK mRNA. In 3T3-F442A adipocytes, the effect of BRL 49653 is rapid and concentration dependent, with a maximum reached at 1 μM and a half-maximum at 10-100 nM. PEPCK mRNA is similarly induced by the natural ligand of PPARγ, the 15-deoxy-Δ12-14 prostaglandin J2. These observations strongly suggest that PPARγ is a primary regulator of PEPCK gene expression in adipocytes. Dexamethasone at 10 nM repress induction of PEPCK mRNA by 1 μM BRL 49653, 0.32 mM oleate, or 1 mM clofibrate, in a cycloheximide-independent manner. The antiglucocorticoid RU 38486 prevents dexamethasone action, demonstrating involvement of the glucocorticoid receptor. Stable transfectants of 3T3-F442A adipocytes bearing -2100 to +69 base pairs of the PEPCK gene promoter fused to the chloramphenicol acetyltransferase (CAT) gene respond to 1 μM BRL 49653 or 1 mM clofibrate by a large increase in CAT activity, which is prevented by the simultaneous addition of 10 nM dexamethasone. Hence, in adipocytes, glucocorticoids act directly through the 5′-flanking region of the PEPCK gene to repress, in a dominant fashion, the stimulation of PEPCK gene transcription by thiazolidinediones and fibrates. J. Cell. Biochem. 68:298-308, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 170
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 287-297 
    ISSN: 0730-2312
    Keywords: aorta ; mineralization ; calcification ; hydroxyapatite ; inhibitors ; arteriosclerosis ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Mineralization of aorta is known to occur late in life and appears to be a pathological phenomenon. In vitro studies revealed that the matrix prepared from the thoracic aorta pieces after their extraction with 3% Na2HPO4 and 0.1 mM CaCl2 were mineralized under physiological conditions of temperature, pH, and ionic strength of the media to form matrix-bound mineral phase resembling hydroxyapatite in nature. However, the matrix identically prepared from the unextracted rabbits aortae failed to mineralize under identical assay conditions. The addition of the aorta extract in the assay system inhibited the above mineralization process. Standard biochemical techniques, e.g., dialysis, ion exchange, and molecular sieve chromatography, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and amino acid analysis by high-performance liquid chromatography were employed to isolate, purify, and characterize the potent inhibitory biomolecules from the aorta extract. The inhibitory activity of the aorta extract was found to be primarily due to the presence of three biomolecules having molecular weights of 66, 45, and 27-29 kDa. The above inhibitory biomolecules loosely associated with aorta may be involved in the control of calcification associated with arteriosclerosis. J. Cell. Biochem. 68:287-297, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 171
    ISSN: 0730-2312
    Keywords: cell proliferation ; tumor progression ; EGF receptor ; ErbB ; HER1 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is an activating ligand for the EGF receptor (HER1/ErbB1) and the high-affinity receptor for diphtheria toxin (DT) in its transmembrane form (proHB-EGF). HB-EGF was immunolocalized within human benign and malignant prostatic tissues, using monospecific antibodies directed against the mature protein and against the cytoplasmic domain of proHB-EGF. Prostate carcinoma cells, normal glandular epithelial cells, undifferentiated fibroblasts, and inflammatory cells were not decorated by the anti-HB-EGF antibodies; however, interstitial and vascular smooth muscle cells were highly reactive, indicating that the smooth muscle compartments are the major sites of synthesis and localization of HB-EGF within the prostate. In marked contrast to prostatic epithelium, proHB-EGF was immunolocalized to seminal vesicle epithelium, indicating differential regulation of HB-EGF synthesis within various epithelia of the reproductive tract. HB-EGF was not overexpressed in this series of cancer tissues, in comparison to the benign tissues. In experiments with LNCaP human prostate carcinoma cells, HB-EGF was similar in potency to epidermal growth factor (EGF) in stimulating cell growth. Exogenous HB-EGF and EGF each activated HER1 and HER3 receptor tyrosine kinases and induced tyrosine phosphorylation of cellular proteins to a similar extent. LNCaP cells expressed detectable but low levels of HB-EGF mRNA; however, proHB-EGF was detected at the cell surface indirectly by demonstration of specific sensitivity to DT. HB-EGF is the first HER1 ligand to be identified predominantly as a smooth muscle cell product in the human prostate. Further, the observation that HB-EGF is similar to EGF in mitogenic potency for human prostate carcinoma cells suggests that it may be one of the hypothesized stromal mediators of prostate cancer growth. J. Cell. Biochem. 68:328-338, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 172
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 339-354 
    ISSN: 0730-2312
    Keywords: glutathione ; reactive oxygen intermediates ; HIV ; signal transduction ; cytokines ; redox state ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Both clinical and experimental evidence indicates that AIDS-related Kaposi's sarcoma (AIDS-KS) has a multifactorial pathogenesis with factors such as HIV viral load, latent virus induction, and opportunistic infections contributing to disease progression. However, a consistent feature that unites these apparently diverse putative etiologic agents is sustained serum elevations of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α). While virtually every cell responds to TNF-α with gene activation, the extent of TNF-α-mediated cellular signaling is regulated by a delicate balance between signal activation and signal arresting events. Reactive oxygen intermediates (ROI), which are generated as a consequence of TNF-α membrane interaction, are part of this TNF-α-initiated cellular activation cascade. Previous studies in our laboratory have shown that AIDS-KS cells possess impaired oxygen intermediate scavenging capacities, thereby establishing conditions permissive for the intracellular retention of ROI. In this study, we used cellular capacity to upregulate the cytoprotective enzyme superoxide dismutase (SOD) to address the extent of cellular response to TNF-α. Concurrent with the SOD analyses, nucleotide profiles were obtained to assess cellular bioenergetic responses during TNF-α challenge. Proliferative growth levels of mitochondrial (Mn)SOD activities showed an activity spectrum ranging from lowest activity in AIDS-KS cells, to intermediate levels in matched, nonlesional cells from the AIDS-KS donors, to highest activities in HIV- normal fibroblasts. In contrast, following TNF-α challenge, the AIDS-KS and KS donor nonlesional cells showed a 11.89- and 5.86-fold respective increase in MnSOD activity, while the normal fibroblasts demonstrated a 1.35-fold decrease. Subsequent thiol redox modulation studies showed that only the normal fibroblast cultures showed a potentiation of TNF-α-mediated MnSOD upregulation following GSH depletion. In addition, provision of the GSH precursor, N-acetylcysteine during TNF-α challenge only diminished MnSOD activity and mitochondrial compartmentalization in the AIDS-KS cells, a finding that likely reflects the lower levels of reduced thiols in this cellular population. Our data, which show that a perturbation in their cellular thiol redox status accentuates AIDS-KS cellular responsiveness to TNF-α, suggest a biochemical rationale for the recognized TNF-α AIDS-KS clinical correlation. J. Cell. Biochem. 