ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (775)
  • Annual Reviews
  • 2000-2004  (775)
  • Chemistry and Pharmacology  (775)
Collection
  • Articles  (775)
Years
Year
Journal
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 69 (2000), S. 31-67 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract Circadian rhythms are oscillations in the biochemical, physiological, and behavioral functions of organisms that occur with a periodicity of approximately 24 h. They are generated by a molecular clock that is synchronized with the solar day by environmental photic input. The cryptochromes are the mammalian circadian photoreceptors. They absorb light and transmit the electromagnetic signal to the molecular clock using a pterin and flavin adenine dinucleotide (FAD) as chromophore/cofactors, and are evolutionarily conserved and structurally related to the DNA repair enzyme photolyase. Humans and mice have two cryptochrome genes, CRY1 and CRY2, that are differentially expressed in the retina relative to the opsin-based visual photoreceptors. CRY1 is highly expressed with circadian periodicity in the mammalian circadian pacemaker, the suprachiasmatic nucleus (SCN). Mutant mice lacking either Cry1 or Cry2 have impaired light induction of the clock gene mPer1 and have abnormally short or long intrinsic periods, respectively. The double mutant has normal vision but is defective in mPer1 induction by light and lacks molecular and behavioral rhythmicity in constant darkness. Thus, cryptochromes are photoreceptors and central components of the molecular clock. Genetic evidence also shows that cryptochromes are circadian photoreceptors in Drosophila and Arabidopsis, raising the possibility that they may be universal circadian photoreceptors. Research on cryptochromes may provide new understanding of human diseases such as seasonal affective disorder and delayed sleep phase syndrome.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 69 (2000), S. 115-144 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract The faithful segregation of genetic information requires highly orchestrated changes of chromosome structure during the mitotic cell cycle. The linkage between duplicated sister DNAs is established during S phase and maintained throughout G2 phase (cohesion). In early mitosis, dramatic structural changes occur to produce metaphase chromosomes, each consisting of a pair of compacted sister chromatids (condensation). At anaphase onset, a signal is produced to disrupt the linkage between sister chromatids (separation), allowing them to be pulled apart to opposite poles of the cell. This review discusses our current understanding of the three stages of large-scale structural changes of chromosomes in eukaryotic cells. Recent genetic and biochemical studies have identified key components involved in these processes and started to uncover hitherto unexpected functional links between mitotic chromosome dynamics and other important chromosome functions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 69 (2000), S. 247-275 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract Homotypic (self) fusion of yeast vacuoles, which is essential for the low copy number of this organelle, uses catalytic elements similar to those used in heterotypic vesicular trafficking reactions between different organelles throughout nature. The study of vacuole inheritance has benefited from the ease of vacuole isolation, the availability of the yeast genome sequence and numerous mutants, and from a rapid, quantitative in vitro assay of fusion. The soluble proteins and small molecules that support fusion are being defined, conserved membrane proteins that catalyze the reaction have been identified, and the vacuole membrane has been solubilized and reconstituted into fusion-competent proteoliposomes, allowing the eventual purification of all needed factors. Studies of homotypic vacuole fusion have suggested a modified paradigm of membrane fusion in which integral membrane proteins termed "SNAREs" can form stable complexes in cis (when on the same membrane) as well as in trans (when anchored to opposing membranes). Chaperones (NSF/Sec18p, LMA1, and alpha-SNAP/Sec17p) disassemble cis-SNARE complexes to prepare for the docking of organelles rather than to drive fusion. The specificity of organelle docking resides in a cascade of trans-interactions (involving Rab-like GTPases), "tethering factors," and trans-SNARE pairing. Fusion itself, the mixing of the membrane bilayers and the organelle contents, is triggered by calcium signaling.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 69 (2000), S. 277-302 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract Microtubules are polymers that are essential for, among other functions, cell transport and cell division in all eukaryotes. The regulation of the microtubule system includes transcription of different tubulin isotypes, folding of alpha/beta-tubulin heterodimers, post-translation modification of tubulin, and nucleotide-based microtubule dynamics, as well as interaction with numerous microtubule-associated proteins that are themselves regulated. The result is the precise temporal and spatial pattern of microtubules that is observed throughout the cell cycle. The recent high-resolution analysis of the structure of tubulin and the microtubule has brought new insight to the study of microtubule function and regulation, as well as the mode of action of antimitotic drugs that disrupt normal microtubule behavior. The combination of structural, genetic, biochemical, and biophysical data should soon give us a fuller understanding of the exquisite details in the regulation of the microtubule cytoskeleton.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 69 (2000), S. 399-418 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract This review summarizes the progress made in our understanding of peroxisome biogenesis in the last few years, during which the functional roles of many of the 23 peroxins (proteins involved in peroxisomal protein import and peroxisome biogenesis) have become clearer. Previous reviews in the field have focussed on the metabolic functions of peroxisomes (1, 2), aspects of import/biogenesis (3, 4, 5, 6, 7), the role of peroxins in human disease (2, 8), and involvement of the endoplasmic reticulum in peroxisome membrane biogenesis (9, 10, 11) as well as the degradation of this organelle (5, 12). This review refers to some of the earlier work for the sake of introduction and continuity but deals primarily with the more recent progress. The principal areas of progress are the identification of new peroxins, definition of protein-protein interactions among peroxins leading to the recognition of complexes involved in peroxisomal protein import, insight into the biogenesis of peroxisomal membrane proteins, and, of most importance, the elucidation of the role of many conserved peroxins in human disease. Given the rapid progress in the field, this review also highlights some of the unanswered questions that remain to be tackled.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 69 (2000), S. 597-615 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract The past few years have seen exciting advances in understanding the structure and function of catalytic RNA. Crystal structures of several ribozymes have provided detailed insight into the folds of RNA molecules. Models of other biologically important RNAs have been constructed based on structural, phylogenetic, and biochemical data. However, many questions regarding the catalytic mechanisms of ribozymes remain. This review compares the structures and possible catalytic mechanisms of four small self-cleaving RNAs: the hammerhead, hairpin, hepatitis delta virus, and in vitro-selected lead-dependent ribozymes. The organization of these small catalysts is contrasted to that of larger ribozymes, such as the group I intron.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 69 (2000), S. 751-793 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract Antibody molecules elicited with rationally designed transition-state analogs catalyze numerous reactions, including many that cannot be achieved by standard chemical methods. Although relatively primitive when compared with natural enzymes, these catalysts are valuable tools for probing the origins and evolution of biological catalysis. Mechanistic and structural analyses of representative antibody catalysts, generated with a variety of strategies for several different reaction types, suggest that their modest efficiency is a consequence of imperfect hapten design and indirect selection. Development of improved transition-state analogs, refinements in immunization and screening protocols, and elaboration of general strategies for augmenting the efficiency of first-generation catalytic antibodies are identified as evident, but difficult, challenges for this field. Rising to these challenges and more successfully integrating programmable design with the selective forces of biology will enhance our understanding of enzymatic catalysis. Further, it should yield useful protein catalysts for an enhanced range of practical applications in chemistry and biology.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 69 (2000), S. 923-960 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract In just a few short years, the chemical ligation of unprotected peptide segments in aqueous solution has established itself as the most practical method for the total synthesis of native proteins. A wide range of proteins has been prepared. These synthetic molecules have led to the elucidation of gene function, to the discovery of novel biology, and to the determination of new three-dimensional protein structures by both NMR and X-ray crystallography. The facile access to novel analogs provided by chemical protein synthesis has led to original insights into the molecular basis of protein function in a number of systems. Chemical protein synthesis has also enabled the systematic development of proteins with enhanced potency and specificity as candidate therapeutic agents.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 69 (2000), S. 419-445 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract Platelet-activating factor (PAF) is a phospholipid with potent, diverse physiological actions, particularly as a mediator of inflammation. The synthesis, transport, and degradation of PAF are tightly regulated, and the biochemical basis for many of these processes has been elucidated in recent years. Many of the actions of PAF can be mimicked by structurally related phospholipids that are derived from nonenzymatic oxidation, because such compounds can bind to the PAF receptor. This process circumvents much of the biochemical control and presumably is regulated primarily by the rate of degradation, which is catalyzed by PAF acetylhydrolase. The isolation of cDNA clones encoding most of the key proteins involved in regulating PAF has allowed substantial recent progress and will facilitate studies to determine the structural basis for substrate specificity and the precise role of PAF in physiological events.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 69 (2000), S. 571-595 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract The process of mRNA turnover is a critical component of the regulation of gene expression. In the past few years a discrete set of pathways for the degradation of polyadenylated mRNAs in eukaryotic cells have been described. A major pathway of mRNA degradation in yeast occurs by deadenylation of the mRNA, which leads to a decapping reaction, thereby exposing the mRNA to rapid 5' to 3' exonucleolytic degradation. A critical step in this pathway is decapping, since it effectively terminates the existence of the mRNA and is the site of numerous control inputs. In this review, we discuss the properties of the decapping enzyme and how its activity is regulated to give rise to differential mRNA turnover. A key point is that decapping appears to be controlled by access of the enzyme to the cap structure in a competition with the translation initiation complex. Strikingly, several proteins required for mRNA decapping show interactions with the translation machinery and suggest possible mechanisms for the triggering of mRNA decapping.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 69 (2000), S. 651-697 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract Helicases are motor proteins that couple the hydrolysis of nucleoside triphosphate (NTPase) to nucleic acid unwinding. The hexameric helicases have a characteristic ring-shaped structure, and all, except the eukaryotic minichromosomal maintenance (MCM) helicase, are homohexamers. Most of the 12 known hexameric helicases play a role in DNA replication, recombination, and transcription. A human genetic disorder, Bloom's syndrome, is associated with a defect in one member of the class of hexameric helicases. Significant progress has been made in understanding the biochemical properties, structures, and interactions of these helicases with DNA and nucleotides. Cooperativity in nucleotide binding was observed in many, and sequential NTPase catalysis has been observed in two proteins, gp4 of bacteriophage T7 and rho of Escherichia coli. The crystal structures of the oligomeric T7 gp4 helicase and the hexamer of RepA helicase show structural features that substantiate the observed cooperativity, and both are consistent with nucleotide binding at the subunit interface. Models are presented that show how sequential NTP hydrolysis can lead to unidirectional and processive translocation. Possible unwinding mechanisms based on the DNA exclusion model are proposed here, termed the wedge, torsional, and helix-destabilizing models.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 69 (2000), S. 795-827 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract GTPase-activating proteins (GAPs) regulate heterotrimeric G proteins by increasing the rates at which their alpha subunits hydrolyze bound GTP and thus return to the inactive state. G protein GAPs act allosterically on Galpha subunits, in contrast to GAPs for the Ras-like monomeric GTP-binding proteins. Although they do not contribute directly to the chemistry of GTP hydrolysis, G protein GAPs can accelerate hydrolysis 〉2000-fold. G protein GAPs include both effector proteins (phospholipase C-beta, p115RhoGEF) and a growing family of regulators of G protein signaling (RGS proteins) that are found throughout the animal and fungal kingdoms. GAP activity can sharpen the termination of a signal upon removal of stimulus, attenuate a signal either as a feedback inhibitor or in response to a second input, promote regulatory association of other proteins, or redirect signaling within a G protein signaling network. GAPs are regulated by various controls of their cellular concentrations, by complex interactions with Gbetagamma or with Gbeta5 through an endogenous Ggamma-like domain, and by interaction with multiple other proteins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 69 (2000), S. 961-1004 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract Multistep chemical reactions are increasingly seen as important in a growing number of complex biotransformations. Covalently attached prosthetic groups or swinging arms, and their associated protein domains, are essential to the mechanisms of active-site coupling and substrate channeling in a number of the multifunctional enzyme systems responsible. The protein domains, for which the posttranslational machinery in the cell is highly specific, are crucially important, contributing to the processes of molecular recognition that define and protect the substrates and the catalytic intermediates. The domains have novel folds and move by virtue of conformationally flexible linker regions that tether them to other components of their respective multienzyme complexes. Structural and mechanistic imperatives are becoming apparent as the assembly pathways and the coupling of multistep reactions catalyzed by these dauntingly complex molecular machines are unraveled.