ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (34)
  • Oxford University Press
  • American Geophysical Union (AGU)
  • Annual Reviews
  • 2015-2019  (32)
  • 1980-1984  (1)
  • 1935-1939  (1)
Collection
Years
Year
  • 1
    facet.materialart.
    Unknown
    Annual Reviews
    In:  Annual Review of Marine Science, 9 (1). pp. 413-444.
    Publication Date: 2020-06-11
    Description: Marine zooplankton comprise a phylogenetically and functionally diverse assemblage of protistan and metazoan consumers that occupy multiple trophic levels in pelagic food webs. Within this complex network, carbon flows via alternative zooplankton pathways drive temporal and spatial variability in production-grazing coupling, nutrient cycling, export, and transfer efficiency to higher trophic levels. We explore current knowledge of the processing of zooplankton food ingestion by absorption, egestion, respiration, excretion, and growth (production) processes. On a global scale, carbon fluxes are reasonably constrained by the grazing impact of microzooplankton and the respiratory requirements of mesozooplankton but are sensitive to uncertainties in trophic structure. The relative importance, combined magnitude, and efficiency of export mechanisms (mucous feeding webs, fecal pellets, molts, carcasses, and vertical migrations) likewise reflect regional variability in community structure. Climate change is expected to broadly alter carbon cycling by zooplankton and to have direct impacts on key species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Annual Reviews
    In:  Annual Review of Marine Science, 10 (1). pp. 443-473.
    Publication Date: 2020-06-09
    Description: Mixing efficiency is the ratio of the net change in potential energy to the energy expended in producing the mixing. Parameterizations of efficiency and of related mixing coefficients are needed to estimate diapycnal diffusivity from measurements of the turbulent dissipation rate. Comparing diffusivities from microstructure profiling with those inferred from the thickening rate of four simultaneous tracer releases has verified, within observational accuracy, 0.2 as the mixing coefficient over a 30-fold range of diapycnal diffusivities. Although some mixing coefficients can be estimated from pycnocline measurements, at present mixing efficiency must be obtained from channel flows, laboratory experiments, and numerical simulations. Reviewing the different approaches demonstrates that estimates and parameterizations for mixing efficiency and coefficients are not converging beyond the at-sea comparisons with tracer releases, leading to recommendations for a community approach to address this important issue.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  Geophysical Research Letters, 7 (10). pp. 797-800.
    Publication Date: 2020-07-30
    Description: The rate of reaction of OH with CS2 to form OCS by reaction (1) has been measured through observation of O14CS following 254 nm equation image photolysis of mixtures of H2O2 with 14CS2. The OH concentrations have been monitored through simultaneous measurement in the same cell of either (a) the oxidation of CO to CO2, or (b) the removal of a hydrocarbon such as C3H8 or iso-C4H10. The upper limit for the formation of OCS based on (a) corresponds to a rate constant k1 〈 0.3 × 10−14 cm³ molecule−1 sec−1. Other chemical reactions in the system have led to the formation of both 14CO and 14CO2, indicating the existence of a complex combination of reactions such that the observed O14CS need not have been formed by (1). The rate of reaction (1) is sufficiently slow that it is neither an important atmospheric sink for CS2 nor an important source for atmospheric OCS. The reaction of OH with OCS has not been measured in these experiments, but by analogy with k1 it is probably not an important atmospheric sink for OCS nor an important source of SO2.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Annual Reviews
    In:  Annual Review of Earth and Planetary Sciences, 45 (1). pp. 593-617.