68:339-354, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 173
    ISSN: 0730-2312
    Keywords: mechanical loading ; gene expression ; osteopontin ; myeloperoxidase ; rats ; differential display ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The skeleton has the ability to alter its mass, geometry, and strength in response to mechanical stress. In order to elucidate the molecular mechanisms underlying this phenomenon, differential display reverse transcriptase-polymerase chain reaction (DDRT-PCR) was used to analyze gene expression in endocortical bone of mature female rats. Female Sprague-Dawley rats, approximately 8 months old, received either a sham or bending load using a four-point loading apparatus on the right tibia. RNA was collected at 1 h and 24 h after load was applied, reverse-transcribed into cDNA, and used in DDRT-PCR. Parallel display of samples from sham and loaded bones on a sequencing gel showed several regulated bands. Further analysis of seven of these bands allowed us to isolate two genes that are regulated in response to a loading stimulus. Nucleotide analysis showed that one of the differentially expressed bands shares 99% sequence identity with rat osteopontin (OPN), a noncollagenous bone matrix protein. Northern blot analysis confirms that OPN mRNA expression is increased by nearly 4-fold, at 6 h and 24 h after loading. The second band shares 90% homology with mouse myeloperoxidase (MPO), a bactericidal enzyme found primarily in neutrophils and monocytes. Semiquantitative PCR confirms that MPO expression is decreased 4- to 10-fold, at 1 h and 24 h after loading. Tissue distribution analysis confirmed MPO expression in bone but not in other tissues examined. In vitro analysis showed that MPO expression was not detectable in total RNA from UMR 106 osteoblastic cells or in confluent primary cultures of osteoblasts derived from either rat primary spongiosa or diaphyseal marrow. Database analysis suggests that MPO is expressed by osteocytes. These findings reinforce the association of OPN expression to bone turnover and describes for the first time, decreased expression of MPO during load-induced bone formation. These results suggest a role for both OPN and MPO expression in bone cell function. J. Cell. Biochem. 68:355-365, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 174
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 366-377 
    ISSN: 0730-2312
    Keywords: PC-1 ; insulin action ; insulin resistance ; insulin receptor ; tyrosine kinase ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: An elevated content of membrane glycoprotein PC-1 has been observed in cells and tissues of insulin resistant patients. In addition, in vitro overexpression of PC-1 in cultured cells induces insulin resistance associated with diminished insulin receptor tyrosine kinase activity. We now find that PC-1 overexpression also influences insulin receptor signaling at a step downstream of insulin receptor tyrosine kinase, independent of insulin receptor tyrosine kinase. In the present studies, we employed Chinese hamster ovary cells that overexpress the human insulin receptor (CHO IR cells; ∼106 receptors per cell), and transfected them with human PC-1 c-DNA (CHO IR PC-1). In CHO IR PC-1 cells, insulin receptor tyrosine kinase activity was unchanged, following insulin treatment of cells. However, several biological effects of insulin, including glucose and amino acid uptake, were decreased. In CHO IR PC-1 cells, insulin stimulation of mitogen-activated protein (MAP) kinase activity was normal, suggesting that PC-1 overexpression did not affect insulin receptor activation of Ras, which is upstream of MAP kinase. Also, insulin-stimulated phosphatidylinositol (PI)-3-kinase activity was normal, suggesting that PC-1 overexpression did not interfere with the activation of this enzyme by insulin receptor substrate-1. In these cells, however, insulin stimulation of p70 ribosomal S6 kinase activity was diminished. These studies suggest, therefore, that, in addition to blocking insulin receptor tyrosine kinase activation, PC-1 can also block insulin receptor signaling at a post-receptor site. J. Cell. Biochem. 68:366-377, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 175
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 378-388 
    ISSN: 0730-2312
    Keywords: apoptosis ; growth suppression ; retinoic acid receptors ; ovarian cancer ; AHPN ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We have used conformationally restricted retinoids to investigate the role of individual RAR subtypes and RXR in mediating the growth response of ovarian tumor cells to retinoids. Our results show that treatment of all-trans-RA-sensitive CAOV-3 cells with retinoids that bind and activate a single RAR or RXR led to a partial inhibition of growth. Treatment of all-trans-RA- resistant SKOV-3 cells did not alter growth. Maximum inhibition of growth, comparable to that observed following treatment with natural retinoids such as all-trans-RA and 9-cis-RA, was obtained only following treatment with a combination of an RAR-selective compound and an RXR-selective one. These results suggest that activation of both RAR and RXR classes is required in order to obtain maximum inhibition of ovarian tumor cell growth by retinoids. In addition, one compound, AHPN, was found to inhibit both RA-sensitive CAOV-3 and RA-resistant SKOV-3 cells. Further study of the effects of this retinoid showed that AHPN acts through an apoptotic pathway. Taken together, our results suggest that retinoids may serve as effective anti-proliferative agents in the treatment of ovarian cancer. J. Cell. Biochem. 68:378-388, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 176