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 70 (2001), S. 1-37 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract I was fortunate to practice science during the last half of the previous century, when many basic biological and biochemical concepts could be experimentally addressed for the first time. My introduction to research involved isolating and identifying intermediates in the niacin biosynthetic pathway. These studies were followed by investigations focused on determining the properties of genes and enzymes essential to metabolism and examining how they were alterable by mutation. The most challenging problem I initially attacked was establishing the colinear relationship between gene and protein. Subsequent research emphasized identification and characterization of regulatory mechanisms that microorganisms use to control gene expression. An elaborate regulatory strategy, transcription attenuation, was discovered that is often based on selection between alternative RNA structures. Throughout my career I enjoyed the excitement of solving basic scientific problems. Most rewarding, however, was the feeling that I was helping young scientists experience the pleasure of performing creative research.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 70 (2001), S. 39-80 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract DNA primases are enzymes whose continual activity is required at the DNA replication fork. They catalyze the synthesis of short RNA molecules used as primers for DNA polymerases. Primers are synthesized from ribonucleoside triphosphates and are four to fifteen nucleotides long. Most DNA primases can be divided into two classes. The first class contains bacterial and bacteriophage enzymes found associated with replicative DNA helicases. These prokaryotic primases contain three distinct domains: an amino terminal domain with a zinc ribbon motif involved in binding template DNA, a middle RNA polymerase domain, and a carboxyl-terminal region that either is itself a DNA helicase or interacts with a DNA helicase. The second major primase class comprises heterodimeric eukaryotic primases that form a complex with DNA polymerase alpha and its accessory B subunit. The small eukaryotic primase subunit contains the active site for RNA synthesis, and its activity correlates with DNA replication during the cell cycle.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 70 (2001), S. 181-208 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract The elaborate process of genomic replication requires a large collection of proteins properly assembled at a DNA replication fork. Several decades of research on the bacterium Escherichia coli and its bacteriophages T4 and T7 have defined the roles of many proteins central to DNA replication. These three different prokaryotic replication systems use the same fundamental components for synthesis at a moving DNA replication fork even though the number and nature of some individual proteins are different and many lack extensive sequence homology. The components of the replication complex can be grouped into functional categories as follows: DNA polymerase, helix destabilizing protein, polymerase accessory factors, and primosome (DNA helicase and DNA primase activities). The replication of DNA derives from a multistep enzymatic pathway that features the assembly of accessory factors and polymerases into a functional holoenzyme; the separation of the double-stranded template DNA by helicase activity and its coupling to the primase synthesis of RNA primers to initiate Okazaki fragment synthesis; and the continuous and discontinuous synthesis of the leading and lagging daughter strands by the polymerases. This review summarizes and compares and contrasts for these three systems the types, timing, and mechanism of reactions and of protein-protein interactions required to initiate, control, and coordinate the synthesis of the leading and lagging strands at a DNA replication fork and comments on their generality.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 71 (2002), S. 165-189 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract Ribonuclease P (RNase P) is an essential endonuclease that acts early in the tRNA biogenesis pathway. This enzyme catalyzes cleavage of the leader sequence of precursor tRNAs (pre-tRNAs), generating the mature 5' end of tRNAs. RNase P activities have been identified in Bacteria, Archaea, and Eucarya, as well as organelles. Most forms of RNase P are ribonucleoproteins, i.e., they consist of an essential RNA subunit and protein subunits, although the composition of the enzyme in mitochondria and chloroplasts is still under debate. The recent purification of the eukaryotic nuclear RNase P has demonstrated a significantly larger protein content compared to the bacterial enzyme. Moreover, emerging evidence suggests that the eukaryotic RNase P has evolved into at least two related nuclear enzymes with distinct functions, RNase P and RNase MRP. Here we review current information on RNase P, with emphasis on the composition, structure, and functions of the eukaryotic nuclear holoenzyme, and its relationship with RNase MRP.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 70 (2001), S. 603-647 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract Recent years have witnessed dramatic advances in our understanding of how newly translated proteins fold in the cell and the contribution of molecular chaperones to this process. Folding in the cell must be achieved in a highly crowded macromolecular environment, in which release of nonnative polypeptides into the cytosolic solution might lead to formation of potentially toxic aggregates. Here I review the cellular mechanisms that ensure efficient folding of newly translated proteins in vivo. De novo protein folding appears to occur in a protected environment created by a highly processive chaperone machinery that is directly coupled to translation. Genetic and biochemical analysis shows that several distinct chaperone systems, including Hsp70 and the cylindrical chaperonins, assist the folding of proteins upon translation in the cytosol of both prokaryotic and eukaryotic cells. The cellular chaperone machinery is specifically recruited to bind to ribosomes and protects nascent chains and folding intermediates from nonproductive interactions. In addition, initiation of folding during translation appears to be important for efficient folding of multidomain proteins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 71 (2002), S. xiii 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Norman Davidson's training as a physical chemist led him to make key early contributions to the chemistry of DNA. He described the details of DNA denaturation and renaturation, concepts that still form the basis for understanding hybridization. He also applied the single-molecule resolution of the electron microscope to describing the chemistry of circular DNA, mapping specific genes, and characterizing heteroduplexes. The latter became a dominant tool for the study of nucleic acids and contributed to our knowledge of transcription, polyadenylation, and retroviral structure. The advent of cDNA cloning and restriction enzymes enabled Davidson to describe the diversity of Drosophila actin genes and to isolate the gene encoding cAMP phosphodiesterase. Davidson then turned his attention to neuroscience and participated in cDNA cloning, oocyte expression, and structure-function studies of nicotinic acetylcholine receptors, voltage-gated sodium channels, a GABA transporter, a G protein-gated potassium channel, and calcium channels. His interests also extended to synaptic plasticity, and he helped to define the role of neuronal nitric oxide synthase and of trkB receptors. His final experiments concerned the role of protein kinase A in long-term potentiation. (The abstract was written posthumously by a colleague.)
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 71 (2002), S. 71-100 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract The primary function of bacterial recombination systems is the nonmutagenic repair of stalled or collapsed replication forks. The RecA protein plays a central role in these repair pathways, and its biochemistry must be considered in this context. RecA protein promotes DNA strand exchange, a reaction that contributes to fork regression and DNA end invasion steps. RecA protein activities, especially formation and disassembly of its filaments, affect many additional steps. So far, Escherichia coli RecA appears to be unique among its nearly ubiquitous family of homologous proteins in that it possesses a motorlike activity that can couple the branch movement in DNA strand exchange to ATP hydrolysis. RecA is also a multifunctional protein, serving in different biochemical roles for recombinational processes, SOS induction, and mutagenic lesion bypass. New biochemical and structural information highlights both the similarities and distinctions between RecA and its homologs. Increasingly, those differences can be rationalized in terms of biological function.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 70 (2001), S. 703-754 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract All cells have the capacity to evoke appropriate and measured responses to signal molecules (such as peptide hormones), environmental changes, and other external stimuli. Tremendous progress has been made in identifying the proteins that mediate cellular response to such signals and in elucidating how events at the cell surface are linked to subsequent biochemical changes in the cytoplasm and nucleus. An emerging area of investigation concerns how signaling components are assembled and regulated (both spatially and temporally), so as to control properly the specificity and intensity of a given signaling pathway. A related question under intensive study is how the action of an individual signaling pathway is integrated with (or insulated from) other pathways to constitute larger networks that control overall cell behavior appropriately. This review describes the signal transduction pathway used by budding yeast (Saccharomyces cerevisiae) to respond to its peptide mating pheromones. This pathway is comprised by receptors, a heterotrimeric G protein, and a protein kinase cascade all remarkably similar to counterparts in multicellular organisms. The primary focus of this review, however, is recent advances that have been made, using primarily genetic methods, in identifying molecules responsible for regulation of the action of the components of this signaling pathway. Just as many of the constituent proteins of this pathway and their interrelationships were first identified in yeast, the functions of some of these regulators have clearly been conserved in metazoans, and others will likely serve as additional models for molecules that carry out analogous roles in higher organisms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 71 (2002), S. 133-163 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract Any living cell is faced with the fundamental task of keeping the genome intact in order to develop in an organized manner, to function in a complex environment, to divide at the right time, and to die when it is appropriate. To achieve this goal, an efficient machinery is required to maintain the genetic information encoded in DNA during cell division, DNA repair, DNA recombination, and the bypassing of damage in DNA. DNA polymerases (pols) alpha, beta, gamma, delta, and epsilon are the key enzymes required to maintain the integrity of the genome under all these circumstances. In the last few years the number of known pols, including terminal transferase and telomerase, has increased to at least 19. A particular pol might have more than one functional task in a cell and a particular DNA synthetic event may require more than one pol, which suggests that nature has provided various safety mechanisms. This multi-functional feature is especially valid for the variety of novel pols identified in the last three years. These are the lesion-replicating enzymes pol zeta, pol eta, pol itoa, pol kappa, and Rev1, and a group of pols called pol theta, pol lamba, pol mu, pol sigma, and pol phi that fulfill a variety of other tasks.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 71 (2002), S. 247-273 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract It has been a long-standing challenge to decipher the principles that enable cells to both organize their genomes into compact chromatin and ensure that the genetic information remains accessible to regulatory factors and enzymes within the confines of the nucleus. The discovery of nucleosome remodeling activities that utilize the energy of ATP to render nucleosomal DNA accessible has been a great leap forward. In vitro, these enzymes weaken the tight wrapping of DNA around the histone octamers, thereby facilitating the sliding of histone octamers to neighboring DNA segments, their displacement to unlinked DNA, and the accumulation of patches of accessible DNA on the surface of nucleosomes. It is presumed that the collective action of these enzymes endows chromatin with dynamic properties that govern all nuclear functions dealing with chromatin as a substrate. The diverse set of ATPases that qualify as the molecular motors of the nucleosome remodeling process have a common history and are part of a superfamily. The physiological context of their remodeling action builds on the association with a wide range of other proteins to form distinct complexes for nucleosome remodeling. This review summarizes the recent progress in our understanding of the mechanisms underlying the nucleosome remodeling reaction, the targeting of remodeling machines to selected sites in chromatin, and their integration into complex regulatory schemes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 71 (2002), S. 375-403 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract Ubiquitous in eukaryotic cells, the La protein associates with the 3' termini of many newly synthesized small RNAs. RNAs bound by the La protein include all nascent transcripts made by RNA polymerase III as well as certain small RNAs synthesized by other RNA polymerases. Recent genetic and biochemical analyses have revealed that binding by the La protein protects the 3' ends of these RNAs from exonucleases. This La-mediated stabilization is required for the normal pathway of pre-tRNA maturation, facilitates assembly of small RNAs into functional RNA-protein complexes, and contributes to nuclear retention of certain small RNAs. Studies of mutant La proteins have given some insights into how the La protein specifically recognizes its RNA targets. However, many questions remain regarding the molecular mechanisms by which La protein binding influences multiple steps in small RNA biogenesis. This review focuses on the roles of the La protein in small RNA biogenesis and also discusses data that implicate the La protein in the translation of specific mRNAs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 71 (2002), S. 537-592 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract The ATP-binding cassette (ABC) transporters are a family of large proteins in membranes and are able to transport a variety of compounds through membranes against steep concentration gradients at the cost of ATP hydrolysis. The available outline of the human genome contains 48 ABC genes; 16 of these have a known function and 14 are associated with a defined human disease. Major physiological functions of ABC transporters include the transport of lipids, bile salts, toxic compounds, and peptides for antigen presentation or other purposes. We review the functions of mammalian ABC transporters, emphasizing biochemical mechanisms and genetic defects. Our overview illustrates the importance of ABC transporters in human physiology, toxicology, pharmacology, and disease. We focus on three topics: (a) ABC transporters transporting drugs (xenotoxins) and drug conjugates. (b) Mammalian secretory epithelia using ABC transporters to excrete a large number of substances, sometimes against a steep concentration gradient. Several inborn errors in liver metabolism are due to mutations in one of the genes for these pumps; these are discussed. (c) A rapidly increasing number of ABC transporters are found to play a role in lipid transport. Defects in each of these transporters are involved in human inborn or acquired diseases.