ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (10,310)
  • Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics  (10,310)
Collection
  • Articles  (10,310)
Years
Journal
Topic
  • 1
    Publication Date: 2021-10-28
    Description: The aim of this paper is to investigate the effect of strain rate and filler content on the compressive behavior of the aeronautical grade RTM6 epoxy-based nanocomposites. Silica nanoparticles with different sizes, weight concentrations and surface functionalization were used as fillers. Dynamic mechanical analysis was used to study the glass transition temperature and storage modulus of the nanocomposites. Using quasi-static and split Hopkinson bar tests, strain rates of 0.001 s−1 to 1100 s−1 were imposed. Sample deformation was measured using stereo digital image correlation techniques. Results showed a significant increase in the compressive strength with increasing strain rate. The elastic modulus and Poisson’s ratio showed strain rate independency. The addition of silica nanoparticles marginally increased the glass transition temperature of the resin, and improved its storage and elastic moduli and peak yield strength for all filler concentrations. Increasing the weight percentage of the filler slightly improved the peak yield strength. Moreover, the filler’s size and surface functionalization did not affect the resin’s compressive behavior at different strain rates.
    Electronic ISSN: 2073-4360
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Process Engineering, Biotechnology, Nutrition Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-10-28
    Description: Various fungal species can degrade lignocellulolytic materials with their enzyme cocktails composed of cellulolytic and lignolytic enzymes. In this work, seven fungal species (Mucor indicus DSM 2185, Paecilomyces variotii CBS 372.70, Myceliophthora thermophila CBS 663.74, Thielavia terrestris CBS 456.75, Botryosphaeria dothidea JCM 2738, Fusarium oxysporum f.sp. langenariae JCM 9293, and Fusarium verticillioides JCM 23107) and four nutrient media were used in the screening for effective lignocellulose degrading enzymes. From the seven tested fungi, F. oxysporum and F. verticilliodes, along with nutrient medium 4, were selected as the best medium and producers of lignocellulolytic enzymes based on the determined xylanase (〉4 U mg−1) and glucanase activity (≈2 U mg−1). Nutrient medium 4 supplemented with pretreated corn cobs was used in the production of lignocellulolytic enzymes by sequential solid-state and submerged cultivation of F. oxysporum, F. verticilliodes, and a mixed culture of both strains. F. oxysporum showed 6 times higher exoglucanase activity (3.33 U mg−1) after 5 days of cultivation in comparison with F. verticillioides (0.55 U mg−1). F. oxysporum also showed 2 times more endoglucanase activity (0.33 U mg−1). The mixed culture cultivation showed similar endo- and exoglucanase activities compared to F. oxysporum (0.35 U mg−1; 7.84 U mg−1). Maximum xylanase activity was achieved after 7 days of cultivation of F. verticilliodes (≈16 U mg−1), while F. oxysporum showed maximum activity after 9 days that was around 2 times lower compared to that of F. verticilliodes. The mixed culture achieved maximum xylanase activity after only 4 days, but the specific activity was similar to activities observed for F. oxysporum. It can be concluded that both fungal strains can be used as producers of enzyme cocktails for the degradation of lignocellulose containing raw materials, and that corn cobs can be used as an inducer for enzyme production.
    Electronic ISSN: 2073-4360
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Process Engineering, Biotechnology, Nutrition Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-10-28
    Description: Polyimides (PIs) are widely utilized polymeric materials for high-temperature plastics, adhesives, dielectrics, nonlinear optical materials, flexible hard-coating films, and substrates for flexible electronics. PIs can be facilely mass-produced through factory methods, so the industrial application value is limitless. Herein, we synthesized a typical poly(amic acid) (PAA) precursor-based solution through an industrialized reactor for mass production and applied the prepared solution to form thin films of PI using thermal imidization. The deposited PI thin films were successfully applied as gate dielectrics for organic field-effect transistors (OFETs). The PI layers showed suitable characteristics for dielectrics, such as a smooth surface, low leakage current density, uniform dielectric constant (k) values regardless of frequency, and compatibility with organic semiconductors. Utilizing this PI layer, we were able to fabricate electrically stable operated OFETs, which exhibited a threshold voltage shift lower than 1 V under bias-stress conditions and a field-effect mobility of 4.29 cm2 V−1 s−1. Moreover, integrated logic gates were manufactured using these well-operated OFETs and displayed suitable operation behavior.