    Publication Date: 2020-06-09
    Description: The evolutionary trajectory of early complex life on Earth is interpreted largely from the fossils of the Precambrian soft-bodied Ediacara Biota, which appeared and evolved during a time of dynamic biogeochemical and environmental fluctuation in the global ocean. The Ediacara Biota is historically divided into three successive Assemblages—the Avalon, the White Sea, and the Nama—which are marked by the appearance of novel biological traits and ecological strategies. In particular, the younger White Sea and Nama Assemblages record a “second wave” of ecological innovations, which included not only the development of uniquely Ediacaran body plans and ecologies, such as matground adaptations, but also the dual emergence of bilaterian-grade animals and Phanerozoic-style ecological innovations, including spatial heterogeneity, complex reproductive strategies, ecospace utilization, motility, and substrate competition. The late Ediacaran was an evolutionarily dynamic time characterized by strong environmental control over the distribution of taxa in time and space.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Annual Reviews
    In:  Annual Review of Marine Science, 9 (1). pp. 311-335.
    Publication Date: 2020-06-11
    Description: Mixotrophs are important components of the bacterioplankton, phytoplankton, microzooplankton, and (sometimes) zooplankton in coastal and oceanic waters. Bacterivory among the phytoplankton may be important for alleviating inorganic nutrient stress and may increase primary production in oligotrophic waters. Mixotrophic phytoflagellates and dinoflagellates are often dominant components of the plankton during seasonal stratification. Many of the microzooplankton grazers, including ciliates and Rhizaria, are mixotrophic owing to their retention of functional algal organelles or maintenance of algal endosymbionts. Phototrophy among the microzooplankton may increase gross growth efficiency and carbon transfer through the microzooplankton to higher trophic levels. Characteristic assemblages of mixotrophs are associated with warm, temperate, and cold seas and with stratification, fronts, and upwelling zones. Modeling has indicated that mixotrophy has a profound impact on marine planktonic ecosystems and may enhance primary production, biomass transfer to higher trophic levels, and the functioning of the biological carbon pump.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-02-08
    Description: We present high-resolution resistivity imaging of gas hydrate pipe-like structures, as derived from marine controlled-source electromagnetic (CSEM) inversions that combine towed and ocean-bottom electric field receiver data, acquired from the Nyegga region, offshore Norway. Two-dimensional CSEM inversions applied to the towed receiver data detected four new prominent vertical resistive features that are likely gas hydrate structures, located in proximity to a major gas hydrate pipe-like structure, known as the CNE03 pockmark. The resistivity model resulting from the CSEM data inversion resolved the CNE03 hydrate structure in high resolution, as inferred by comparison to seismically constrained inversions. Our results indicate that shallow gas hydrate vertical features can be delineated effectively by inverting both ocean-bottom and towed receiver CSEM data simultaneously. The approach applied here can be utilised to map and monitor seafloor mineralisation, freshwater reservoirs, CO2 sequestration sites and near-surface geothermal systems.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-10-26
    Description: Ocean acidification (OA) is increasing due to anthropogenic CO2 emissions and poses a threat to marine species and communities worldwide. To better project the effects of acidification on organisms’ health and persistence, an understanding is needed of the 1) mechanisms underlying developmental and physiological tolerance and 2) potential populations have for rapid evolutionary adaptation. This is especially challenging in nonmodel species where targeted assays of metabolism and stress physiology may not be available or economical for large-scale assessments of genetic constraints. We used mRNA sequencing and a quantitative genetics breeding design to study mechanisms underlying genetic variability and tolerance to decreased seawater pH (-0.4 pH units) in larvae of the sea urchin Strongylocentrotus droebachiensis. We used a gene ontology-based approach to integrate expression profiles into indirect measures of cellular and biochemical traits underlying variation in larval performance (i.e., growth rates). Molecular responses to OA were complex, involving changes to several functions such as growth rates, cell division, metabolism, and immune activities. Surprisingly, the magnitude of pH effects on molecular traits tended to be small relative to variation attributable to segregating functional genetic variation in this species. We discuss how the application of transcriptomics and quantitative genetics approaches across diverse species can enrich our understanding of the biological impacts of climate change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-02-05
    Description: Barnacles of the genus Galkinius occupy a large spectrum of host corals, making it one of the least host-specific genera within the Pyrgomatidae. Molecular analyses show that within the genus Galkinius there are highly supported clades, suggesting that the genus Galkinius is a complex of evolutionarily significant units (ESUs). The morphology of the opercular valves has been used as the basis for the separation of species of Galkinius. In this study, morphological variability was found both between specimens within ESUs extracted from different host species and between specimens extracted from the same colony. Identifications based on the opercular valves cannot therefore be assigned to different species despite being genetically distinguishable. It is proposed that in many cases the differences between valve morphology of different species of Galkinius are the outcome of ontogeny. Allometric growth of the valves has resulted in differences in the proportions of the parts of the valve.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Oxford University Press
    In:  In: Marine Plankton: A practical guide to ecology, methodology, and taxonomy. , ed. by Castellani, C. and Edwards, M. Oxford University Press, Oxford, UK, pp. 538-550. ISBN 978-0-19-923326-7
    Publication Date: 2020-03-03
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Annual Reviews
    In:  Annual Review of Marine Science, 10 (1). pp. 397-420.
