ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1,129)
Collection
  • Articles  (1,129)
Years
Journal
Topic
  • 11
    Publication Date: 2021-09-13
    Description: Driven by the increasingly complete observational knowledge of systems of satellite galaxies, mutual spatial alignments and relations in velocities among satellites belonging to a common host have become a productive field of research. Numerous studies have investigated different types of such phase-space correlations and were met with varying degrees of attention by the community. The Planes of Satellite Galaxies issue is maybe the best-known example, with a rich field of research literature and an ongoing, controversial debate on how much of a challenge it poses to the ΛCDM model of cosmology. Another type of correlation, the apparent excess of close pairs of dwarf galaxies, has received considerably less attention despite its reported tension with ΛCDM expectations. With the fast expansion of proper motion measurements in recent years, largely driven by the Gaia mission, other peculiar phase-space correlations have been uncovered among the satellites of the Milky Way. Examples are the apparent tangential velocity excess of satellites compared to cosmological expectations, and the unexpected preference of satellites to be close to their pericenters. At the same time, other kinds of correlations have been found to be more in line with cosmological expectations—specifically, lopsided satellite galaxy systems and the accretion of groups of satellite galaxies. The latter has mostly been studied in cosmological simulations thus far, but it offers the potential to address some of the other issues by providing a way to produce correlations among the orbits of a group’s satellite galaxy members. This review is the first to provide an introduction to the highly active field of phase-space correlations among satellite galaxy systems. The emphasis is on summarizing existing, recent research and highlighting interdependencies between the different, currently almost exclusively individually considered types of correlations. Future prospects in light of upcoming observational facilities and our ever-expanding knowledge of satellite galaxy systems beyond the Local Group are also briefly discussed.
    Electronic ISSN: 2075-4434
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2021-09-06
    Description: A theoretical investigation is carried out to study the propagation properties of ion acoustic shocks in a plasma comprising of positive inertial ions, weakly relativistic ion beam and trapped electrons in the presence of a quantizing magnetic field. By using the reductive perturbation technique, the Korteweg–de Vries-Burgers (KdVB) equation and oscillatory shocks solution are derived. The characteristics of such kinds of shock waves are examined and discussed in detail under suitable conditions for different physical parameters. The strength of the magnetic field, ion beam concentration and ion-beam streaming velocity have a great influence on the amplitude and width of the shock waves and oscillatory shocks. The results may be useful to study the characteristics of ion acoustic shock waves in dense astrophysical regions such as neutron stars.
    Electronic ISSN: 2075-4434
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2021-09-06
    Description: We study an influence of the leading coefficient of the parameterized line element of the spherically symmetric, static black hole on the capture of massless and massive particles. We have shown that negative (positive) values of ϵ decreases (increases) the radius of characteristic circular orbits and consequently, increases (decreases) the energy and decreases (increases) the angular momentum of the particle moving along these orbits. Moreover, we have calculated and compared the capture cross section of the massive particle in the relativistic and non-relativistic limits. It has been shown that in the case of small deviation from general relativity the capture cross section for the relativistic and nonrelativistic particle has an additional term being linear in the small dimensionless deviation parameter ϵ.
    Electronic ISSN: 2075-4434
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2021-09-06
    Description: In this work, test particle dynamics around a static regular Bardeen black hole (BH) in Anti-de Sitter spacetime has been studied. It has been shown for neutral test particles that parameters of a regular Bardeen black hole in Anti-de Sitter spacetime can mimic the rotation parameter of the Kerr metric up to the value a≈0.9 providing the same innermost stable circular orbit (ISCO) radius. We have also explored the dynamics of magnetized particles with a magnetic dipole moment around a magnetically charged regular Bardeen black hole in Anti-de Sitter spacetime. As a realistic astrophysical scenario of the study, we have treated neutron stars orbiting a supermassive black hole (SMBH), in particular, the magnetar PSR J1745-2900 orbiting Sgr A* with the parameter β=10.2, as magnetized test particles. The magnetized particles dynamics shows that the parameter β, negative values of cosmological constant and magnetic charge parameter of the central BH cause a decrease in the ISCO radius. We have compared the effects of the magnetic charge of the Bardeen BH with the spin of rotating Kerr BH and shown that magnetic charge parameter can mimic the spin in the range a/M≃(0,0.7896) when Λ=0 at the range of its values g/M≃(0,0.648).
    Electronic ISSN: 2075-4434
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2021-09-05
    Description: The suspended test masses of gravitational-wave (GW) detectors require precise alignment to be able to operate the detector stably and with high sensitivity. This includes the continuous counter-acting of seismic disturbances, which, below a few Hertz, are not sufficiently reduced by the seismic isolation system. The residual angular motion of suspended test masses is further suppressed by the Angular Sensing and Control (ASC) system. However, in doing so, the angular motion can be enhanced by the ASC at higher frequencies where the seismic isolation system is very effective. This has led to sensitivity limitations between about 10 Hz and 25 Hz of the LIGO detectors in past observation runs. The observed ASC noise was larger than simple models predict, which means that more accurate detector models and new simulation tools are required. In this article, we present Lightsaber, a new time-domain simulator of the ASC in LIGO. Lightsaber is a nonlinear simulation of the optomechanical system consisting of the high-power cavity laser beam and the last two stages of suspension in LIGO including the ASC. The main noise inputs are power fluctuations of the laser beam at the input of the arm cavities, read-out noise of sensors used for the ASC, displacement noise from the suspension platforms, and noise introduced by the suspension damping loops. While the plant simulation uses local degrees of freedom of individual suspension systems, the control is applied on a global angular basis, which requires a conversion between the local and global bases for sensing and actuation. Some of the studies that can be done with this simulation concern mis-centering of the beam-spot (BS) position on the test masses, the role of laser power fluctuations for angular dynamics, and the role of the various nonlinear dynamics. The next important step following this work will be a detailed comparison between Lightsaber results and data from the control channels of the LIGO detectors.