    Electronic ISSN: 2073-4360
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Process Engineering, Biotechnology, Nutrition Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-10-28
    Description: By means of coarse-grained molecular dynamics simulations, we explore chiral sensitivity of confining spaces modelled as helical channels to chiral superstructures represented by polymer knots. The simulations show that helical channels exhibit stereosensitivity to chiral knots localized on linear chains by effect of external pulling force and also to knots embedded on circular chains. The magnitude of the stereoselective effect is stronger for torus knots, the effect is weaker in the case of twist knots, and amphichiral knots do exhibit no chiral effects. The magnitude of the effect can be tuned by the so-far investigated radius of the helix, the pitch of the helix and the strength of the pulling force. The model is aimed to simulate and address a range of practical situations that may occur in experimental settings such as designing of nanotechnological devices for the detection of topological state of molecules, preparation of new gels with tailor made stereoselective properties, or diffusion of knotted DNA in biological conditions.
    Electronic ISSN: 2073-4360
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Process Engineering, Biotechnology, Nutrition Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-10-28
    Description: Layered double hydroxides (LDHs) have attracted interest as reinforcing fillers in elastomers due to their ease of synthesis and customisability. A systematic review was performed on the effect of LDHs on the mechanical properties of elastomers using the Scopus database. Of the 61 articles relevant to the search criteria, the majority were published on polyurethane (PU) and nitrile butadiene rubber (NBR). Mg-Al LDH was used in most of the studies and Zn-Al LDH was used second most common. LDH can act as a reinforcing filler, typically increasing tensile strength even at low concentrations, so it could be used as an alternative to traditional reinforcing fillers for elastomers. LDH can also be made a functional filler by selecting the right metals and interlayer anions. It was found that Mg-Al LDH and Zn-Al LDH can both participate in crosslinking reactions and can replace MgO and ZnO, respectively. Less Zn ions are required for crosslinking when LDH is used than when ZnO is used, making LDH more environmentally friendly. Organic modification is usually required to improve compatibility with the elastomer matrix, especially in non-polar elastomers. It enables exfoliation of the LDH and intercalation of polymer chains into the LDH interlayer to occur. Organic modifiers can also be used to functionalise the LDH. Stearic acid used in crosslinking systems can be replaced by stearate anions from stearate-modified LDH.
    Electronic ISSN: 2073-4360
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Process Engineering, Biotechnology, Nutrition Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-10-28
    Description: In this work, an efficient 3-step process targeting the chemical modification and purification of lignin oligomers from industrial alkaline lignin is described. The oxidative depolymerization process of alkaline lignin with O2 or Air pressure, without use of metal catalyst, led to the production of two fractions of lignin oligomers named ‘precipitated lignin’ and ‘hydrosoluble lignin’ with 40% and 60% yield, respectively. These fractions were characterized with a wide range of methods including NMR spectroscopy (31P, 2D-HSQC), SEC (in basic media), FTIR. NMR analyses revealed the presence of carboxylic acid functions at a ratio of 1.80 mmol/g and 2.80 mmol/g for the precipitated and hydrosoluble lignin, respectively, values much higher than what is generally found in native lignin (between 0.2 and 0.5 mmol/g). SEC analyses revealed the formation of low molar masses for the precipitated (2200 g/mol) and hydrosoluble fractions (1500 g/mol) in contrast to the alkaline lignin (3900 g/mol). It is worth noting that the hydrosoluble fraction of lignin is soluble in water at any pH. Both processes (oxygen and air) were successfully scaled up and showed similar results in terms of yield and functionalization.