    Publication Date: 2020-06-09
    Description: The oceanic bottom boundary layer extracts energy and momentum from the overlying flow, mediates the fate of near-bottom substances, and generates bedforms that retard the flow and affect benthic processes. The bottom boundary layer is forced by winds, waves, tides, and buoyancy and is influenced by surface waves, internal waves, and stratification by heat, salt, and suspended sediments. This review focuses on the coastal ocean. The main points are that (a) classical turbulence concepts and modern turbulence parameterizations provide accurate representations of the structure and turbulent fluxes under conditions in which the underlying assumptions hold, (b) modern sensors and analyses enable high-quality direct or near-direct measurements of the turbulent fluxes and dissipation rates, and (c) the remaining challenges include the interaction of waves and currents with the erodible seabed, the impact of layer-scale two- and three-dimensional instabilities, and the role of the bottom boundary layer in shelf-slope exchange.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2021-02-08
    Description: Pseudovibrio is a marine bacterial genus members of which are predominantly isolated from sessile marine animals, and particularly sponges. It has been hypothesised that Pseudovibrio spp. form mutualistic relationships with their hosts. Here, we studied Pseudovibrio phylogeny and genetic adaptations that may play a role in host colonization by comparative genomics of 31 Pseudovibrio strains, including 25 sponge isolates. All genomes were highly similar in terms of encoded core metabolic pathways, albeit with substantial differences in overall gene content. Based on gene composition, Pseudovibrio spp. clustered by geographic region, indicating geographic speciation. Furthermore, the fact that isolates from the Mediterranean Sea clustered by sponge species suggested host-specific adaptation or colonization. Genome analyses suggest that Pseudovibrio hongkongensis UST20140214-015BT is only distantly related to other Pseudovibrio spp., thereby challenging its status as typical Pseudovibrio member. All Pseudovibrio genomes were found to encode numerous proteins with SEL1 and tetratricopeptide repeats, which have been suggested to play a role in host colonization. For evasion of the host immune system, Pseudovibrio spp. may depend on type III, IV and VI secretion systems that can inject effector molecules into eukaryotic cells. Furthermore, Pseudovibrio genomes carry on average seven secondary metabolite biosynthesis clusters, reinforcing the role of Pseudovibrio spp. as potential producers of novel bioactive compounds. Tropodithietic acid, bacteriocin and terpene biosynthesis clusters were highly conserved within the genus, suggesting an essential role in survival e.g. through growth inhibition of bacterial competitors. Taken together, these results support the hypothesis that Pseudovibrio spp. have mutualistic relations with sponges.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    Annual Reviews
    In:  Annual Review of Marine Science, 10 (1). pp. 229-260.