    Electronic ISSN: 2075-4434
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2021-09-05
    Description: Polarized synchrotron emission from the radio halos of diffuse intracluster medium (ICM) in galaxy clusters are yet to be observed. To investigate the expected polarization in the ICM, we use high resolution (1 kpc) magnetohydrodynamic simulations of fluctuation dynamos, which produces intermittent magnetic field structures, for varying scales of turbulent driving (lf) to generate synthetic observations of the polarized emission. We focus on how the inferred diffuse polarized emission for different lf is affected due to smoothing by a finite telescope resolution. The mean fractional polarization ⟨p⟩ vary as ⟨p⟩∝lf1/2 with ⟨p⟩〉20% for lf≳60 kpc, at frequencies ν〉4GHz. Faraday depolarization at ν
    Electronic ISSN: 2075-4434
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2021-08-31
    Description: Not all the light in galaxy groups and clusters comes from stars that are bound to galaxies. A significant fraction of it constitutes the so-called intracluster or diffuse light (ICL), a low surface brightness component of groups/clusters generally found in the surroundings of the brightest cluster galaxies and intermediate/massive satellites. In this review, I will describe the mechanisms responsible for its formation and evolution, considering the large contribution given to the topic in the last decades by both the theoretical and observational sides. Starting from the methods that are commonly used to isolate the ICL, I will address the remarkable problem given by its own definition, which still makes the comparisons among different studies not trivial, to conclude by giving an overview of the most recent works that take advantage of the ICL as a luminous tracer of the dark matter distribution in galaxy groups and clusters.
    Electronic ISSN: 2075-4434
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2021-08-30
    Description: The Zipoy-Voorhees solution is known as the γ-metric and/or q-metric being static and axisymmetric vacuum solution of Einstein field equations which becomes strong curvature naked singularity. The metric is characterized by two parameters, namely, the mass M and the dimensionless deformation parameter γ. It is shown that the velocity of test particle orbiting around the central γ-object can reach the speed of light, consequently, the total energy of the particle will be very high for a specific value the deformation parameter of the spacetime. It is also shown that causality problem arises in the interior region of the physical singularity for the specific value of the deformation parameter when test particles can move with superluminal velocity being greater than the speed of light that might be an additional tool for explaining the existence of tachyons for γ〉1/2 which are invisible for an observer.
    Electronic ISSN: 2075-4434
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2021-08-25
    Description: In theoretical models for the electromagnetic launching of astrophysical jets, a helical magnetic (B)-field component is generated through the winding up of an initial longitudinal field component by the rotation of the cental black hole and accretion disk. This helical field component travels outward with the jet plasma. There is now abundant evidence that the jets of active galactic nuclei carry helical B fields, and the presence of such fields has been invoked to explain a wide range of phenomena observed in these jets. However, distinguishing between features associated with this inherent jet B field and with B fields generated by local phenomena such as shocks and shear can be challenging. There is now evidence that the field that is accreted is dipolar like, giving rise to a current distribution with inward currents along both jet axes and outward currents in a more extended region around the jets. Striking limb brightening has been observed for several relatively nearby active galactic nuclei; it is argued that this must be due to some intrinsic property of the jet, which is independent of the viewing angle, such as its helical B field, or mass loading and/or particle acceleration at the jet edges. Circular-polarization observations may make it possible to reconstruct the full three-dimensional B field of jets carrying a helical B-field component, and to correctly infer the direction of rotation of the central black hole and its accretion disk.
    Electronic ISSN: 2075-4434
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2021-04-28
    Description: Eclipsing systems are essential objects for understanding the properties of stars and stellar systems. Eclipsing systems with pulsating components are furthermore advantageous because they provide accurate constraints on the component properties, as well as a complementary method for pulsation mode determination, crucial for precise asteroseismology. The outcome of space missions aiming at delivering high-accuracy light curves for many thousands of stars in search of planetary systems has also generated new insights in the field of variable stars and revived the interest of binary systems in general. The detection of eclipsing systems with pulsating components has particularly benefitted from this, and progress in this field is growing fast. In this review, we showcase some of the recent results obtained from studies of eclipsing systems with pulsating components based on data acquired by the space missions Kepler or TESS. We consider different system configurations including semi-detached eclipsing binaries in (near-)circular orbits, a (near-)circular and non-synchronized eclipsing binary with a chemically peculiar component, eclipsing binaries showing the heartbeat phenomenon, as well as detached, eccentric double-lined systems. All display one or more pulsating component(s). Among the great variety of known classes of pulsating stars, we discuss unevolved or slightly evolved pulsators of spectral type B, A or F and red giants with solar-like oscillations. Some systems exhibit additional phenomena such as tidal effects, angular momentum transfer, (occasional) mass transfer between the components and/or magnetic activity. How these phenomena and the orbital changes affect the different types of pulsations excited in one or more components, offers a new window of opportunity to better understand the physics of pulsations.
    Electronic ISSN: 2075-4434
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...