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 389-401 
    ISSN: 0730-2312
    Keywords: cytoskeleton ; cell motility ; intracellular dynamics ; stress fibers ; heavy chain ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Fluorescently labeled smooth muscle myosin II is often used to study myosin II dynamics in non-muscle cells. In order to provide more specific tools for tracking non-muscle myosin II in living cytoplasm, fluorescent analogues of non-muscle myosin IIA and IIB were prepared and characterized. In addition, smooth and non-muscle myosin II were labeled with both cy5 and rhodamine so that comparative, dynamic studies may be performed. Non-muscle myosin IIA was purified from bovine platelets, non-muscle myosin IIB from bovine brain, and smooth muscle myosin II from turkey gizzards. After being fluorescently labeled with tetramethylrhodamine-5-iodoacetamide or with a succinimidyl ester of cy5, they retained the following properties: (1) reversible assembly into thick filaments, (2) actin-activatable MgATPase, (3) phosphorylation by myosin light chain kinase, (4) increased MgATPase upon light-chain phosphorylation, (5) interconversion between 6S and 10S conformations, and (6) distribution into endogenous myosin II-containing structures when microinjected into cultured cells. These fluorescent analogues can be used to visualize isoform-specific dynamics of myosin II in living cells. J. Cell. Biochem. 68:389-401, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 177
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 403-410 
    ISSN: 0730-2312
    Keywords: extracellular matrix ; gene therapy ; collagen ; matrix metalloproteinase ; tissue inhibitor of metalloproteinase ; transforming growth factor ; decorin ; cardiomyopathy ; hypertrophy ; ischemia ; fibrosis; functional genomics ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: In chronic congestive heart failure, an illness affecting more than 4 million Americans, there is impairment of myocardial extracellular matrix (ECM) remodeling. Failing human ventricular myocardium contains activated matrix metalloproteinases (MMPs), which are involved in adverse ECM remodeling. Our studies support the concept that impaired ECM remodeling and MMP activation are, in part, responsible for the cardiac structural deformation and heart failure.There is no known program that has declared its aim the investigation of the role of ECM gene therapy in heart failure. The development of transgenic technology, and emerging techniques for in vivo gene transfer, suggest a strategy for improving cardiac function by overexpressing or downregulation of the ECM components such as MMPs, tissue inhibitor of metalloproteinases (TIMPs), transforming growth factor-β1 (TGF-β), decorin, and collagen in cardiomyopathy and heart failure. J. Cell. Biochem. 68:403-410, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 178
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 411-426 
    ISSN: 0730-2312
    Keywords: bone marrow stroma ; human ; differentiation ; TGF-β ; BMP-2 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Osteoprogenitor cells in the human bone marrow stroma can be induced to differentiate into osteoblasts under stimulation with hormonal and local factors. We previously showed that human bone marrow stromal (HBMS) cells respond to dexamethasone and vitamin D by expressing several osteoblastic markers. In this study, we investigated the effects and interactions of local factors (BMP-2 and TGF-β2) on HBMS cell proliferation and differentiation in short-term and long-term cultures. We found that rhTGF-β2 increased DNA content and stimulated type I collagen synthesis, but inhibited ALP activity and mRNA levels, osteocalcin production, and mineralization of the matrix formed by HBMS cells. In contrast, rhBMP-2 increased ALP activity and mRNA levels, osteocalcin levels and calcium deposition in the extracellular matrix without affecting type I collagen synthesis and mRNA levels, showing that rhBMP-2 and rhTGF-β2 regulate differentially HBMS cells. Co-treatment with rhBMP-2 and rhTGF-β2 led to intermediate effects on HBMS cell proliferation and differentiation markers. rhTGF-β2 attenuated the stimulatory effect of rhBMP-2 on osteocalcin levels, and ALP activity and mRNA levels, whereas rhBMP-2 reduced the rhTGF-β2-enhanced DNA synthesis and type I collagen synthesis. We also investigated the effects of sequential treatments with rhBMP-2 and rhTGF-β2 on HBMS cell differentiation in long-term culture. A transient (9 days) treatment with rhBMP-2 abolished the rhTGF-β2 response of HBMS cells on ALP activity. In contrast, a transient (10 days) treatment with rhTGF-β2 did not influence the subsequent rhBMP-2 action on HBMS cell differentiation. The data show that TGF-β2 acts by increasing HBMS cell proliferation and type I collagen synthesis whereas BMP-2 acts by promoting HBMS cell differentiation. These observations suggest that TGF-β2 and BMP-2 may act in a sequential manner at different stages to promote human bone marrow stromal cell differentiation towards the osteoblast phenotype. J. Cell. Biochem. 68:411-426, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 179
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 427-435 
    ISSN: 0730-2312
    Keywords: α2-macroglobulin ; albumin ; placenta ; zinc ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We have investigated the binding and internalization of α2-macroglobulin and serum albumin by human placental syncytiotrophoblast cells in vitro. The time course (obtained at 4°C) of α2-macroglobulin binding indicated that an equilibrium was reached after 4 h. The binding of 125I-labelled α2-macroglobulin to syncytiotrophoblast cells was competitively reduced in the presence of excess unlabelled α2-macroglobulin. When the concentration-dependence of binding was examined over a wide concentration range, non-linear regression analysis yielded a Kd of 6.4 nM. In the case of albumin, binding was weak and ligand dissociated from the cell surface during aqueous washing making it impractical to analyze the binding reaction. In other experiments, syncytiotrophoblast cells were incubated with 125I-labelled α2-macroglobulin at 37°C. Under these conditions, trypsin-resistant cell-associated radioactivity increased with time consistent with ligand internalization. 125I-Labelled-ligand was internalized with a t1/2 of about 5 min. After a lag period some radioactivity was released back into the incubation medium. When measured at times up to 210 min, this was found to consist of mostly TCA-precipitable material that had been lost from the cell surface. However, when the incubation was extended to 24 h, almost 15% of the initial cell-associated radioactivity was released to the extracellular medium as TCA-soluble material, consistent with a slow rate of ligand degradation. The specific binding of 65Zn-labelled α2M was similar to that of the 125I-labelled ligand and trypsin-resistance measurements provided evidence of α2M-mediated 65Zn uptake. These results support a role for syncytiotrophoblast in the metabolism of α2-macroglobulin during pregnancy and are also consistent with a role for α2-macroglobulin in the maternal-fetal transport of zinc. J. Cell. Biochem. 68:427-435, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 180