    Publication Date: 2020-06-11
    Description: Oxygen loss in the ocean, termed deoxygenation, is a major consequence of climate change and is exacerbated by other aspects of global change. An average global loss of 2% or more has been recorded in the open ocean over the past 50-100 years, but with greater oxygen declines in intermediate waters (100-600 m) of the North Pacific, the East Pacific, tropical waters, and the Southern Ocean. Although ocean warming contributions to oxygen declines through a reduction in oxygen solubility and stratification effects on ventilation are reasonably well understood, it has been a major challenge to identify drivers and modifying factors that explain different regional patterns, especially in the tropical oceans. Changes in respiration, circulation (including upwelling), nutrient inputs, and possibly methane release contribute to oxygen loss, often indirectly through stimulation of biological production and biological consumption. Microbes mediate many feedbacks in oxygen minimum zones that can either exacerbate or ameliorate deoxygenation via interacting nitrogen, sulfur, and carbon cycles. The paleo-record reflects drivers of and feedbacks to deoxygenation that have played out through the Phanerozoic on centennial, millennial, and hundred-million-year timescales. Natural oxygen variability has made it difficult to detect the emergence of a climate-forced signal of oxygen loss, but new modeling efforts now project emergence to occur in many areas in 15-25 years. Continued global deoxygenation is projected for the next 100 or more years under most emissions scenarios, but with regional heterogeneity. Notably, even small changes in oxygenation can have significant biological effects. New efforts to systematically observe oxygen changes throughout the open ocean are needed to help address gaps in understanding of ocean deoxygenation patterns and drivers.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2020-07-31
    Description: To understand how ocean acidification (OA) influences sediment microbial communities, naturally CO2-rich sites are increasingly being used as OA analogues. However, the characterization of these naturally CO2-rich sites is often limited to OA-related variables, neglecting additional environmental variables that may confound OA effects. Here, we used an extensive array of sediment and bottom water parameters to evaluate pH effects on sediment microbial communities at hydrothermal CO2seeps in Papua New Guinea. The geochemical composition of the sediment pore water showed variations in the hydrothermal signature at seep sites with comparable pH, allowing the identification of sites that may better represent future OA scenarios. At these sites, we detected a 60% shift in the microbial community composition compared with reference sites, mostly related to increases inChloroflexisequences. pH was among the factors significantly, yet not mainly, explaining changes in microbial community composition. pH variation may therefore often not be the primary cause of microbial changes when sampling is done along complex environmental gradients. Thus, we recommend an ecosystem approach when assessing OA effects on sediment microbial communities under natural conditions. This will enable a more reliable quantification of OA effects via a reduction of potential confounding effects
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-02-01
    Description: Connectivity of pelagic, early life stages via transport by ocean currents may affect survival chances of offspring, recruitment success, and mixing of stocks across management units. Based on drift model studies, transport patterns of particles representing exogenously feeding cod larvae in the transition area between North Sea and Baltic were investigated to (i) determine long-term trends and variability in advective transport of larvae from spawning grounds to juvenile nursery areas, (ii) estimate the degree of exchange between different management areas, and (iii) compare the results with spatial distributions of juvenile cod. The transport of particles showed considerable intra- and interannual variability, but also some general patterns of retention within and dispersion to different management areas. Good spatial overlap of particle end positions, representing potential juvenile settlement areas, with observed distributions of juveniles in bottom trawl surveys suggests that the drift simulations provide reasonable estimates of early life stage connectivity between cod populations in the investigated areas. High exchange rates of particles between management areas of up to ca. 70% suggest that cod populations in the investigated areas are demographically correlated. Results are discussed in relation to their relevance for stock structure, fish stock assessment, and management.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2020-07-31