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 71 (2002), S. 783-815 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract An explosion of in vitro experimental data on the folding of proteins has revealed many examples of folding in the millisecond or faster timescale, often occurring in the absence of stable intermediate states. We review experimental methods for measuring fast protein folding kinetics, and then discuss various analytical models used to interpret these data. Finally, we classify general mechanisms that have been proposed to explain fast protein folding into two catagories, heterogeneous and homogeneous, reflecting the nature of the transition state. One heterogeneous mechanism, the diffusion-collision mechanism, can be used to interpret experimental data for a number of proteins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 72 (2003), S. 337-366 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract High-resolution structural studies of protein-DNA complexes have proven to be an invaluable means of understanding the diverse functions of proteins that manage the genome. Most of the structures determined to date represent proteins bound noncovalently to various DNA sequences or structures. Although noncovalent complexation is often adequate to study the structures of proteins that have robust, specific interactions with DNA, it is poorly suited to the study of transient intermediates in enzyme-catalyzed DNA processing reactions or of complexes that exist in multiple equilibrating forms. In recent years, strategies developed for the covalent trapping of protein-DNA complexes have begun to show promise as a window into an otherwise inaccessible world of structure.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 72 (2003), S. 481-516 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract Genomes are organized into active regions known as euchromatin and inactive regions known as heterochromatin, or silenced chromatin. This review describes contemporary knowledge and models for how silenced chromatin in Saccharomyces cerevisiae forms, functions, and is inherited. In S. cerevisiae, Sir proteins are the key structural components of silenced chromatin. Sir proteins interact first with silencers, which dictate which regions are silenced, and then with histone tails in nucleosomes as the Sir proteins spread from silencers along chromosomes. Importantly, the spreading of silenced chromatin requires the histone deacetylase activity of Sir2p. This requirement leads to a general model for the spreading and inheritance of silenced chromatin or other special chromatin states. Such chromatin domains are marked by modifications of the nucleosomes or DNA, and this mark is able to recruit an enzyme that makes further marks. Thus, among different organisms, multiple forms of repressive chromatin can be formed using similar strategies but completely different proteins. We also describe emerging evidence that mutations that cause global changes in the modification of histones can alter the balance between euchromatin and silenced chromatin within a cell.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 72 (2003), S. 693-715 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract Synthesis of eukaryotic mRNA by RNA polymerase II is an elaborate biochemical process that requires the concerted action of a large set of transcription factors. RNA polymerase II transcription proceeds through multiple stages designated preinitiation, initiation, and elongation. Historically, studies of the elongation stage of eukaryotic mRNA synthesis have lagged behind studies of the preinitiation and initiation stages; however, in recent years, efforts to elucidate the mechanisms governing elongation have led to the discovery of a diverse collection of transcription factors that directly regulate the activity of elongating RNA polymerase II. Moreover, these studies have revealed unanticipated roles for the RNA polymerase II elongation complex in such processes as DNA repair and recombination and the proper processing and nucleocytoplasmic transport of mRNA. Below we describe these recent advances, which highlight the important role of the RNA polymerase II elongation complex in regulation of eukaryotic gene expression.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 72 (2003), S. 813-850 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract The ribosome crystal structures published in the past two years have revolutionized our understanding of ribonucleoprotein structure, and more specifically, the structural basis of the peptide bonding forming activity of the ribosome. This review concentrates on the crystallographic developments that made it possible to solve these structures. It also discusses the information obtained from these structures about the three-dimensional architecture of the large ribosomal subunit, the mechanism by which it facilitates peptide bond formation, and the way antibiotics inhibit large subunit function. The work reviewed, taken as a whole, proves beyond doubt that the ribosome is an RNA enzyme, as had long been surmised on the basis of less conclusive evidence.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 73 (2004), S. 39-85 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: DNA damage is a relatively common event in the life of a cell and may lead to mutation, cancer, and cellular or organismic death. Damage to DNA induces several cellular responses that enable the cell either to eliminate or cope with the damage or to activate a programmed cell death process, presumably to eliminate cells with potentially catastrophic mutations. These DNA damage response reactions include: (a) removal of DNA damage and restoration of the continuity of the DNA duplex; (b) activation of a DNA damage checkpoint, which arrests cell cycle progression so as to allow for repair and prevention of the transmission of damaged or incompletely replicated chromosomes; (c) transcriptional response, which causes changes in the transcription profile that may be beneficial to the cell; and (d) apoptosis, which eliminates heavily damaged or seriously deregulated cells. DNA repair mechanisms include direct repair, base excision repair, nucleotide excision repair, double-strand break repair, and cross-link repair. The DNA damage checkpoints employ damage sensor proteins, such as ATM, ATR, the Rad17-RFC complex, and the 9-1-1 complex, to detect DNA damage and to initiate signal transduction cascades that employ Chk1 and Chk2 Ser/Thr kinases and Cdc25 phosphatases. The signal transducers activate p53 and inactivate cyclin-dependent kinases to inhibit cell cycle progression from G1 to S (the G1/S checkpoint), DNA replication (the intra-S checkpoint), or G2 to mitosis (the G2/M checkpoint). In this review the molecular mechanisms of DNA repair and the DNA damage checkpoints in mammalian cells are analyzed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 73 (2004), S. 559-587 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Protein S-palmitoylation is the thioester linkage of long-chain fatty acids to cysteine residues in proteins. Addition of palmitate to proteins facilitates their membrane interactions and trafficking, and it modulates protein-protein interactions and enzyme activity. The reversibility of palmitoylation makes it an attractive mechanism for regulating protein activity, and this feature has generated intensive investigation of this modification. The regulation of palmitoylation occurs through the actions of protein acyltransferases and protein acylthioesterases. Identification of the protein acyltransferases Erf2/Erf4 and Akr1 in yeast has provided new insight into the palmitoylation reaction. These molecules work in concert with thioesterases, such as acyl-protein thioesterase 1, to regulate the palmitoylation status of numerous signaling molecules, ultimately influencing their function. This review discusses the function and regulation of protein palmitoylation, focusing on intracellular proteins that participate in cell signaling or protein trafficking.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 73 (2004), S. 953-990 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Opioid receptors belong to the large superfamily of seven transmembrane-spanning (7TM) G protein-coupled receptors (GPCRs). As a class, GPCRs are of fundamental physiological importance mediating the actions of the majority of known neurotransmitters and hormones. Opioid receptors are particularly intriguing members of this receptor family. They are activated both by endogenously produced opioid peptides and by exogenously administered opiate compounds, some of which are not only among the most effective analgesics known but also highly addictive drugs of abuse. A fundamental question in addiction biology is why exogenous opioid drugs, such as morphine and heroin, have a high liability for inducing tolerance, dependence, and addiction. This review focuses on many aspects of opioid receptors with the aim of gaining a greater insight into mechanisms of opioid tolerance and dependence.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 72 (2003), S. 783-812 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract Fueled by ever-growing DNA sequence information, proteomics-the large scale analysis of proteins-has become one of the most important disciplines for characterizing gene function, for building functional linkages between protein molecules, and for providing insight into the mechanisms of biological processes in a high-throughput mode. It is now possible to examine the expression of more than 1000 proteins using mass spectrometry technology coupled with various separation methods. High-throughput yeast two-hybrid approaches and analysis of protein complexes using affinity tag purification have yielded valuable protein-protein interaction maps. Large-scale protein tagging and subcellular localization projects have provided considerable information about protein function. Finally, recent developments in protein microarray technology provide a versatile tool to study protein-protein, protein-nucleic acid, protein-lipid, enzyme-substrate, and protein-drug interactions. Other types of microarrays, though not fully developed, also show great potential in diagnostics, protein profiling, and drug identification and validation. This review discusses high-throughput technologies for proteome analysis and their applications. Also discussed are the approaches used for the integrated analysis of the voluminous sets of data generated by proteome analysis conducted on a global scale.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 73 (2004), S. 861-890 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Eukaryotic mRNAs are primarily degraded by removal of the 3' poly(A) tail, followed either by cleavage of the 5' cap structure (decapping) and 5'-〉3' exonucleolytic digestion, or by 3' to 5' degradation. mRNA decapping represents a critical step in turnover because this permits the degradation of the mRNA and is a site of numerous control inputs. Recent analyses suggest decapping of an mRNA consists of four central and related events. These include removal, or inactivation, of the poly(A) tail as an inhibitor of decapping, exit from active translation, assembly of a decapping complex on the mRNA, and sequestration of the mRNA into discrete cytoplasmic foci where decapping can occur. Each of these steps is a demonstrated, or potential, site for the regulation of mRNA decay. We discuss the decapping process in the light of these central properties, which also suggest fundamental aspects of cytoplasmic mRNA physiology that connect decapping, translation, and storage of mRNA.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 73 (2004), S. 177-208 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Telomeres are essential for genome stability in all eukaryotes. Changes in telomere functions and the associated chromosomal abnormalities have been implicated in human aging and cancer. Telomeres are composed of repetitive sequences that can be maintained by telomerase, a complex containing a reverse transcriptase (hTERT in humans and Est2 in budding yeast), a template RNA (hTERC in humans and Tlc1 in yeast), and accessory factors (the Est1 proteins and dyskerin in humans and Est1, Est3, and Sm proteins in budding yeast). Telomerase is regulated in cis by proteins that bind to telomeric DNA. This regulation can take place at the telomere terminus, involving single-stranded DNA-binding proteins (POT1 in humans and Cdc13 in budding yeast), which have been proposed to contribute to the recruitment of telomerase and may also regulate the extent or frequency of elongation. In addition, proteins that bind along the length of the telomere (TRF1/TIN2/tankyrase in humans and Rap1/Rif1/Rif2 in budding yeast) are part of a negative feedback loop that regulates telomere length. Here we discuss the details of telomerase and its regulation by the telomere.