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 436-445 
    ISSN: 0730-2312
    Keywords: mouse ; PDI family proteins ; retinoic acid ; dibutyryl cAMP ; differentiation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We investigated the expression of protein disulfide isomerase family proteins (PDI, ERp61, and ERp72) in mouse F9 teratocarcinoma cells during differentiation induced by treatment with retinoic acid and dibutyryl cAMP. Each member of this family was expressed at a constitutive level in undifferentiated F9 cells. During differentiation of F9 cells to parietal or visceral endodermal cells the protein level of all these enzymes increased, although the extent of this increase in both protein and mRNA levels varied among the enzymes. Certain proteins were found to be co-immunoprecipitated with PDI, ERp61, and ERp72 in the presence of a chemical crosslinker. Type IV collagen was significantly coprecipitated with PDI whereas laminin was equally coprecipitated with the three proteins. Furthermore, 210 kDa protein characteristically coprecipitated with ERp72. Thus, the induction of PDI family proteins during the differentiation of F9 cells and their association with different proteins may implicate specific functions of each member of this family despite the common redox activity capable of catalyzing the disulfide bond formation. J. Cell. Biochem. 68:436-445, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 181
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 446-456 
    ISSN: 0730-2312
    Keywords: IGF-I ; IGF-II ; cAMP ; PKA ; PKC ; prostaglandin ; osteoblasts ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Bone cells synthesize and respond to IGF-I and IGF-II which contribute to bone remodeling and linear growth. In osteoblasts, prostaglandin (PG)E2 stimulates IGF-I but not IGF-II synthesis through a cAMP-dependent protein kinase A (PKA)-related event. However, protein kinase C (PKC) activation by PGE2 enhances replication and protein synthesis by less differentiated periosteal cells more so than in osteoblast-enriched cultures from fetal rat bone. Using various PGs and other PKA and PKC pathway activators, the importance of these aspects of PGE2 activity has now been examined on IGF receptors in these bone cell culture models. PGE2 and other agents that activate PKA enhanced 125I-IGF-II binding to type 2 IGF receptors on both cell populations. In contrast, agents that activate PKC enhanced 125I-IGF-I binding to type 1 receptors on less differentiated bone cells, and of these, only phorbol myristate acetate (PMA), which activates PKC in a receptor-independent way, was effective in osteoblast-enriched cultures. No stimulator increased total type 1 receptor protein in either cell population. Consequently, ligand binding to type 1 and type 2 IGF receptors is differentially modulated by specific intracellular pathways in bone cells. Importantly, changes in apparent type 1 receptor number occur rapidly and may do so at least in part through post-translational effects. These results may help to predict new ways to manipulate autocrine or paracrine actions by IGFs in skeletal tissue. J. Cell. Biochem. 68:446-456, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 182
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 457-471 
    ISSN: 0730-2312
    Keywords: coated vesicles ; acetylcholine receptors ; AP180 ; myotube ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Monoclonal antibodies were generated to vesicular membranes of clathrin coated vesicles enriched for acetylcholinesterase (AChE). One of these, C172, recognizes vesicles which accumulate in muscle cells around nuclei associated with acetylcholine receptor AChR clusters. Immunoblots of muscle extracts and brain purified clathrin coated vesicles show that C172 recognizes a 100 kd band in muscle, but a 180 kd band in brain. Western blots of purified AP180 protein stained with the two antibodies AP180.1 and C172 displayed the same staining pattern. Tryptic digests probed with peptide antibodies (PS26 and PS27) generated to known sequences of AP180 were used to map the epitope for C172 within the brain AP180 sequence. On immunoblots of digested AP180, all AP180 antibodies and C172 recognized a 100 kd tryptic fragment, however only C172 recognized a smaller 60 kd. Our results suggest that the C172 epitope is located within amino acids 305-598 of the AP180 sequence. Confocal fluorescence microscopy of myoblasts and myotubes stained with the C172 antibody gives a punctate immunofluorescence pattern. Myoblasts stained with C172 revealed a polarized distribution of vesicles distinct from that observed when cells are stained with γ adaptin antibody which is known to localize to trans Golgi network. Myotubes stained with C172 antibody reveal a linear array of vesicular staining. Quantitative analysis of C172 reactive vesicles revealed a significant increase in number of vesicles present around the nuclei associated with the acetylcholine receptor clusters. These vesicles did not colocalize with the Golgi cisternae. These results indicate that a protein with homology to the neuron-specific coated vesicle protein AP180, is present in muscle cells associated with vesicles showing significant concentration around postsynaptic nuclei present in close proximity to AChR clusters. J. Cell. Biochem. 68:457-471, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 183
    ISSN: 0730-2312