    Electronic ISSN: 2073-4360
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Process Engineering, Biotechnology, Nutrition Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-10-28
    Description: We report that polymerization makes a robust, practically applicable multifunctional optical device with a continuous wavelength tunable over 500 nm spectral range using UV-polymerizable cholesteric liquid crystals (CLCs). It can be used as a circular polarizer generating an extremely high degree of circularly polarized light with |g| = 1.85~2.00. It can also be used for optical notch filters, bandwidth-variable (from ~28 nm to ~93 nm) bandpass filters, mirrors, and intensity-variable beam splitters. Furthermore, this CLC device shows excellent stability owing to the polymerization of CLC cells. Its performance remains constant for a long time (~2 years) after a high-temperature exposure (170 °C for 1 h) and an extremely high laser beam intensity exposure (~143 W/cm2 of CW 532 nm diode laser and ~2.98 MW/cm2 of Nd: YAG pulse laser operation for two hours, respectively). The optical properties of polymerized CLC were theoretically analyzed by Berreman’s 4 × 4 matrix method. The characteristics of this device were significantly improved by introducing an anti-reflection layer on the device. This wavelength-tunable and multifunctional device could dramatically increase optical research efficiency in various spectroscopic works. It could be applied to many instruments using visible and near-infrared wavelengths.
    Electronic ISSN: 2073-4360
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Process Engineering, Biotechnology, Nutrition Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-10-28
    Description: Hot melt extrusion offers an efficient way of increasing the solubility of a poorly soluble drug. Shellac has potential as a pharmaceutical matrix polymer that can be used in this extrusion process, with further advantages for use in enteric drug delivery systems. The rheological property of a material affects the extrusion process conditions. However, the literature does not refer to any published work that investigates the processability of various shellac materials. This work explores various types of shellac and explores their physicochemical and thermal properties along with their processability in the hot melt extrusion application. Physicochemical characterization of the materials was achieved using differential scanning calorimetry, Fourier transform infrared spectroscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Additional processability characterization was achieved using melt flow index and rheology analysis. The results indicated that there was no chemical difference between the various shellac types compared in this study. However, the extrudable temperature ranges and rheological properties of different shellac types varied; SSB 55 Pharma FL had the lowest processing temperature and glass transition temperatures. Due to the shear-thinning behaviours, shellac can be extruded at lower temperatures. This study provides necessary data to determine the processing conditions in hot melt extrusion applications for the range of shellac materials.
    Electronic ISSN: 2073-4360
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Process Engineering, Biotechnology, Nutrition Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-10-28
    Description: Fouling not only deteriorates the membrane structure but also compromises the quality of the permeate and has deleterious consequences on the membrane operation. In the current study, a commercial thin film composite nanofiltration membrane (NF90) was modified by sequentially depositing oppositely charged polycation (poly(allylamine hydrochloride)) and polyanion (poly(acrylic acid)) polyelectrolytes using the layer-by-layer assembly method. The water contact angle was decreased by ~10° after the coating process, indicating increased hydrophilicity. The surface roughness of the prepared membranes decreased from 380 nm (M-0) to 306 nm (M-10) and 366 nm (M-20). M-10 membrane showed the highest permeate flux of 120 L m−2 h−1 with a salt rejection of 〉98% for MgSO4 and NaCl. The fabricated membranes M-20 and M-30 showed 15% improvement in fouling resistance and maintained the initial permeate flux longer than the pristine membrane.
    Electronic ISSN: 2073-4360
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Process Engineering, Biotechnology, Nutrition Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-10-28
    Description: Composite-based polymer materials are manufactured in a wide variety of types with different compositions, structures, geometries, and topological descriptions. Among these, micropolar materials with voids have become increasingly studied in the literature. This paper establishes the equations of motion for such a material for the purpose of dynamic analysis via the finite element method (FEM). The Euler–Lagrangian formalism, based on the expressions of kinetic energy, potential energy, and mechanical work, is used. Hence, it is possible to study the dynamic response of such a system in the most general configuration case. The choice of the shape functions will determine the matrix coefficients for each particular case. An application illustrates the presented results.
    Electronic ISSN: 2073-4360
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Process Engineering, Biotechnology, Nutrition Technology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...