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 73 (2004), S. 321-354 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Lysophospholipids (LPs), such as lysophosphatidic acid and sphingosine 1-phosphate, are membrane-derived bioactive lipid mediators. LPs can affect fundamental cellular functions, which include proliferation, differentiation, survival, migration, adhesion, invasion, and morphogenesis. These functions influence many biological processes that include neurogenesis, angiogenesis, wound healing, immunity, and carcinogenesis. In recent years, identification of multiple cognate G protein-coupled receptors has provided a mechanistic framework for understanding how LPs play such diverse roles. Generation of LP receptor-null animals has allowed rigorous examination of receptor-mediated physiological functions in vivo and has identified new functions for LP receptor signaling. Efforts to develop LP receptor subtype-specific agonists/antagonists are in progress and raise expectations for a growing collection of chemical tools and potential therapeutic compounds. The rapidly expanding literature on the LP receptors is herein reviewed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 73 (2004), S. 791-836 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Just as Darwinian evolution in nature has led to the development of many sophisticated enzymes, Darwinian evolution in vitro has proven to be a powerful approach for obtaining similar results in the laboratory. This review focuses on the development of nucleic acid enzymes starting from a population of random-sequence RNA or DNA molecules. In order to illustrate the principles and practice of in vitro evolution, two especially well-studied categories of catalytic nucleic acid are considered: RNA enzymes that catalyze the template-directed ligation of RNA and DNA enzymes that catalyze the cleavage of RNA. The former reaction, which involves attack of a 2'- or 3'-hydroxyl on the alpha-phosphate of a 5'-triphosphate, is more difficult. It requires a comparatively larger catalytic motif, containing more nucleotides than can be sampled exhaustively within a starting population of random-sequence RNAs. The latter reaction involves deprotonation of the 2'-hydroxyl adjacent to the cleavage site, resulting in cleaved products that bear a 2',3'-cyclic phosphate and 5'-hydroxyl. The difficulty of this reaction, and therefore the complexity of the corresponding DNA enzyme, depends on whether a catalytic cofactor, such as a divalent metal cation or small molecule, is present in the reaction mixture.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 73 (2004), S. 87-106 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Apoptosis, or programmed cell death, is involved in development, elimination of damaged cells, and maintenance of cell homeostasis. Deregulation of apoptosis may cause diseases, such as cancers, immune diseases, and neurodegenerative disorders. Apoptosis is executed by a subfamily of cysteine proteases known as caspases. In mammalian cells, a major caspase activation pathway is the cytochrome c-initiated pathway. In this pathway, a variety of apoptotic stimuli cause cytochrome c release from mitochondria, which in turn induces a series of biochemical reactions that result in caspase activation and subsequent cell death. In this review, we focus on the recent progress in understanding the biochemical mechanisms and regulation of the pathway, the roles of the pathway in physiology and disease, and their potential therapeutic values.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 73 (2004), S. 177-208 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Telomeres are essential for genome stability in all eukaryotes. Changes in telomere functions and the associated chromosomal abnormalities have been implicated in human aging and cancer. Telomeres are composed of repetitive sequences that can be maintained by telomerase, a complex containing a reverse transcriptase (hTERT in humans and Est2 in budding yeast), a template RNA (hTERC in humans and Tlc1 in yeast), and accessory factors (the Est1 proteins and dyskerin in humans and Est1, Est3, and Sm proteins in budding yeast). Telomerase is regulated in cis by proteins that bind to telomeric DNA. This regulation can take place at the telomere terminus, involving single-stranded DNA-binding proteins (POT1 in humans and Cdc13 in budding yeast), which have been proposed to contribute to the recruitment of telomerase and may also regulate the extent or frequency of elongation. In addition, proteins that bind along the length of the telomere (TRF1/TIN2/tankyrase in humans and Rap1/Rif1/Rif2 in budding yeast) are part of a negative feedback loop that regulates telomere length. Here we discuss the details of telomerase and its regulation by the telomere.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 73 (2004), S. 293-320 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: DNA polymerase (pol) gamma is the sole DNA polymerase in animal mitochondria. Biochemical and genetic evidence document a key role for pol gamma in mitochondrial DNA replication, and whereas DNA repair and recombination were thought to be limited or absent in animal mitochondria, both have been demonstrated in recent years. Thus, the mitochondrial replicase is also apparently responsible for the relevant DNA synthetic reactions in these processes. Pol gamma comprises a catalytic core in a heterodimeric complex with an accessory subunit. The two-subunit holoenzyme is an efficient and processive polymerase, which exhibits high fidelity in nucleotide selection and incorporation while proofreading errors with its intrinsic 3' 5' exonuclease. Incorporation of nucleotide analogs followed by proofreading failure leads to mitochondrial toxicity in antiviral therapy, and misincorporation during DNA replication leads to mitochondrial mutagenesis and dysfunction. This review describes our current understanding of pol gamma biochemistry and biology, and it introduces other key proteins that function at the mitochondrial DNA replication fork.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 71 (2002), S. 405-434 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract The low-density-lipoprotein (LDL) receptor family is an evolutionarily ancient gene family of structurally closely related cell-surface receptors. Members of the family are involved in the cellular uptake of extracellular ligands and regulate diverse biological processes including lipid and vitamin metabolism and cell-surface protease activity. Some members of the family also participate in cellular signaling and regulate the development and functional maintenance of the nervous system. Here we review the roles of this family of multifunctional receptors in the nervous system and focus on recent advances toward the understanding of the mechanisms by which lipoprotein receptors and their ligands transmit and modulate signals in the brain.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 71 (2002), S. 473-510 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract Highly enriched in brain tissue and present throughout the body, Ca2+/calmodulin-dependent protein kinase II (CaMKII) is central to the coordination and execution of Ca2+ signal transduction. The substrates phosphorylated by CaMKII are implicated in homeostatic regulation of the cell, as well as in activity-dependent changes in neuronal function that appear to underlie complex cognitive and behavioral responses, including learning and memory. The architecture of CaMKII holoenzymes is unique in nature. The kinase functional domains (12 per holoenzyme) are attached by stalklike appendages to a gear-shaped core, grouped into two clusters of six. Each subunit contains a catalytic, an autoregulatory, and an association domain. Ca2+/calmodulin (CaM) binding disinhibits the autoregulatory domain, allowing autophosphorylation and complex changes in the enzyme's sensitivity to Ca2+/CaM, including the generation of Ca2+/CaM-independent activity, CaM trapping, and CaM capping. These processes confer a type of molecular memory to the autoregulation and activity of CaMKII. Its function is intimately shaped by its multimeric structure, autoregulation, isozymic type, and subcellular localization; these features and processes are discussed as they relate to known and potential cellular functions of this multifunctional protein kinase.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 71 (2002), S. 701-754 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract Carbohydrates are highly abundant biomolecules found extensively in nature. Besides playing important roles in energy storage and supply, they often serve as essential biosynthetic precursors or structural elements needed to sustain all forms of life. A number of unusual sugars that have certain hydroxyl groups replaced by a hydrogen, an amino group, or an alkyl side chain play crucial roles in determining the biological activity of the parent natural products in bacterial lipopolysaccharides or secondary metabolite antibiotics. Recent investigation of the biosynthesis of these monosaccharides has led to the identification of the gene clusters whose protein products facilitate the unusual sugar formation from the ubiquitous NDP-glucose precursors. This review summarizes the mechanistic studies of a few enzymes crucial to the biosynthesis of C-2, C-3, C-4, and C-6 deoxysugars, the characterization and mutagenesis of nucleotidyl transferases that can recognize and couple structural analogs of their natural substrates and the identification of glycosyltransferases with promiscuous substrate specificity. Information gleaned from these studies has allowed pathway engineering, resulting in the creation of new macrolides with unnatural deoxysugar moieties for biological activity screening. This represents a significant progress toward our goal of searching for more potent agents against infectious diseases and malignant tumors.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 73 (2004), S. 1051-1087 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: One way to understand cells and circumscribe the function of proteins is through molecular networks. These networks take a variety of forms including webs of protein-protein interactions, regulatory circuits linking transcription factors and targets, and complex pathways of metabolic reactions. We first survey experimental techniques for mapping networks (e.g., the yeast two-hybrid screens). We then turn our attention to computational approaches for predicting networks from individual protein features, such as correlating gene expression levels or analyzing sequence coevolution. All the experimental techniques and individual predictions suffer from noise and systematic biases. These problems can be overcome to some degree through statistical integration of different experimental datasets and predictive features (e.g., within a Bayesian formalism). Next, we discuss approaches for characterizing the topology of networks, such as finding hubs and analyzing subnetworks in terms of common motifs. Finally, we close with perspectives on how network analysis represents a preliminary step toward a systems approach for modeling cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 72 (2003), S. 449-479 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract The events leading to transcription of eukaryotic protein-coding genes culminate in the positioning of RNA polymerase II at the correct initiation site. The core promoter, which can extend ~35 bp upstream and/or downstream of this site, plays a central role in regulating initiation. Specific DNA elements within the core promoter bind the factors that nucleate the assembly of a functional preinitiation complex and integrate stimulatory and repressive signals from factors bound at distal sites. Although core promoter structure was originally thought to be invariant, a remarkable degree of diversity has become apparent. This article reviews the structural and functional diversity of the RNA polymerase II core promoter.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 72 (2003), S. 395-447 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract Sorting of transmembrane proteins to endosomes and lysosomes is mediated by signals present within the cytosolic domains of the proteins. Most signals consist of short, linear sequences of amino acid residues. Some signals are referred to as tyrosine-based sorting signals and conform to the NPXY or YXXO consensus motifs. Other signals known as dileucine-based signals fit [DE]XXXL[LI] or DXXLL consensus motifs. All of these signals are recognized by components of protein coats peripherally associated with the cytosolic face of membranes. YXXO and [DE]XXXL[LI] signals are recognized with characteristic fine specificity by the adaptor protein (AP) complexes AP-1, AP-2, AP-3, and AP-4, whereas DXXLL signals are recognized by another family of adaptors known as GGAs. Several proteins, including clathrin, AP-2, and Dab2, have been proposed to function as recognition proteins for NPXY signals. YXXO and DXXLL signals bind in an extended conformation to the mu2 subunit of AP-2 and the VHS domain of the GGAs, respectively. Phosphorylation events regulate signal recognition. In addition to peptide motifs, ubiquitination of cytosolic lysine residues also serves as a signal for sorting at various stages of the endosomal-lysosomal system. Conjugated ubiquitin is recognized by UIM, UBA, or UBC domains present within many components of the internalization and lysosomal targeting machinery. This complex array of signals and recognition proteins ensures the dynamic but accurate distribution of transmembrane proteins to different compartments of the endosomal-lysosomal system.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 72 (2003), S. 609-642 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract Trk receptors are a family of three receptor tyrosine kinases, each of which can be activated by one or more of four neurotrophins-nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophins 3 and 4 (NT3 and NT4). Neurotrophin signaling through these receptors regulates cell survival, proliferation, the fate of neural precursors, axon and dendrite growth and patterning, and the expression and activity of functionally important proteins, such as ion channels and neurotransmitter receptors. In the adult nervous system, the Trk receptors regulate synaptic strength and plasticity. The cytoplasmic domains of Trk receptors contain several sites of tyrosine phosphorylation that recruit intermediates in intracellular signaling cascades. As a result, Trk receptor signaling activates several small G proteins, including Ras, Rap-1, and the Cdc-42-Rac-Rho family, as well as pathways regulated by MAP kinase, PI 3-kinase and phospholipase-C-gamma (PLC-gamma). Trk receptor activation has different consequences in different cells, and the specificity of downstream Trk receptor-mediated signaling is controlled through expression of intermediates in these signaling pathways and membrane trafficking that regulates localization of different signaling constituents. Perhaps the most fascinating aspect of Trk receptor-mediated signaling is its interplay with signaling promoted by the pan-neurotrophin receptor p75NTR. p75NTR activates a distinct set of signaling pathways within cells that are in some instances synergistic and in other instances antagonistic to those activated by Trk receptors. Several of these are proapoptotic but are suppressed by Trk receptor-initiated signaling. p75NTR also influences the conformations of Trk receptors; this modifies ligand-binding specificity and affinity with important developmental consequences.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 72 (2003), S. 743-781 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract The p21-activated kinases (PAKs) 1-3 are serine/threonine protein kinases whose activity is stimulated by the binding of active Rac and Cdc42 GTPases. Our understanding of the regulation and biology of these important signaling proteins has increased tremendously since their discovery in the mid-1990s. PAKs 1-3 are activated by a variety of GTPase-dependent and -independent mechanisms. This complexity reflects the contributions of PAK function in many cellular signaling pathways and the need to carefully control PAK action in a highly localized manner. PAKs serve as important regulators of cytoskeletal dynamics and cell motility, transcription through MAP kinase cascades, death and survival signaling, and cell-cycle progression. Consequently, PAKs have also been implicated in a number of pathological conditions and in cell transformation. We propose here a key role for PAK action in coordinating the dynamics of the actin and microtubule cytoskeletons during directional motility of cells, as well as in other functions requiring cytoskeletal polarization.