    Keywords: taxol ; microtubules ; vimentin ; intermediate filaments ; protein phosphorylation ; protein kinases ; inhibitors ; cytoskeleton ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Taxol, a microtubule stabilizing agent, has been extensively investigated for its antitumor activity. The cytotoxic effect of taxol is generally attributed to its antimicrotubule activity and is believed to be cell cycle dependent. Herein, we report that taxol induces hyperphosphorylation and reorganization of the vimentin intermediate filament in 9L rat brain tumor cells, in concentration- and time-dependent manner. Phosphorylation of vimentin was maximum at 10-6 M of taxol treatment for 8 h and diminished at higher (10-5 M) concentration. Enhanced phosphorylation of vimentin was detectable at 2 h treatment with 10-6 M taxol and was maximum after 12 h of treatment. Taxol-induced phosphorylation of vimentin was largely abolished in cells pretreated with staurosporine and bisindolymaleimide but was unaffected by H-89, KT-5926, SB203580, genistein, and olomoucine. Thus, protein kinase C may be involved in this process. Hyperphosphorylation of vimentin was accompanied by rounding up of cells as revealed by scanning electron microscopy. Moreover, there was a concomitant reorganization of the vimentin intermediate filament in the taxol-treated cells, whereas the microtubules and the actin microfilaments were less affected. Taken together, our data demonstrate that taxol induces hyperphosphorylation of vimentin with concomitant reorganization of the vimentin intermediate filament and that this process may be mediated via a protein kinase C signaling pathway. J. Cell Biochem. 68:472-483, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 184
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 484-499 
    ISSN: 0730-2312
    Keywords: YY1 ; zinc finger ; high-molecular-weight complex ; plasmid transfection ; nuclear matrix association ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: YY1 is a zinc finger-containing transcription factor that can both repress and activate transcription. YY1 appears to use multiple mechanisms to carry out its diverse functions. Recently, it was observed that YY1 can exist in multiple nuclear compartments. In addition to being present in the nuclear extract fraction, YY1 is also a component of the nuclear matrix. We show that YY1 can be sequestered in vivo into a high-molecular-weight complex and can be dislodged from this complex either by treatment with formamide or by incubation with an oligonucleotide containing the YY1 DNA binding site sequence. By transfecting plasmids expressing various YY1 deletion constructs and subsequent nuclear fractionation, we have identified sequences necessary for association with the nuclear matrix. These sequences (residues 256-340) co-localized with those necessary for in vivo sequestration of YY1 into the high-molecular-weight complex. We have also characterized YY1 sequences necessary for repression of activated transcription (residues 333-371) and those necessary for masking of the YY1 transactivation domain (residues 371-397). Sequences that repress activated transcription partially overlap YY1 sequences necessary for association with the nuclear matrix. However, these sequences are distinct from those that appear to mask the YY1 transactivation domain. The potential role of nuclear matrix association in controlling YY1 function is discussed. J. Cell. Biochem. 68:484-499, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 185
    ISSN: 0730-2312
    Keywords: transcription factor ; nuclear matrix ; YY1 ; amino acids ; functional regulation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The multifunctional transcription factor YY1 is associated with the nuclear matrix. In osteoblasts, the interaction of several nuclear matrix-associated transcription factors with the bone specific osteocalcin gene contributes to tissue-specific and steroid hormone-mediated transcription. A canonical nuclear matrix targeting signal (NMTS) is present in all members of the AML/CBFβ transcription factor family, but not in other transcription factors. Therefore, we defined sequences that direct YY1 (414 amino acids) to the nuclear matrix. A series of epitope tagged deletion constructs were expressed in HeLa S3 and in human Saos-2 osteosarcoma cells. Subcellular distribution was determined in whole cells and nuclear matrices in situ by immunofluorescence. We demonstrated that amino acids 257-341 in the C-terminal domain of YY1 are necessary for nuclear matrix association. We also observed that sequences within the N-terminal domain of YY1 permit weak nuclear matrix binding. Our data further suggest that the Gal4 epitope tag contains sequences that affect subcellular localization, but not targeting to the nuclear matrix. The targeted association of YY1 with the nuclear matrix provides an additional level of functional regulation for this transcription factor that can exhibit positive and negative control. J. Cell. Biochem. 68:500-510, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 186
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 68 (1998), S. 511-524 
    ISSN: 0730-2312
    Keywords: actin ; permeability ; reoxygenation ; signal transduction ; cytoskeletal rearrangement ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Hypoxia/reoxygenation injury to cultured endothelial cells results in cytoskeletal rearrangement and second messenger activation related to increased monolayer junctional permeability. Cytoskeletal rearrangement by reactive oxygen species may be related to specific activation of the phospholipase D (PLD) pathway. Human umbilical vein endothelial cell monolayers are exposed to H2O2 (100 μM) or metabolites of the PLD pathway for 1-60 min. Changes in cAMP levels, Ca2+ levels, PIP2 production, filamin distribution, and intercellular gap formation are then quantitated. H2O2-induced filamin translocation from the membrane to the cytosol occurs after 1-min H2O2 treatment, while intercellular gap formation significantly increases after 15 min. H2O2 and phosphatidic acid exposure rapidly decrease intracellular cAMP levels, while increasing PIP2 levels in a Ca2+-independent manner. H2O2-induced cAMP decreases are prevented by inhibiting phospholipase D. H2O2-induced cytoskeletal changes are prevented by inhibiting phospholipase D, phosphatidylinositol-4-phosphate kinase, phosphoinositide turnover, or by adding a synthetic peptide that binds PIP2. These data indicate that metabolites produced downstream of H2O2-induced PLD activation may mediate filamin redistribution and F-actin rearrangement. J. Cell. Biochem. 68:511-524, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 187
    ISSN: 0730-2312
    Keywords: nuclear matrix ; replication origin ; topoisomerase II-mediated DNA loop excision ; DNA loop anchorage sites ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The recently developed procedure of topoisomerase II-mediated DNA loop excision has been used to analyze the topological organization of a human genome fragment containing the gene encoding lamin B2 and the ppv1 gene. A 3.5 kb long DNA loop anchorage/topoisomerase II cleavage region was found within the area under study. This region includes the end of the lamin B2 coding unit and an intergenic region where an origin of DNA replication was previously found. These observations further corroborate the hypothesis that DNA replication origins are located at or close to DNA loop anchorage regions. J. Cell. Biochem. 69:13-18, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 188