    Description: In this pilot study, we describe a high-pressure incubation system allowing multiple subsampling of a pressurized culture without decompression. The system was tested using one piezophilic (Photobacterium profundum), one piezotolerant (Colwellia maris) bacterial strain and a decompressed sample from the Mediterranean deep sea (3044 m) determining bacterial community composition, protein production (BPP) and cell multiplication rates (BCM) up to 27 MPa. The results showed elevation of BPP at high pressure was by a factor of 1.5 ± 1.4 and 3.9 ± 2.3 for P. profundum and C. maris, respectively, compared to ambient-pressure treatments and by a factor of 6.9 ± 3.8 fold in the field samples. In P. profundum and C. maris, BCM at high pressure was elevated (3.1 ± 1.5 and 2.9 ± 1.7 fold, respectively) compared to the ambient-pressure treatments. After 3 days of incubation at 27 MPa, the natural bacterial deep-sea community was dominated by one phylum of the genus Exiguobacterium, indicating the rapid selection of piezotolerant bacteria. In future studies, our novel incubation system could be part of an isopiestic pressure chain, allowing more accurate measurement of bacterial activity rates which is important both for modeling and for predicting the efficiency of the oceanic carbon pump.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-02-05
    Description: Archaea associated with marine sponges are active and influence the nitrogen metabolism of sponges. However, we know little about their occurrence, specificity, and persistence. We aimed to elucidate the relative importance of host specificity and biogeographic background in shaping the symbiotic archaeal communities. We investigated these communities in sympatric sponges from the Mediterranean (Ircinia fasciculata and Ircinia oros, sampled in summer and winter) and from the Caribbean (Ircinia strobilina and Mycale laxissima). PCR cloning and sequencing of archaeal 16S rRNA and amoA genes showed that the archaeal community composition and structure were different from that in seawater and varied among sponge species. We found that the communities were dominated by ammonia-oxidizing archaea closely related to Nitrosopumilus. The community in M. laxissima differed from that in Ircinia spp., including the sympatric sponge I. strobilina; yet, geographical clusters within Ircinia spp. were observed. Whereas archaeal phylotypes in Ircinia spp. were persistent and belong to 'sponge-enriched' clusters, archaea in M. laxissima were closely related with those from diverse habitats (i.e. seawater and sediments). For all four sponge species, the expression of the archaeal amoA gene was confirmed. Our results indicate that host-specific processes, such as host ecological strategy and evolutionary history, control the sponge-archaeal communities.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2020-07-31
    Description: The ability of microorganisms to withstand long periods with extremely low energy input has gained increasing scientific attention in recent years. Starvation experiments in the laboratory have shown that a phylogenetically wide range of microorganisms evolve fitness-enhancing genetic traits within weeks of incubation under low-energy stress. Studies on natural environments that are cut off from new energy supplies over geologic time scales, such as deeply buried sediments, suggest that similar adaptations might mediate survival under energy limitation in the environment. Yet, the extent to which laboratory-based evidence of starvation survival in pure or mixed cultures can be extrapolated to sustained microbial ecosystems in nature remains unclear. In this review, we discuss past investigations on microbial energy requirements and adaptations to energy limitation, identify gaps in our current knowledge, and outline possible future foci of research on life under extreme energy limitation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    Oxford University Press
    In:  IMA Journal of Applied Mathematics, 80 (3). pp. 811-824.
    Publication Date: 2015-07-06
    Description: The permafrost methane emission problem is the focus of attention on different climate models. Here, we present a mathematical model for permafrost lake methane emission and its influence on the climate system. We model this process using the theory of non-linear phase transitions. Further, we find that a climate catastrophe possibility depends on a value of feedback connecting the methane concentration in the atmosphere and temperature, and on the tundra permafrost methane pool.We note that the permafrost lake model that we developed for the methane emission positive feedback loop problem is a conceptual climate model.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    Oxford University Press
    In:  Zoological Journal of the Linnean Society, 185 (3). pp. 555-635.