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 73 (2004), S. 467-489 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: The bacterial TolC protein plays a common role in the expulsion of diverse molecules, which include protein toxins and antibacterial drugs, from the cell. TolC is a trimeric 12-stranded alpha/beta barrel, comprising an alpha-helical trans-periplasmic tunnel embedded in the outer membrane by a contiguous beta-barrel channel. This structure establishes a 140 A long single pore fundamentally different to other membrane proteins and presents an exit duct to substrates, large and small, engaged at specific inner membrane translocases. TolC is open to the outside medium but is closed at its periplasmic entrance. When TolC is recruited by a substrate-laden translocase, the entrance is opened to allow substrate passage through a contiguous machinery spanning the entire cell envelope, from the cytosol to the external environment. Transition to the transient open state is achieved by an iris-like mechanism in which entrance alpha-helices undergo an untwisting realignment, thought to be stabilized by interaction with periplasmic helices of the translocase. TolC family proteins are ubiquitous among gram-negative bacteria, and the conserved entrance aperture presents a possible cheomotherapeutic target in multidrug-resistant pathogens.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 73 (2004), S. 617-656 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: The prion hypothesis proposes that proteins can act as infectious agents. Originally formulated to explain transmissible spongiform encephalopathies (TSEs), the prion hypothesis has been extended with the finding that several non-Mendelian traits in fungi are due to heritable changes in protein conformation, which may in some cases be beneficial. Although much remains to be learned about the specific role of cellular cofactors, mechanistic parallels between the mammalian and yeast prion phenomena point to universal features of conformation-based infection and inheritance involving propagation of ordered beta-sheet-rich protein aggregates commonly referred to as amyloid. Here we focus on two such features and discuss recent efforts to explain them in terms of the physical properties of amyloid-like aggregates. The first is prion strains, wherein chemically identical infectious particles cause distinct phenotypes. The second is barriers that often prohibit prion transmission between different species. There is increasing evidence suggesting that both of these can be manifestations of the same phenomenon: the ability of a protein to misfold into multiple self-propagating conformations. Even single mutations can change the spectrum of favored misfolded conformations. In turn, changes in amyloid conformation can shift the specificity of propagation and alter strain phenotypes. This model helps explain many common and otherwise puzzling features of prion inheritance as well as aspects of noninfectious diseases involving toxic misfolded proteins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 73 (2004), S. 837-859 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: The fastest simple, kinetically two-state protein folds a million times more rapidly than the slowest. Here we review many recent theories of protein folding kinetics in terms of their ability to qualitatively rationalize, if not quantitatively predict, this fundamental experimental observation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 73 (2004), S. 437-465 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: The inositol 1,4,5 trisphosphate (IP3) receptor (IP3R) is a Ca2+ release channel that responds to the second messenger IP3. Exquisite modulation of intracellular Ca2+ release via IP3Rs is achieved by the ability of IP3R to integrate signals from numerous small molecules and proteins including nucleotides, kinases, and phosphatases, as well as nonenzyme proteins. Because the ion conduction pore composes only ~5% of the IP3R, the great bulk of this large protein contains recognition sites for these substances. Through these regulatory mechanisms, IP3R modulates diverse cellular functions, which include, but are not limited to, contraction/excitation, secretion, gene expression, and cellular growth. We review the unique properties of the IP3R that facilitate cell-type and stimulus-dependent control of function, with special emphasis on protein-binding partners.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 73 (2004), S. 417-435 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: The yeast SIR protein complex has been implicated in transcription silencing and suppression of recombination. The Sir complex represses transcription at telomeres, mating-type loci, and ribosomal DNA. Unlike SIR3 and SIR4, the SIR2 gene is highly conserved in organisms ranging from archaea to humans. Interestingly, Sir2 is active as an NAD+-dependent deacetylase, which is broadly conserved from bacteria to higher eukaryotes. In this review, we discuss the role of NAD+, the unusual products of the deacetylation reaction, the Sir2 structure, and the Sir2 chemical inhibitors and activators that were recently identified. We summarize the current knowledge of the Sir2 homologs from different organisms, and finally we discuss the role of Sir2 in caloric restriction and aging.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 73 (2004), S. 925-951 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: The GoLoco motif is a 19-amino-acid sequence with guanine nucleotide dissociation inhibitor activity against G-alpha subunits of the adenylyl-cyclase-inhibitory subclass. The GoLoco motif is present as an independent element within multidomain signaling regulators, such as Loco, RGS12, RGS14, and Rap1GAP, as well as in tandem arrays in proteins, such as AGS3, G18, LGN, Pcp-2/L7, and Partner of Inscuteable (Pins/Rapsynoid). Here we discuss the biochemical mechanisms of GoLoco motif action on G-alpha subunits in light of the recent crystal structure of G-alpha-i1 bound to the RGS14 GoLoco motif. Currently, there is sparse evidence for GoLoco motif regulation of canonical G-protein-coupled receptor signaling. Rather, studies of asymmetric cell division in Drosophila and Caenorhabditis elegans, as well as mammalian mitosis, implicate GoLoco proteins, such as Pins, GPR-1/GPR-2, LGN, and RGS14, in mitotic spindle organization and force generation. We discuss potential mechanisms by which GoLoco/Galpha complexes might modulate spindle dynamics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 73 (2004), S. 749-789 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: The superfamily of intermediate filament (IF) proteins contains at least 65 distinct proteins in man, which all assemble into ~10 nm wide filaments and are principal structural elements both in the nucleus and the cytoplasm with essential scaffolding functions in metazoan cells. At present, we have only circumstantial evidence of how the highly divergent primary sequences of IF proteins lead to the formation of seemingly similar polymers and how this correlates with their function in individual cells and tissues. Point mutations in IF proteins, particularly in lamins, have been demonstrated to lead to severe, inheritable multi-systemic diseases, thus underlining their importance at several functional levels. Recent structural work has now begun to shed some light onto the complex fine tuning of structure and function in these fibrous, coiled coil forming multidomain proteins and their contribution to cellular physiology and gene regulation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 73 (2004), S. 1-37 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: I had the good luck to start research at the dawn of molecular biology when it was possible to ask fundamental questions about the nature of the nucleic acids and how information is transferred in living systems. The search for answers led me into many different areas, often with the question of how molecular structure leads to biological function. Early work in this period provided some of the roots supporting the current explosive developments in life sciences. Here I give a brief account of my development, describe some contributions, and provide a hint of the exhilaration in discovering new things. Most of all, I had the good fortune to have inspiring teachers, stimulating colleagues, and excellent students.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 73 (2004), S. 107-146 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Recent developments in NMR spectroscopy, which include new experiments that increase the lifetimes of NMR signals or that precisely define the orientation of internuclear bond vectors with respect to a common molecular frame, have significantly increased the size of proteins for which quantitative structural and dynamic information can be obtained. These experiments have, in turn, benefited from new labeling strategies that continue to drive the field. The utility of the new methodology is illustrated by considering applications to malate synthase G, a 723 residue enzyme, which is the largest single polypeptide chain for which chemical shift assignments have been obtained to date. New experiments developed specifically to address the complexity and low sensitivity of spectra recorded on this protein are presented. A discussion of the chemical information that is readily available from studies of systems in the 100 kDa mol wt range is included. Prospects for membrane protein structure determination are discussed briefly in the context of an application to an Escherichia coli enzyme, PagP, localized to the outer membrane of gram-negative bacteria.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 73 (2004), S. 269-292 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: The structures of the Ca2+-ATPase (SERCA1a) have been determined for five different states by X-ray crystallography. Detailed comparison of the structures in the Ca2+ bound form and unbound (but thapsigargin bound) form reveals that very large rearrangements of the transmembrane helices take place accompanying Ca2+ dissociation and binding and that they are mechanically linked with equally large movements of the cytoplasmic domains. The meanings of the rearrangements of the transmembrane helices and those of the cytoplasmic domains as well as the mechanistic roles of phosphorylation are now becoming clear. Furthermore, the roles of critical amino acid residues identified by extensive mutagenesis studies are becoming evident in terms of atomic structure.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 73 (2004), S. 383-415 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Pyridoxal phosphate (PLP)-dependent enzymes are unrivaled in the diversity of reactions that they catalyze. New structural data have paved the way for targeted mutagenesis and mechanistic studies and have provided a framework for interpretation of those results. Together, these complementary approaches yield new insight into function, particularly in understanding the origins of substrate and reaction type specificity. The combination of new sequences and structures enables better reconstruction of their evolutionary heritage and illuminates unrecognized similarities within this diverse group of enzymes. The important metabolic roles of many PLP-dependent enzymes drive efforts to design specific inhibitors, which are now guided by the availability of comprehensive structural and functional databases. Better understanding of the function of this important group of enzymes is crucial not only for inhibitor design, but also for the design of improved protein-based catalysts.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 73 (2004), S. 467-489 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: The bacterial TolC protein plays a common role in the expulsion of diverse molecules, which include protein toxins and antibacterial drugs, from the cell. TolC is a trimeric 12-stranded alpha/beta barrel, comprising an alpha-helical trans-periplasmic tunnel embedded in the outer membrane by a contiguous beta-barrel channel. This structure establishes a 140 A long single pore fundamentally different to other membrane proteins and presents an exit duct to substrates, large and small, engaged at specific inner membrane translocases. TolC is open to the outside medium but is closed at its periplasmic entrance. When TolC is recruited by a substrate-laden translocase, the entrance is opened to allow substrate passage through a contiguous machinery spanning the entire cell envelope, from the cytosol to the external environment. Transition to the transient open state is achieved by an iris-like mechanism in which entrance alpha-helices undergo an untwisting realignment, thought to be stabilized by interaction with periplasmic helices of the translocase. TolC family proteins are ubiquitous among gram-negative bacteria, and the conserved entrance aperture presents a possible cheomotherapeutic target in multidrug-resistant pathogens.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 73 (2004), S. 617-656 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: The prion hypothesis proposes that proteins can act as infectious agents. Originally formulated to explain transmissible spongiform encephalopathies (TSEs), the prion hypothesis has been extended with the finding that several non-Mendelian traits in fungi are due to heritable changes in protein conformation, which may in some cases be beneficial. Although much remains to be learned about the specific role of cellular cofactors, mechanistic parallels between the mammalian and yeast prion phenomena point to universal features of conformation-based infection and inheritance involving propagation of ordered beta-sheet-rich protein aggregates commonly referred to as amyloid. Here we focus on two such features and discuss recent efforts to explain them in terms of the physical properties of amyloid-like aggregates. The first is prion strains, wherein chemically identical infectious particles cause distinct phenotypes. The second is barriers that often prohibit prion transmission between different species. There is increasing evidence suggesting that both of these can be manifestations of the same phenomenon: the ability of a protein to misfold into multiple self-propagating conformations. Even single mutations can change the spectrum of favored misfolded conformations. In turn, changes in amyloid conformation can shift the specificity of propagation and alter strain phenotypes. This model helps explain many common and otherwise puzzling features of prion inheritance as well as aspects of noninfectious diseases involving toxic misfolded proteins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 73 (2004), S. 791-836 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Just as Darwinian evolution in nature has led to the development of many sophisticated enzymes, Darwinian evolution in vitro has proven to be a powerful approach for obtaining similar results in the laboratory. This review focuses on the development of nucleic acid enzymes starting from a population of random-sequence RNA or DNA molecules. In order to illustrate the principles and practice of in vitro evolution, two especially well-studied categories of catalytic nucleic acid are considered: RNA enzymes that catalyze the template-directed ligation of RNA and DNA enzymes that catalyze the cleavage of RNA. The former reaction, which involves attack of a 2'- or 3'-hydroxyl on the alpha-phosphate of a 5'-triphosphate, is more difficult. It requires a comparatively larger catalytic motif, containing more nucleotides than can be sampled exhaustively within a starting population of random-sequence RNAs. The latter reaction involves deprotonation of the 2'-hydroxyl adjacent to the cleavage site, resulting in cleaved products that bear a 2',3'-cyclic phosphate and 5'-hydroxyl. The difficulty of this reaction, and therefore the complexity of the corresponding DNA enzyme, depends on whether a catalytic cofactor, such as a divalent metal cation or small molecule, is present in the reaction mixture.