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 1-12 
    ISSN: 0730-2312
    Keywords: two-hybrid system ; vitamin D receptor ; retinoid X receptor ; vitamin D ; protein L7 ; basic region leucine zipper domain ; coregulation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The vitamin D receptor (VDR) heterodimerizes with the retinoid X receptor (RXR) and requires additional protein-protein interactions to regulate the expression of target genes. Using the yeast two-hybrid system, we identified the previously described protein L7, that specifically interacted with the VDR in the presence of vitamin D. Deletion analysis indicated, that the N-terminus of L7, which harbours a basic region leucine zipper like domain, mediated interaction with the VDR. Binding assays with purified GST-L7 demonstrated, that L7 specifically pulled down the VDR, that was either expressed in yeast or endogenously contained in the cell line U937. Interestingly, L7 inhibited ligand-dependent VDR-RXR heterodimerization, when constitutively expressed in yeast. We also demonstrate that L7 repressed binding of VDR-RXR heterodimers to a vitamin D response element. Surprisingly, L7 recruited RXR to the same response element in the presence of 9-cis retinoic acid. Ligand-dependent protein-protein interaction in the yeast two-hybrid system confirmed, that binding of L7 also was targeted at the RXR. Our data suggest, that protein L7 is a coregulator of VDR-RXR mediated transactivation of genes, that modulates transcriptional activity by interfering with binding of the receptors to genomic enhancer elements. J. Cell. Biochem. 69:1-12, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 189
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 19-29 
    ISSN: 0730-2312
    Keywords: interleukin-1 ; reactive oxygen species ; nitric oxide ; c-fos ; collagenase ; chondrocytes ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Interleukin-1β (IL-1) is implicated in cartilage destruction in arthritis through promotion of matrix metalloproteinase production. Upregulation of collagenase gene expression by IL-1 is known to require the transactivators Fos and Jun. Recently, reactive oxygen species (ROS) have been suggested to act as intracellular signaling molecules mediating the biological effects of cytokines. Here, we demonstrated ROS production by IL-1-stimulated bovine chondrocytes and that neutralizing ROS activity by the potent antioxidant, N-acetylcysteine, or inhibiting endogenous ROS production by diphenyleneiodonium (DPI), significantly attenuated IL-1-induced c-fos and collagenase gene expression. The inhibitory effect of DPI implicates enzymes such as NADPH oxidase in the endogenous production of ROS. Chondrocytes were also found to produce nitric oxide (NO) upon IL-1 stimulation. That NO may mediate part of the inducing effects of IL-1 was supported by the observation that L-NG-monomethylarginine, a NO synthase inhibitor, partially inhibited IL-1-regulated collagenase expression. Moreover, treatment of chondrocytes with the NO-producing agent, S-nitroso-N-acetylpenicillamine, was sufficient to induce collagenase mRNA levels. In summary, our results suggest that ROS released in response to IL-1 may function as second messengers transducing extracellular stimuli to their targets in the nucleus, leading to augmentation of gene expression. J. Cell. Biochem. 69:19-29, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 190
    ISSN: 0730-2312
    Keywords: genistein ; breast cancer ; p21WAF1/CIP1 ; G2/M arrest ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Genistein has been proposed to be responsible for lowering the rate of breast cancer in Asian women but the mechanism for this chemopreventive effect in vivo is unknown. In this study, we present in vitro evidence that genistein inhibits cell proliferation similarly in ER-positive and ER-negative human breast carcinoma cell lines. This inhibition is associated with specific G2/M arrest and induction of p21WAF1/CIP1 expression. Genistein results in a five- to six-fold increase in p21WAF1/CIP1 mRNA levels and a three- to four-fold increase in protein levels, only a 1.5-fold increase in p21WAF1/CIP1 transcription but a three- to six-fold increase in p21WAF1/CIP1 mRNA stability. The increase in p21WAF1/CIP1 is followed by increased apoptosis. The similar effects of genistein on a number of breast carcinoma cell lines with different ER and p53 status suggest that the actions of genistein reported here are mediated through ER and p53 independent mechanisms. The chemopreventive effects of genistein in vivo could be mediated along an identical or similar anti-proliferative pathway. J. Cell. Biochem. 69:44-54, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 191
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 30-43 
    ISSN: 0730-2312
    Keywords: hyperthermia ; calreticulin ; chaperone complexes ; prompt glycosylation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Acute heat stress leads to the glycosylation of a “prompt” stress glycoprotein, P-SG67/64, identified as calreticulin. In the present study, we used immunoprecipitation to investigate the interactions of P-SG/calreticulin with other proteins during cellular recovery from heat stress. In heat-stressed CHO and M21 cells, both glycosylated and unglycosylated P-SGs interact with HSP90, GRP94, GRP78, and the other prompt stress glycoprotein, P-SG50, in an ATP-independent manner. Specificity of HSP-P-SG interactions was determined by chemical cross-linking with the homo-bifunctional agent DSP (3,3′-dithiobis[succinimidyl propionate]). Characterization of the cross-linked complexes involving calreticulin and heat shock proteins (HSPs) showed an average mass of 400-600 kDa by gel filtration chromatography. Overall, the consistent association of glycosylated and unglycosylated calreticulin with P-SG50 and unglycosylated HSPs suggests that P-SG/calreticulin is an active member of the cast of glycone/aglycone chaperones that cooperate to achieve cellular recovery from acute heat stress. J. Cell. Biochem. 69:30-43, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 192
    ISSN: 0730-2312