    Publication Date: 2020-01-02
    Description: Polynoidae contains ~900 species within 18 subfamilies, some of them restricted to the deep sea. Macellicephalinae is the most diverse among these deep-sea subfamilies. In the abyssal Equatorial Pacific Ocean, the biodiversity of benthic communities is at stake in the Clarion-Clipperton Fracture Zone (CCFZ) owing to increased industrial interest in polymetallic nodules. The records of polychaetes in this region are scarce. Data gathered during the JPI Oceans cruise SO239 made a significant contribution to fill this gap, with five different localities sampled between 4000 and 5000 m depth. Benthic samples collected using an epibenthic sledge or a remotely operated vehicle resulted in a large collection of polynoids. The aims of this study are as follows: (1) to describe new species of deep-sea polynoids using morphology and molecular data (COI, 16S and 18S); and (2) to evaluate the monophyly of Macellicephalinae. Based on molecular and morphological phylogenetic analyses, ten subfamilies are synonymized with Macellicephalinae in order to create a homogeneous clade determined by the absence of lateral antennae. Within this clade, the Anantennata clade was well supported, being determined by the absence of a median antenna. Furthermore, 17 new species and four new genera are described, highlighting the high diversity hidden in the deep. A taxonomic key for the 37 valid genera of the subfamily Macellicephalinae is provided.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    Oxford University Press
    In:  Molecular Biology and Evolution, 33 (9). pp. 2376-2390.
    Publication Date: 2019-10-10
    Description: While we know much about the evolutionary patterns of endosymbiotic organelle origins, we know less about how the actual process unfolded within each system. This is partly due to the massive changes endosymbiosis appears to trigger, and partly because most organelles evolved in the distant past. The dinotoms are dinoflagellates with diatom endosymbionts, and they represent a relatively recent but nevertheless obligate endosymbiotic association. We have carried out deep sequencing of both the host and endosymbiont transcriptomes from two dinotoms, Durinskia baltica and Glenodinium foliaceum, to examine how the nucleocytosolic compartments have functionally integrated. This analysis showed little or no functional reduction in either the endosymbiont or host, and no evidence for genetic integration. Rather, host and endosymbiont seem to be bound to each other via metabolites, such as photosynthate exported from the endosymbiont to the host as indicated by the presence of plastidic phosphate translocators in the host transcriptome. The host is able to synthesize starch, using plant-specific starch synthases, as a way to store imported photosynthate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    Oxford University Press
    In:  FEMS Microbiology Letters, 366 (11).
    Publication Date: 2020-01-02
    Description: Metabolites give us a window into the chemistry of microbes and are split into two subclasses: primary and secondary. Primary metabolites are required for life whereas secondary metabolites have historically been classified as those appearing after exponential growth and are not necessarily needed for survival. Many microbial species are estimated to produce hundreds of metabolites and can be affected by differing nutrients. Using various analytical techniques, metabolites can be directly detected in order to elucidate their biological significance. Currently, a single experiment can produce anywhere from megabytes to terabytes of data. This big data has motivated scientists to develop informatics tools to help target specific metabolites or sets of metabolites. Broadly, it is imperative to identify clear biological questions before embarking on a study of metabolites (metabolomics). For instance, studying the effect of a transposon insertion on phenazine biosynthesis in Pseudomonas is a very different from asking what molecules are present in a specific banana-derived strain of Pseudomonas. This review is meant to serve as a primer for a ‘choose your own adventure’ approach for microbiologists with limited mass spectrometry expertise, with a strong focus on liquid chromatography mass spectrometry based workflows developed or optimized within the past five years.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-03-05
    Description: Spliceosomal introns are a hallmark of eukaryotic genes that are hypothesized to play important roles in genome evolution but have poorly understood origins. Although most introns lack sequence homology to each other, new families of spliceosomal introns that are repeated hundreds of times in individual genomes have recently been discovered in a few organisms. The prevalence and conservation of these introner elements (IEs) or introner-like elements in other taxa, as well as their evolutionary relationships to regular spliceosomal introns, are still unknown. Here, we systematically investigate introns in the widespread marine green alga Micromonas and report new families of IEs, numerous intron presence-absence polymorphisms, and potential intron insertion hot-spots. The new families enabled identification of conserved IE secondary structure features and establishment of a novel general model for repetitive intron proliferation across genomes. Despite shared secondary structure, the IE families from each Micromonas lineage bear no obvious sequence similarity to those in the other lineages, suggesting that their appearance is intimately linked with the process of speciation. Two of the new IE families come from an Arctic culture (Micromonas Clade E2) isolated from a polar region where abundance of this alga is increasing due to climate induced changes. The same two families were detected in metagenomic data from Antarctica-a system where Micromonas has never before been reported. Strikingly high identity between the Arctic isolate and Antarctic coding sequences that flank the IEs suggests connectivity between populations in the two polar systems that we postulate occurs through deep-sea currents. Recovery of Clade E2 sequences in North Atlantic Deep Waters beneath the Gulf Stream supports this hypothesis. Our research illuminates the dynamic relationships between an unusual class of repetitive introns, genome evolution, speciation, and global distribution of this sentinel marine alga. © 2015 The Author.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    Oxford University Press
    In:  Behavioral Ecology, 31 (2). pp. 287-291.