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 73 (2004), S. 925-951 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: The GoLoco motif is a 19-amino-acid sequence with guanine nucleotide dissociation inhibitor activity against G-alpha subunits of the adenylyl-cyclase-inhibitory subclass. The GoLoco motif is present as an independent element within multidomain signaling regulators, such as Loco, RGS12, RGS14, and Rap1GAP, as well as in tandem arrays in proteins, such as AGS3, G18, LGN, Pcp-2/L7, and Partner of Inscuteable (Pins/Rapsynoid). Here we discuss the biochemical mechanisms of GoLoco motif action on G-alpha subunits in light of the recent crystal structure of G-alpha-i1 bound to the RGS14 GoLoco motif. Currently, there is sparse evidence for GoLoco motif regulation of canonical G-protein-coupled receptor signaling. Rather, studies of asymmetric cell division in Drosophila and Caenorhabditis elegans, as well as mammalian mitosis, implicate GoLoco proteins, such as Pins, GPR-1/GPR-2, LGN, and RGS14, in mitotic spindle organization and force generation. We discuss potential mechanisms by which GoLoco/Galpha complexes might modulate spindle dynamics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 69 (2000), S. 145-182 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract The prostaglandin endoperoxide H synthases-1 and 2 (PGHS-1 and PGHS-2; also cyclooxygenases-1 and 2, COX-1 and COX-2) catalyze the committed step in prostaglandin synthesis. PGHS-1 and 2 are of particular interest because they are the major targets of nonsteroidal anti-inflammatory drugs (NSAIDs) including aspirin, ibuprofen, and the new COX-2 inhibitors. Inhibition of the PGHSs with NSAIDs acutely reduces inflammation, pain, and fever, and long-term use of these drugs reduces fatal thrombotic events, as well as the development of colon cancer and Alzheimer's disease. In this review, we examine how the structures of these enzymes relate mechanistically to cyclooxygenase and peroxidase catalysis, and how differences in the structure of PGHS-2 confer on this isozyme differential sensitivity to COX-2 inhibitors. We further examine the evidence for independent signaling by PGHS-1 and PGHS-2, and the complex mechanisms for regulation of PGHS-2 gene expression.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 69 (2000), S. 373-398 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract Tyrosine phosphorylation is one of the key covalent modifications that occurs in multicellular organisms as a result of intercellular communication during embryogenesis and maintenance of adult tissues. The enzymes that carry out this modification are the protein tyrosine kinases (PTKs), which catalyze the transfer of the gamma phosphate of ATP to tyrosine residues on protein substrates. Phosphorylation of tyrosine residues modulates enzymatic activity and creates binding sites for the recruitment of downstream signaling proteins. Two classes of PTKs are present in cells: the transmembrane receptor PTKs and the nonreceptor PTKs. Because PTKs are critical components of cellular signaling pathways, their catalytic activity is strictly regulated. Over the past several years, high-resolution structural studies of PTKs have provided a molecular basis for understanding the mechanisms by which receptor and nonreceptor PTKs are regulated. This review will highlight the important results that have emerged from these structural studies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 69 (2000), S. 497-529 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract DNA replication fidelity is a key determinant of genome stability and is central to the evolution of species and to the origins of human diseases. Here we review our current understanding of replication fidelity, with emphasis on structural and biochemical studies of DNA polymerases that provide new insights into the importance of hydrogen bonding, base pair geometry, and substrate-induced conformational changes to fidelity. These studies also reveal polymerase interactions with the DNA minor groove at and upstream of the active site that influence nucleotide selectivity, the efficiency of exonucleolytic proofreading, and the rate of forming errors via strand misalignments. We highlight common features that are relevant to the fidelity of any DNA synthesis reaction, and consider why fidelity varies depending on the enzymes, the error, and the local sequence environment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 69 (2000), S. 531-569 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract Hemagglutinin (HA) is the receptor-binding and membrane fusion glycoprotein of influenza virus and the target for infectivity-neutralizing antibodies. The structures of three conformations of the ectodomain of the 1968 Hong Kong influenza virus HA have been determined by X-ray crystallography: the single-chain precursor, HA0; the metastable neutral-pH conformation found on virus, and the fusion pH-induced conformation. These structures provide a framework for designing and interpreting the results of experiments on the activity of HA in receptor binding, the generation of emerging and reemerging epidemics, and membrane fusion during viral entry. Structures of HA in complex with sialic acid receptor analogs, together with binding experiments, provide details of these low-affinity interactions in terms of the sialic acid substituents recognized and the HA residues involved in recognition. Neutralizing antibody-binding sites surround the receptor-binding pocket on the membrane-distal surface of HA, and the structures of the complexes between neutralizing monoclonal Fabs and HA indicate possible neutralization mechanisms. Cleavage of the biosynthetic precursor HA0 at a prominent loop in its structure primes HA for subsequent activation of membrane fusion at endosomal pH (Figure 1). Priming involves insertion of the fusion peptide into a charged pocket in the precursor; activation requires its extrusion towards the fusion target membrane, as the N terminus of a newly formed trimeric coiled coil, and repositioning of the C-terminal membrane anchor near the fusion peptide at the same end of a rod-shaped molecule. Comparison of this new HA conformation, which has been formed for membrane fusion, with the structures determined for other virus fusion glycoproteins suggests that these molecules are all in the fusion-activated conformation and that the juxtaposition of the membrane anchor and fusion peptide, a recurring feature, is involved in the fusion mechanism. Extension of these comparisons to the soluble N-ethyl-maleimide-sensitive factor attachment protein receptor (SNARE) protein complex of vesicle fusion allows a similar conclusion. Figure 1 Three conformations of the hemagglutinin trimer. (a) Uncleaved precursor R329Q HA0 (82). Circled 1 marks cleavage sites, residues 323 of HA1 to 12 of HA2 sites, and adjacent cavities in each monomer. Oligosaccharides are shown as balls and sticks; oligosaccharide at Asn-22 of HA1 is labeled as 22. (b) Cleaved BHA (3). Receptor-binding sites marked with circled 2 (4). (c) Low-pH-induced conformation of thermolysin-solubilized TBHA2 (104); HA2, shaded; HA1, unshaded. Disulfide bonds are black lines. Figure prepared with MOLSCRIPT (202). Figure 1 Three conformations of the hemagglutinin trimer. (a) Uncleaved precursor R329Q HA0 (82). Circ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 69 (2000), S. 699-727 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract Clathrin was discovered nearly 25 years ago. Since then, a large number of other proteins that participate in the process by which clathrin-coated vesicles retrieve synaptic membranes or take up endocytic receptors have been identified. The functional relationships among these disparate components remain, in many cases, obscure. High-resolution structures of parts of clathrin, determined by X-ray crystallography, and lower-resolution images of assembled coats, determined by electron cryomicroscopy, now provide the information necessary to integrate various lines of evidence and to design experiments that test specific mechanistic notions. This review summarizes and illustrates the recent structural results and outlines what is known about coated-vesicle assembly in the context of this information.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 69 (2000), S. 829-880 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract The initiation of DNA replication in eukaryotic cells is tightly controlled to ensure that the genome is faithfully duplicated once each cell cycle. Genetic and biochemical studies in several model systems indicate that initiation is mediated by a common set of proteins, present in all eukaryotic species, and that the activities of these proteins are regulated during the cell cycle by specific protein kinases. Here we review the properties of the initiation proteins, their interactions with each other, and with origins of DNA replication. We also describe recent advances in understanding how the regulatory protein kinases control the progress of the initiation reaction. Finally, we describe the checkpoint mechanisms that function to preserve the integrity of the genome when the normal course of genome duplication is perturbed by factors that damage the DNA or inhibit DNA synthesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 69 (2000), S. 1005-1075 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract The cytochrome bc complexes represent a phylogenetically diverse group of complexes of electron-transferring membrane proteins, most familiarly represented by the mitochondrial and bacterial bc1 complexes and the chloroplast and cyanobacterial b6f complex. All these complexes couple electron transfer to proton translocation across a closed lipid bilayer membrane, conserving the free energy released by the oxidation-reduction process in the form of an electrochemical proton gradient across the membrane. Recent exciting developments include the application of site-directed mutagenesis to define the role of conserved residues, and the emergence over the past five years of X-ray structures for several mitochondrial complexes, and for two important domains of the b6f complex.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 70 (2001), S. 677-701 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract Genetic, biochemical, and spectroscopic studies have established a new function for an intracellular protein, i.e., guiding and inserting a copper cofactor into the active site of a target enzyme. Studies of these new proteins have revealed a fundamental aspect of copper physiology, namely the vast overcapacity of the cytoplasm for copper sequestration. This finding framed the mechanistic, energetic, and structural aspects of intracellular copper trafficking proteins. One hallmark of the copper chaperones is the similarity of the protein fold between the chaperone and its target enzyme. The surface residues presented by each partner, however, are quite different, and some initial findings concerning the complementarity of these interfaces have led to mechanistic insights. The copper chaperones appear to lower the activation barrier for metal transfer into specific protein-binding sites. The manner in which they facilitate metal insertion appears to involve a docking of the metal donor and acceptor sites in close proximity to one another. Although the intimate mechanism is still open, it appears that a low activation barrier for metal transfer is achieved by a network of coordinate-covalent, electrostatic, and hydrogen bonding interactions in the vicinity of the metal-binding site itself.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 70 (2001), S. 149-180 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract The three-dimensional structures of tryptophan synthase, carbamoyl phosphate synthetase, glutamine phosphoribosylpyrophosphate amidotransferase, and asparagine synthetase have revealed the relative locations of multiple active sites within these proteins. In all of these polyfunctional enzymes, a product formed from the catalytic reaction at one active site is a substrate for an enzymatic reaction at a distal active site. Reaction intermediates are translocated from one active site to the next through the participation of an intermolecular tunnel. The tunnel in tryptophan synthase is ~25 A in length, whereas the tunnel in carbamoyl phosphate synthetase is nearly 100 A long. Kinetic studies have demonstrated that the individual reactions are coordinated through allosteric coupling of one active site with another. The participation of these molecular tunnels is thought to protect reactive intermediates from coming in contact with the external medium.