    Keywords: TGF-α ; antisense oligonucleotides ; head and neck cancer ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Interruption of an autocrine growth pathway involving TGF-α and EGFR may inhibit tumor growth and improve survival in head and neck cancer patients. We previously demonstrated that biopsy specimens and established cell lines from patients with squamous cell carcinoma of the head and neck (SCCHN) overexpress TGF-α and its receptor, epidermal growth factor receptor (EGFR) at both the mRNA and protein levels. Protein localization studies showed that TGF-α and EGFR are produced by the same epithelial cells in tissues from head and neck cancer patients further supporting a role for this ligand-receptor pair in an autocrine growth pathway. To confirm that TGF-α contributes to autocrine growth, we examined the effect of down regulation of TGF-α protein on SCCHN cell proliferation. Treatment of 6 SCCHN cell lines with antisense oligodeoxynucleotides targeting the translation start site of human TGF-α mRNA decreased TGF-α protein production by up to 93% and reduced cell proliferation by a mean of 76.2% compared to a 9.7% reduction with sense oligonucleotide (range P〈0R 〉 = 0.036-0.0001). TGF-α antisense oligonucleotide exposure also decreased TGF-α protein levels in normal oropharyngeal mucosal epithelial cells, however their growth rate was not affected. These findings indicate that TGF-α is participating in an autocrine signaling pathway in transformed, but not in normal mucosal epithelial cells, that promotes proliferation. J. Cell. Biochem. 69:55-62, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 193
    ISSN: 0730-2312
    Keywords: angiotensin II ; G proteins ; Src tyrosine kinases ; c-Fos ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Angiotensin II stimulates a biphasic activation of Raf-1, MEK, and ERK in WB liver epithelial cells. The first peak of activity is rapid and transient and is followed by a sustained phase. Angiotensin II also causes a rapid activation of p21ras in these cells. Moreover, two Src family kinases (Fyn and Yes) were activated by angiotensin II in a time- and concentration-dependent manner. Microinjection of antibodies against Fyn and Yes blocked angiotensin II-induced DNA synthesis and c-Fos expression in WB cells, indicating an obligatory involvement of these tyrosine kinases in the activation of the ERK cascade by angiotensin II. Finally, substantial reduction of the angiotensin II-stimulated activation of Fyn, Raf-1, ERK, and expression of c-Fos by pertussis toxin pretreatment argues that G proteins of the Gi family as well as the Gq family are involved in angiotensin II-mediated mitogenic pathways in WB cells. J. Cell. Biochem. 69:63-71, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 194
    ISSN: 0730-2312
    Keywords: human oocytes ; immunogold labeling ; splicing factors ; coilin ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The distribution of two splicing components (snRNP and SC-35) and coilin were studied by immunogold/electron microscopy in human oocytes from antral follicles at different levels of transcriptional activity (i.e., active, intermediate, and inactive). The results showed a decrease of snRNPs and SC-35 in the karyoplasm as the oocytes progress from a transcriptionally active to the inactive state. The main areas of accumulation of both these splicing components in all stages of oocytes appeared to be the interchromatin granule clusters (IGCs). Within the IGCs, the two splicing components seemed to be spatially segregated, with the snRNPs predominantly bound to the fibrillar region, whereas the SC-35 factors are being enriched in the granular zone. The p80 coilin was found only in the nucleolus-like body (NLB), which is present in all three stages of oocytes; no coiled bodies were evident. These data are consistent with the notion that splicing occurs in the karyoplasm and that the splicing components are mobilized from a storage site (IGCs) to the site of action. J. Cell. Biochem. 69:72-80, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 195
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 81-86 
    ISSN: 0730-2312
    Keywords: cell communication ; osteoblasts ; stromal cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We characterized the formation and regulation of the gap junction in calvarial osteoblasts and in a series of subtypes from marrow stromal cells. The stromal cells included osteogenic, chondro-osteogenic, and endothelial cells. The cell coupling was measured by using fluorescence dye injected into single cells, and its migration to neighboring cells was measured. The functional coupling of cells was highly expressed by the osteoblastic cells. This process is mediated through fast changes in intracellular Ca+2 levels. Calcium ionophore (A 23187) demonstrated an uncoupling effect on the cells. In addition, the exposure of the cells to the parathyroid hormone increased the formation of the gap junction complex; the highest level was demonstrated in the osteoblastic cells. J. Cell. Biochem. 69:81-86, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 196
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 87-93 
    ISSN: 0730-2312
    Keywords: MAP kinase pathways ; JNK ; human osteoblasts ; interleukin-1β ; UMR-106 cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We recently demonstrated the activation of extracellular signal- regulated protein kinase 1 and 2 (ERK1 and ERK2) by IGF-1, FGF-2, and PDGF-BB in normal human osteoblastic (HOB) cells as well as in rat and mouse osteoblastic cells. In this report, we have examined whether c-Jun NH2-Terminal Kinase (JNK) pathway is activated by growth factors and interleukin-1β (IL-1β) in normal HOB and rat UMR-106 cells using immune-complex kinase assay and anti-active JNK antibody, which recognizes activated forms of both JNK1 and JNK2. Results have demonstrated the presence of JNK1 and JNK2 proteins in normal HOB and UMR-106 cells. Both JNK1 and JNK2 were activated by IL-1β. IL-1β preferentially activated JNK pathway in a dose- and time-dependent manner and had little effect on ERK pathway. On the other hand, FGF-2 did not activate JNK but most strongly activated ERK pathway. The activation of JNK was maximal at 20 min whereas maximal activation of ERK1 and ERK2 was observed within 10 min. Results have clearly demonstrated that IL-1β preferentially activates JNK pathway whereas FGF-2 activates ERK pathway in normal human and rat UMR-106 osteoblastic cells. J. Cell. Biochem. 69:87-93, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 197
    ISSN: 0730-2312