    Publication Date: 2021-01-08
    Description: Marine prey and predators will respond to future climate through physiological and behavioral adjustments. However, our understanding of how such direct effects may shift the outcome of predator–prey interactions is still limited. Here, we investigate the effects of ocean warming and acidification on foraging behavior and biomass of a common prey (shrimps, Palaemon spp.) tested in large mesocosms harboring natural resources and habitats. Acidification did not alter foraging behavior in prey. Under warming, however, prey showed riskier behavior by foraging more actively and for longer time periods, even in the presence of a live predator. No effects of longer-term exposure to climate stressors were detected on prey biomass. Our findings suggest that ocean warming may increase the availability of some prey to predators via a behavioral pathway (i.e., increased risk-taking by prey), likely by elevating metabolic demand of prey species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    facet.materialart.
    Unknown
    Oxford University Press
    In:  In: Oxford Research Encyclopedia of Climate Science. Oxford University Press, Oxford. ISBN 9780190228620
    Publication Date: 2021-02-23
    Description: Climate change influences the Baltic Sea ecosystem via its effects on oceanography and biogeochemistry. Sea surface temperature has been projected to increase by 2 to 4 °C until 2100 due to global warming; the changes will be more significant in the northern areas and less so in the south. The warming up will also diminish the annual sea ice cover by 57% to 71%, and ice season will be one to three months shorter than in the early 21st century, depending on latitude. A significant decrease in sea surface salinity has been projected because of an increase in rainfall and decrease of saline inflows into the Baltic Sea. The increasing surface flow has, in turn, been projected to increase leaching of nutrients from the soil to the watershed and eventually into the Baltic Sea. Also, acidification of the seawater and sea-level rise have been predicted. Increasing seawater temperature speeds up metabolic processes and increases growth rates of many secondary producers. Species associated with sea ice, from salt brine microbes to seals, will suffer. Due to the specific salinity tolerances, species’ geographical ranges may shift by tens or hundreds of kilometres with decreasing salinity. A decrease in pH will slow down calcification of bivalve shells, and higher temperatures also alleviate establishment of non-indigenous species originating from more southern sea areas. Many uncertainties still remain in predicting the couplings between atmosphere, oceanography and ecosystem. Especially projections of many oceanographic parameters, such as wind speeds and directions, the mean salinity level, and density stratification, are still ambiguous. Also, the effects of simultaneous changes in multiple environmental factors on species with variable preferences to temperature, salinity, and nutrient conditions are difficult to project. There is, however, enough evidence to claim that due to increasing runoff of nutrients from land and warming up of water, primary production and sedimentation of organic matter will increase; this will probably enhance anoxia and release of phosphorus from sediments. Such changes may keep the Baltic Sea in an eutrophicated state for a long time, unless strong measures to decrease nutrient runoff from land are taken. Changes in the pelagic and benthic communities are anticipated. Benthic communities will change from marine to relatively more euryhaline communities and will suffer from hypoxic events. The projected temperature increase and salinity decline will contribute to maintain the pelagic ecosystem of the Central Baltic and the Gulf of Finland in a state dominated by cyanobacteria, flagellates, small-sized zooplankton and sprat, instead of diatoms, large marine copepods, herring, and cod. Effects vary from area to area, however. In particular the Bothnian Sea, where hypoxia is less