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 70 (2001), S. 247-279 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract Protein tyrosine phosphatases (PTPs) are a diverse group of enzymes that contain a highly conserved active site motif, Cys-x5-Arg (Cx5R). The PTP super-family enzymes, which include tyrosine-specific, dual specificity, low-molecular-weight, and Cdc25 phosphatases, are key mediators of a wide variety of cellular processes, including growth, metabolism, differentiation, motility, and programmed cell death. The PTEN/MMAC1/TEP1 gene was originally identified as a candidate tumor suppressor gene located on human chromosome 10q23; it encodes a protein with sequence similarity to PTPs and tensin. Recent studies have demonstrated that PTEN plays an essential role in regulating signaling pathways involved in cell growth and apoptosis, and mutations in the PTEN gene are now known to cause tumorigenesis in a number of human tissues. In addition, germ line mutations in the PTEN gene also play a major role in the development of Cowden and Bannayan-Zonana syndromes, in which patients often suffer from increased risk of breast and thyroid cancers. Biochemical studies of the PTEN phosphatase have revealed a molecular mechanism by which tumorigenesis may be caused in individuals with PTEN mutations. Unlike most members of the PTP superfamily, PTEN utilizes the phosphoinositide second messenger, phosphatidylinositol 3,4,5-trisphosphate (PIP3), as its physiologic substrate. This inositol lipid is an important regulator of cell growth and survival signaling through the Ser/Thr protein kinases PDK1 and Akt. By specifically dephosphorylating the D3 position of PIP3, the PTEN tumor suppressor functions as a negative regulator of signaling processes downstream of this lipid second messenger. Mutations that impair PTEN function result in a marked increase in cellular levels of PIP3 and constitutive activation of Akt survival signaling pathways, leading to inhibition of apoptosis, hyperplasia, and tumor formation. Certain structural features of PTEN contribute to its specificity for PIP3, as well as its role(s) in regulating cellular proliferation and apoptosis. Recently, myotubularin, a second PTP superfamily enzyme associated with human disease, has also been shown to utilize a phosphoinositide as its physiologic substrate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 70 (2001), S. 369-413 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract DNA topoisomerases solve the topological problems associated with DNA replication, transcription, recombination, and chromatin remodeling by introducing temporary single- or double-strand breaks in the DNA. In addition, these enzymes fine-tune the steady-state level of DNA supercoiling both to facilitate protein interactions with the DNA and to prevent excessive supercoiling that is deleterious. In recent years, the crystal structures of a number of topoisomerase fragments, representing nearly all the known classes of enzymes, have been solved. These structures provide remarkable insights into the mechanisms of these enzymes and complement previous conclusions based on biochemical analyses. Surprisingly, despite little or no sequence homology, both type IA and type IIA topoisomerases from prokaryotes and the type IIA enzymes from eukaryotes share structural folds that appear to reflect functional motifs within critical regions of the enzymes. The type IB enzymes are structurally distinct from all other known topoisomerases but are similar to a class of enzymes referred to as tyrosine recombinases. The structural themes common to all topoisomerases include hinged clamps that open and close to bind DNA, the presence of DNA binding cavities for temporary storage of DNA segments, and the coupling of protein conformational changes to DNA rotation or DNA movement. For the type II topoisomerases, the binding and hydrolysis of ATP further modulate conformational changes in the enzymes to effect changes in DNA topology.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 70 (2001), S. 437-473 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract A decade after the discovery of electrospray and matrix-assisted laser desorption ionization (MALDI), methods that finally allowed gentle ionization of large biomolecules, mass spectrometry has become a powerful tool in protein analysis and the key technology in the emerging field of proteomics. The success of mass spectrometry is driven both by innovative instrumentation designs, especially those operating on the time-of-flight or ion-trapping principles, and by large-scale biochemical strategies, which use mass spectrometry to detect the isolated proteins. Any human protein can now be identified directly from genome databases on the basis of minimal data derived by mass spectrometry. As has already happened in genomics, increased automation of sample handling, analysis, and the interpretation of results will generate an avalanche of qualitative and quantitative proteomic data. Protein-protein interactions can be analyzed directly by precipitation of a tagged bait followed by mass spectrometric identification of its binding partners. By these and similar strategies, entire protein complexes, signaling pathways, and whole organelles are being characterized. Posttranslational modifications remain difficult to analyze but are starting to yield to generic strategies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract The 3-phosphorylated inositol lipids fulfill roles as second messengers by interacting with the lipid binding domains of a variety of cellular proteins. Such interactions can affect the subcellular localization and aggregation of target proteins, and through allosteric effects, their activity. Generation of 3-phosphoinositides has been documented to influence diverse cellular pathways and hence alter a spectrum of fundamental cellular activities. This review is focused on the 3-phosphoinositide lipids, the synthesis of which is acutely triggered by extracellular stimuli, the enzymes responsible for their synthesis and metabolism, and their cell biological roles. Much knowledge has recently been gained through structural insights into the lipid kinases, their interaction with inhibitors, and the way their 3-phosphoinositide products interact with protein targets. This field is now moving toward a genetic dissection of 3-phosphoinositide action in a variety of model organisms. Such approaches will reveal the true role of the 3-phosphoinositides at the organismal level in health and disease.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 71 (2002), S. 191-219 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract Various physicochemical factors influence DNA replication fidelity. Since it is now known that Watson-Crick hydrogen bonds are not necessary for efficient and selective replication of a base pair by DNA polymerase enzymes, a number of alternative physical factors have been examined to explain the efficiency of these enzymes. Among these factors are minor groove hydrogen bonding, base stacking, solvation, and steric effects. We discuss the concept of active site tightness in DNA polymerases, and consider how it might influence steric (size and shape) effects of nucleotide selection in synthesis of a base pair. A high level of active site tightness is expected to lead to higher fidelity relative to proteins with looser active sites. We review the current data on what parts and dimensions of active sites are most affected by size and shape, based on data with modified nucleotides that have been examined as polymerase substrates. We also discuss recent data on nucleotide analogs displaying higher fidelity than the natural ones. The published data are discussed with a view toward testing this sterically based hypothesis and unifying existing observations into a narrowly defined range of effects.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 72 (2003), S. 1-18 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract A childhood fascination with animals, plants, and insects was aided and abetted by many giants, beginning with my parents. The Bronx High School of Science and the City College of New York (CCNY) made a solid and priceless grounding in chemistry and biology available free of charge. Abe Mazur at CCNY revealed the wonders of biochemistry and illustrated that it was possible to pursue these wonders while being paid to do so. He also directed me to Duke University Medical School for PhD work under the tutelage of Phil Handler. With the exception of a sabbatical year at Harvard with Frank Westheimer, my entire career has been spent at Duke serving under three fine and supportive chairmen: Handler, Hill, and Raetz. The premier discoveries to emanate from my laboratory have been the sulfite oxidase, the several superoxide dismutases, the manganese catalase, and the catalase/peroxidase. Many other topics piqued my interest and resulted in ~ 400 publications. Herein I have recounted some of the circumstances surrounding that work and named a few of the people involved. The first 20 years I worked happily at the bench and the next 35 years just as happily facilitating the work of younger people. It has been so rewarding that I wish for nothing more than to be allowed to keep at it.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 72 (2003), S. 137-174 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract The synthesis and excretion of bile acids comprise the major pathway of cholesterol catabolism in mammals. Synthesis provides a direct means of converting cholesterol, which is both hydrophobic and insoluble, into a water-soluble and readily excreted molecule, the bile acid. The biosynthetic steps that accomplish this transformation also confer detergent properties to the bile acid, which are exploited by the body to facilitate the secretion of cholesterol from the liver. This role in the elimination of cholesterol is counterbalanced by the ability of bile acids to solubilize dietary cholesterol and essential nutrients and to promote their delivery to the liver. The synthesis of a full complement of bile acids requires 17 enzymes. The expression of selected enzymes in the pathway is tightly regulated by nuclear hormone receptors and other transcription factors, which ensure a constant supply of bile acids in an ever changing metabolic environment. Inherited mutations that impair bile acid synthesis cause a spectrum of human disease; this ranges from liver failure in early childhood to progressive neuropathy in adults.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 72 (2003), S. 291-336 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract Alternative pre-mRNA splicing is a central mode of genetic regulation in higher eukaryotes. Variability in splicing patterns is a major source of protein diversity from the genome. In this review, I describe what is currently known of the molecular mechanisms that control changes in splice site choice. I start with the best-characterized systems from the Drosophila sex determination pathway, and then describe the regulators of other systems about whose mechanisms there is some data. How these regulators are combined into complex systems of tissue-specific splicing is discussed. In conclusion, very recent studies are presented that point to new directions for understanding alternative splicing and its mechanisms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 72 (2003), S. 517-571 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract Since the discovery of enzymes as biological catalysts, study of their enormous catalytic power and exquisite specificity has been central to biochemistry. Nevertheless, there is no universally accepted comprehensive description. Rather, numerous proposals have been presented over the past half century. The difficulty in developing a comprehensive description for the catalytic power of enzymes derives from the highly cooperative nature of their energetics, which renders impossible a simple division of mechanistic features and an absolute partitioning of catalytic contributions into independent and energetically additive components. Site-directed mutagenesis has emerged as an enormously powerful approach to probe enzymatic catalysis, illuminating many basic features of enzyme function and behavior. The emphasis of site-directed mutagenesis on the role of individual residues has also, inadvertently, limited experimental and conceptual attention to the fundamentally cooperative nature of enzyme function and energetics. The first part of this review highlights the structural and functional interconnectivity central to enzymatic catalysis. In the second part we ask: What are the features of enzymes that distinguish them from simple chemical catalysts? The answers are presented in conceptual models that, while simplified, help illustrate the vast amount known about how enzymes achieve catalysis. In the last section, we highlight the molecular and energetic questions that remain for future investigation and describe experimental approaches that will be necessary to answer these questions. The promise of advancing and integrating cutting edge conceptual, experimental, and computational tools brings mechanistic enzymology to a new era, one poised for novel fundamental insights into biological catalysis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 72 (2003), S. 717-742 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract Recognition of foreign antigens by T lymphocytes is a very important component of vertebrate immunity-vital to the clearance of pathogenic organisms and particular viruses and necessary, indirectly, for the production of high affinity antibodies. T cell recognition is mediated by the systematic scanning of cell surfaces by T cells, which collectively express many antigen receptors. When the appropriate antigenic peptide bound to a molecule of the major histocompatibility complex is found-even in minute quantities-a series of elaborate cell-surface molecule and internal rearrangements take place. The sequence of events and the development of techniques required to observe these events have significantly enhanced our understanding of T cell recognition and may find application in other systems of transient cell:cell interactions as well.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 73 (2004), S. 705-748 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Mechanical processes are involved in nearly every facet of the cell cycle. Mechanical forces are generated in the cell during processes as diverse as chromosomal segregation, replication, transcription, translation, translocation of proteins across membranes, cell locomotion, and catalyzed protein and nucleic acid folding and unfolding, among others. Because force is a product of all these reactions, biochemists are beginning to directly apply external forces to these processes to alter the extent or even the fate of these reactions hoping to reveal their underlying molecular mechanisms. This review provides the conceptual framework to understand the role of mechanical force in biochemistry.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 73 (2004), S. 1051-1087 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: One way to understand cells and circumscribe the function of proteins is through molecular networks. These networks take a variety of forms including webs of protein-protein interactions, regulatory circuits linking transcription factors and targets, and complex pathways of metabolic reactions. We first survey experimental techniques for mapping networks (e.g., the yeast two-hybrid screens). We then turn our attention to computational approaches for predicting networks from individual protein features, such as correlating gene expression levels or analyzing sequence coevolution. All the experimental techniques and individual predictions suffer from noise and systematic biases. These problems can be overcome to some degree through statistical integration of different experimental datasets and predictive features (e.g., within a Bayesian formalism). Next, we discuss approaches for characterizing the topology of networks, such as finding hubs and analyzing subnetworks in terms of common motifs. Finally, we close with perspectives on how network analysis represents a preliminary step toward a systems approach for modeling cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 73 (2004), S. 355-382 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Small ubiquitin-related modifier (SUMO) family proteins function by becoming covalently attached to other proteins as post-translational modifications. SUMO modifies many proteins that participate in diverse cellular processes, including transcriptional regulation, nuclear transport, maintenance of genome integrity, and signal transduction. Reversible attachment of SUMO is controlled by an enzyme pathway that is analogous to the ubiquitin pathway. The functional consequences of SUMO attachment vary greatly from substrate to substrate, and in many cases are not understood at the molecular level. Frequently SUMO alters interactions of substrates with other proteins or with DNA, but SUMO can also act by blocking ubiquitin attachment sites. An unusual feature of SUMO modification is that, for most substrates, only a small fraction of the substrate is sumoylated at any given time. This review discusses our current understanding of how SUMO conjugation is controlled, as well as the roles of SUMO in a number of biological processes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 73 (2004), S. 147-176 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: The genetic code is established by the aminoacylation of transfer RNA, reactions in which each amino acid is linked to its cognate tRNA that, in turn, harbors the nucleotide triplet (anticodon) specific to the amino acid. The accuracy of aminoacylation is essential for building and maintaining the universal tree of life. The ability to manipulate and expand the code holds promise for the development of new methods to create novel proteins and to understand the origins of life. Recent efforts to manipulate the genetic code have fulfilled much of this potential. These efforts have led to incorporation of nonnatural amino acids into proteins for a variety of applications and have demonstrated the plausibility of specific proposals for early evolution of the code.