    Keywords: mechanical strain ; interleukin (IL)-α and β gene expression ; proliferation ; protein synthesis ; morphology ; keratinocyte biology ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Recent studies in our laboratory have demonstrated that mechanical strain alters many facets of keratinocyte biology including proliferation, protein synthesis, and morphology. IL-1 is known to play an important role in the autocrine regulation of these basic cellular properties under basal and stimulated conditions. However, it is not known whether IL-1 plays a role in strain-induced alteration of keratinocyte biology. Thus, the objective of this study was to test the hypothesis that cyclic strain stimulates IL-1 expression and that strain-induced changes in keratinocyte function is regulated by IL-1. To test this hypothesis, we examined the effect of cyclic strain (10% average deformation) on keratinocyte IL-1 gene expression and the effect of neutralizing antibodies of IL-1α and IL-1β on strain-induced changes in keratinocyte proliferation, morphology, and orientation. Northern blot analyses demonstrated that steady state levels of IL-1α and β mRNA were elevated by 4 h, peaked at 12 h of cyclic strain (IL-1α, 304 ± 14.2%; IL-1β, 212 ± 5.6% increase vs. static controls) and decreased gradually by 24 h. IL-1 antibodies (IL-1α, 0.01 μg/ml; IL-1β, 0.01 μg/ml) significantly blocked strain-induced keratinocyte proliferation as well as the basal rate of proliferation. In contrast, IL-1 antibodies (IL-1α, 0.01 μg/ml; IL-1β, 0.1 μg/ml) had no effect on strain-induced morphological changes such as elongation and alignment. We conclude that mechanical strain induces IL-1 mRNA expression in keratinocytes. The role of IL-1 in mediating strain-induced changes in keratinocyte biology remains to be determined but appears to be independent of morphological changes. J. Cell. Biochem. 69:95-103, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 198
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 104-116 
    ISSN: 0730-2312
    Keywords: mRNA export ; cell cycle ; gene transfection ; cultured mammalian cells ; hnRNP L ; nuclear transport ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The pre-mRNA processing enhancer (PPE) element is an RNA sequence element derived from the intronless HSV-TK gene. Insertion of the element into the highly intron-dependent human β-globin gene leads to efficient expression in the absence of splicing. We have analyzed the effect of the PPE element on the expression of mouse thymidylate synthase (TS) minigenes. We have previously shown that the expression of intronless TS minigenes is moderately (up to 20-fold) stimulated by the inclusion of introns. Furthermore, S phase-specific expression of TS minigenes in growth-stimulated cells depends on the presence of a spliceable intron as well as the TS promoter. The goal of our study was to determine if the PPE element would overcome the dependence on introns for efficient expression and for S phase-specific expression of transfected TS minigenes. We found that insertion of the PPE element into an intronless TS minigene partially overcame intron dependence. However, the increase in expression was much less than that observed for the intronless β-globin gene. We also found that intronless TS or HSV-TK genes that contained the PPE element and that were driven by the TS promoter were expressed at a constant level in serum-stimulated cells. However, when an intron was included in these genes, they were expressed in an S phase-specific manner. Thus the PPE element was not able to overcome the dependence on introns for S phase-specific expression of TS minigenes. J. Cell. Biochem. 69:104-116, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 199
    ISSN: 0730-2312
    Keywords: chromosome architecture ; disassembly ; reassembly ; proteases ; in vitro model ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Topoisomerase II has been suggested to play a major role in chromosome organization based on its DNA decatenating activity and its ability to mediate direct binding interactions between DNA and nuclear matrix. However, this latter point remains controversial. Here we address the question of whether the chromatin binding activity of Topoisomerase II is sufficient to modify chromosome form using whole mammalian chromosomes in vitro. Intact chromosomes were microsurgically removed from living cells and disassembled by treatment with protease or heparin. When these disassembled chromosomes were incubated with recombinant human Topoisomerase II, the enzyme became incorporated into chromatin and reassembly resulted, leading to almost complete restoration of pre-existing chromosome shape and position within minutes. Chromosome reconstituition by Topoisomerase II was dose-dependent, saturable, and appeared to be controlled stoichiometrically, rather than enzymatically. Similar reassembly was observed in the absence of ATP and when a catalytically inactive thermosensitive Topoisomerase II mutant was used at the restrictive temperature. Chromosome recondensation also could be induced after the strand-passing activity of Topoisomerase II was blocked by treatment with an inhibitor of its catalytic activity, amsacrine. When a non-hydrolyzable β,γ-imido analog of ATP (AMP-PNP) was used to physiologically fix bound Topoisomerase II enzyme in a closed form around DNA, subsequent chromosome disassembly was prevented in the presence of high salt. These data suggest that Topoisomerase II may control higher order chromatin architecture through direct binding interactions, independently of its well-known catalytic activity. J. Cell. Biochem. 69:127-142, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 200
    ISSN: 0730-2312
    Keywords: haemochromatosis gene ; histone gene cluster ; YACs ; cosmid contig ; sequences ; species comparison ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The HFE (HLA-H) gene is a strong candidate gene for hereditary haemochromatosis and was localized on the short arm of chromosome 6 to 6p21.3-p22. In addition, the sequence of the homologous mouse and rat cDNA and a partial sequence from the mouse gene have been reported recently. In this report, we describe the location of the human and the mouse HFE (HLA-H) gene within the histone gene clusters on the human chromosome 6 and the mouse chromosome 13. Both the human and the murine gene were located on syntenic regions within the histone gene clusters in the vicinity of the histone H1t gene. The genomic sequence of the human HFE (HLA-H) gene and the 3′ portion of the homologous mouse gene were determined. Comparison of the genomic sequences from man and mouse and the cDNA sequence from rat shows significant similarities, also beyond the transcribed region of the mouse gene. J. Cell. Biochem. 69:117-126, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...