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 73 (2004), S. 269-292 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: The structures of the Ca2+-ATPase (SERCA1a) have been determined for five different states by X-ray crystallography. Detailed comparison of the structures in the Ca2+ bound form and unbound (but thapsigargin bound) form reveals that very large rearrangements of the transmembrane helices take place accompanying Ca2+ dissociation and binding and that they are mechanically linked with equally large movements of the cytoplasmic domains. The meanings of the rearrangements of the transmembrane helices and those of the cytoplasmic domains as well as the mechanistic roles of phosphorylation are now becoming clear. Furthermore, the roles of critical amino acid residues identified by extensive mutagenesis studies are becoming evident in terms of atomic structure.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 73 (2004), S. 383-415 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Pyridoxal phosphate (PLP)-dependent enzymes are unrivaled in the diversity of reactions that they catalyze. New structural data have paved the way for targeted mutagenesis and mechanistic studies and have provided a framework for interpretation of those results. Together, these complementary approaches yield new insight into function, particularly in understanding the origins of substrate and reaction type specificity. The combination of new sequences and structures enables better reconstruction of their evolutionary heritage and illuminates unrecognized similarities within this diverse group of enzymes. The important metabolic roles of many PLP-dependent enzymes drive efforts to design specific inhibitors, which are now guided by the availability of comprehensive structural and functional databases. Better understanding of the function of this important group of enzymes is crucial not only for inhibitor design, but also for the design of improved protein-based catalysts.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 73 (2004), S. 491-537 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Researchers have long predicted that complex carbohydrates on cell surfaces would play important roles in developmental processes because of the observation that specific carbohydrate structures appear in specific spatial and temporal patterns throughout development. The astounding number and complexity of carbohydrate structures on cell surfaces added support to the concept that glycoconjugates would function in cellular communication during development. Although the structural complexity inherent in glycoconjugates has slowed advances in our understanding of their functions, the complete sequencing of the genomes of organisms classically used in developmental studies (e.g., mice, Drosophila melanogaster, and Caenorhabditis elegans) has led to demonstration of essential functions for a number of glycoconjugates in developmental processes. Here we present a review of recent studies analyzing function of a variety of glycoconjugates (O-fucose, O-mannose, N-glycans, mucin-type O-glycans, proteoglycans, glycosphingolipids), focusing on lessons learned from human disease and genetic studies in mice, D. melanogaster, and C. elegans.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 73 (2004), S. 1019-1049 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: From a process involved in cell wall synthesis in archaea and some bacteria, N-linked glycosylation has evolved into the most common covalent protein modification in eukaryotic cells. The sugars are added to nascent proteins as a core oligosaccharide unit, which is then extensively modified by removal and addition of sugar residues in the endoplasmic reticulum (ER) and the Golgi complex. It has become evident that the modifications that take place in the ER reflect a spectrum of functions related to glycoprotein folding, quality control, sorting, degradation, and secretion. The glycans not only promote folding directly by stabilizing polypeptide structures but also indirectly by serving as recognition "tags" that allow glycoproteins to interact with a variety of lectins, glycosidases, and glycosyltranferases. Some of these (such as glucosidases I and II, calnexin, and calreticulin) have a central role in folding and retention, while others (such as alpha-mannosidases and EDEM) target unsalvageable glycoproteins for ER-associated degradation. Each residue in the core oligosaccharide and each step in the modification program have significance for the fate of newly synthesized glycoproteins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 73 (2004), S. 891-923 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Secreted signaling proteins function in a diverse array of essential patterning events during metazoan development, ranging from embryonic segmentation in insects to neural tube differentiation in vertebrates. These proteins generally are expressed in a localized manner, and they may elicit distinct concentration-dependent responses in the cells of surrounding tissues and structures, thus functioning as morphogens that specify the pattern of cellular responses by their tissue distribution. Given the importance of signal distribution, it is notable that the Hedgehog (Hh) and Wnt proteins, two of the most important families of such signals, are known to be covalently modified by lipid moieties, the membrane-anchoring properties of which are not consistent with passive models of protein mobilization within tissues. This review focuses on the mechanisms underlying biogenesis of the mature Hh proteins, which are dually modified by cholesteryl and palmitoyl adducts, as well as on the relationship between Hh proteins and the self-splicing proteins (i.e., proteins containing inteins) and the Hh-like proteins of nematodes. We further discuss the cellular mechanisms that have evolved to handle lipidated Hh proteins in the spatial deployment of the signal in developing tissues and the more recent findings that implicate palmitate modification as an important feature of Wnt signaling proteins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 73 (2004), S. 293-320 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: DNA polymerase (pol) gamma is the sole DNA polymerase in animal mitochondria. Biochemical and genetic evidence document a key role for pol gamma in mitochondrial DNA replication, and whereas DNA repair and recombination were thought to be limited or absent in animal mitochondria, both have been demonstrated in recent years. Thus, the mitochondrial replicase is also apparently responsible for the relevant DNA synthetic reactions in these processes. Pol gamma comprises a catalytic core in a heterodimeric complex with an accessory subunit. The two-subunit holoenzyme is an efficient and processive polymerase, which exhibits high fidelity in nucleotide selection and incorporation while proofreading errors with its intrinsic 3' 5' exonuclease. Incorporation of nucleotide analogs followed by proofreading failure leads to mitochondrial toxicity in antiviral therapy, and misincorporation during DNA replication leads to mitochondrial mutagenesis and dysfunction. This review describes our current understanding of pol gamma biochemistry and biology, and it introduces other key proteins that function at the mitochondrial DNA replication fork.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 73 (2004), S. 147-176 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: The genetic code is established by the aminoacylation of transfer RNA, reactions in which each amino acid is linked to its cognate tRNA that, in turn, harbors the nucleotide triplet (anticodon) specific to the amino acid. The accuracy of aminoacylation is essential for building and maintaining the universal tree of life. The ability to manipulate and expand the code holds promise for the development of new methods to create novel proteins and to understand the origins of life. Recent efforts to manipulate the genetic code have fulfilled much of this potential. These efforts have led to incorporation of nonnatural amino acids into proteins for a variety of applications and have demonstrated the plausibility of specific proposals for early evolution of the code.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 73 (2004), S. 241-268 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: ATP-binding cassette (ABC) transporters couple ATP hydrolysis to the uptake and efflux of solutes across the cell membrane in bacteria and eukaryotic cells. In bacteria, these transporters are important virulence factors because they play roles in nutrient uptake and in secretion of toxins and antimicrobial agents. In humans, many diseases, such as cystic fibrosis, hyperinsulinemia, and macular dystrophy, are traced to defects in ABC transporters. Recent advances in structural determination and functional analysis of bacterial ABC transporters, reviewed herein, have greatly increased our understanding of the molecular mechanism of transport in this transport superfamily.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 70 (2001), S. 777-810 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract Viral envelope glycoproteins promote viral infection by mediating the fusion of the viral membrane with the host-cell membrane. Structural and biochemical studies of two viral glycoproteins, influenza hemagglutinin and HIV-1 envelope protein, have led to a common model for viral entry. The fusion mechanism involves a transient conformational species that can be targeted by therapeutic strategies. This mechanism of infectivity is likely utilized by a wide variety of enveloped viruses for which similar therapeutic interventions should be possible.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 71 (2002), S. 51-70 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract DNA molecules are able to transport electrons over long distances. In most experiments the process is stimulated by the oxidation of guanines (G), which generates guanine radical cations. The electron transport through DNA occurs in a multistep hopping mechanism with all Gs as carriers of the positive charge. The rate of each individual hopping step between the Gs decreases strongly with increase of the distance. If the (A:T) bridges between the guanines are long, adenines (A) also become charge carriers. Mismatches, single strands, and G-oxidation products can drastically diminish the efficiency of the charge transport. But in triplexes and DNA/RNA duplexes, as well as in several duplex DNA/peptide complexes, the efficacy of the charge transport is less affected. The ability of DNA molecules to transport charges over long distances could provide a mechanism for ameliorating the harmfulness of damage to DNA under the conditions of oxidative stress.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 71 (2002), S. 17-50 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract DNA repair is crucial to the well-being of all organisms from unicellular life forms to humans. A rich tapestry of mechanistic studies on DNA repair has emerged thanks to the recent discovery of Y-family DNA polymerases. Many Y-family members carry out aberrant DNA synthesis-poor replication accuracy, the favored formation of non-Watson-Crick base pairs, efficient mismatch extension, and most importantly, an ability to replicate through DNA damage. This review is devoted primarily to a discussion of Y-family polymerase members that exhibit error-prone behavior. Roles for these remarkable enzymes occur in widely disparate DNA repair pathways, such as UV-induced mutagenesis, adaptive mutation, avoidance of skin cancer, and induction of somatic cell hypermutation of immunoglobulin genes. Individual polymerases engaged in multiple repair pathways pose challenging questions about their roles in targeting and trafficking. Macromolecular assemblies of replication-repair "factories" could enable a cell to handle the complex logistics governing the rapid migration and exchange of polymerases.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 71 (2002), S. 275-305 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: Abstract Proteases from a variety of protozoan parasites have been characterized at the molecular and cellular levels, and the many roles that proteases play in these organisms are coming into focus. Central roles have been proposed for proteases in diverse processes such as host cell invasion and egress, encystation, excystation, catabolism of host proteins, differentiation, cell cycle progression, cytoadherence, and both stimulation and evasion of host immune responses. Detailed structural and functional characterization of parasite proteases has led to novel insights into the workings of these fascinating catalytic machines. The possibility of developing selective inhibitors of key proteases of pathogenic parasites into novel chemotherapeutic strategies is being vigorously explored.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Biochemistry 73 (2004), S. 417-435 
    ISSN: 0066-4154
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Chemistry and Pharmacology , Biology
    Notes: The yeast SIR protein complex has been implicated in transcription silencing and suppression of recombination. The Sir complex represses transcription at telomeres, mating-type loci, and ribosomal DNA. Unlike SIR3 and SIR4, the SIR2 gene is highly conserved in organisms ranging from archaea to humans. Interestingly, Sir2 is active as an NAD+-dependent deacetylase, which is broadly conserved from bacteria to higher eukaryotes. In this review, we discuss the role of NAD+, the unusual products of the deacetylation reaction, the Sir2 structure, and the Sir2 chemical inhibitors and activators that were recently identified. We summarize the current knowledge of the Sir2 homologs from different organisms, and finally we discuss the role of Sir2 in caloric restriction and aging.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...