common and rivers carry a lot of dissolved organic carbon, primary production will probably not increase as much as in the other basins. The coupled oceanography-biogeochemistry ecosystem models have greatly advanced our understanding of the effects of climate change on marine ecosystems. Also, studies on climate associated “regime shifts” and cascading effects from top predators to plankton have been fundamental for understanding of the response of the Baltic Sea ecosystem to anthropogenic and climatic stress. In the future, modeling efforts should be focusing on coupling of biogeochemical processes and lower trophic levels to the top predators. Also, fine resolution species distribution models should be developed and combined with 3-D modelling, to describe how the species and communities are responding to climate-induced changes in environmental variables.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2021-04-23
    Description: Ubiquitous SAR11 Alphaproteobacteria numerically dominate marine planktonic communities. Because they are excruciatingly difficult to cultivate, there is comparatively little known about their physiology and metabolic responses to long- and short-term environmental changes. As surface oceans take up anthropogenic, atmospheric CO2, the consequential process of ocean acidification could affect the global biogeochemical significance of SAR11. Shipping accidents or inadvertent release of chemicals from industrial plants can have strong short-term local effects on oceanic SAR11. This study investigated the effect of 2.5-fold acidification of seawater on the metabolism of SAR11 and other heterotrophic bacterioplankton along a natural temperature gradient crossing the North Atlantic Ocean, Norwegian and Greenland Seas. Uptake rates of the amino acid leucine by SAR11 cells as well as other bacterioplankton remained similar to controls despite an instant ∼50% increase in leucine bioavailability upon acidification. This high physiological resilience to acidification even without acclimation, suggests that open ocean dominant bacterioplankton are able to cope even with sudden and therefore more likely with long-term acidification effects.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    Oxford University Press
    In:  ICES Journal of Marine Science, 12 (3). pp. 293-304.
    Publication Date: 2021-11-01
    Description: in a recent publication von Brandt (1) gives a survey of all determinations of the calcium content of Baltic water hitherto published. He records in all 39 analyses made during the last century, which give us an idea of the order of magnitude of the calcium concentration; they cannot, however, serve for comparative purposes as in many cases chlorine determinations on the same water samples are lacking. Neither have we any clue for judging the accuracy of these analyses, the latest of which date from 1884. Fifty years later, in 1935, Za rin s and O z o 1 ins (8) published an extensive investi­gation of the water in the Bay of Riga and in the Baltic off the Latvian coast, their most westerly station nearly coinciding with the Finnish station F81 (Lat. 57° 22'N., Long. 19°57'E.) above the central depression of the Baltic. Their material comprised about 70 calcium analyses on water from all depths. Finally v o n B r a n d t in the above-mentioned paper publishes nearly 300 analyses of surface water collected in 1935 and 1936 during several voyages from Pillau to Helsingfors and back, and along the German coast as far as Kiel and back. The present material comprises analyses of only 48 samples of surface and bottom water collected during the summer cruise, in July 1935, of the s.s. "Nautilus" from the Gulf of Finland, the Gulf of Bothnia, and the northern half of the Baltic proper. In spite of the smaller number of samples this material is more comprehensive than the two preceding investigations in so far as it covers a greater area of the sea. I t was originally meant as a survey of the calcium content in these parts of the Baltic, but the surprisingly simple relationships between calcium content and chlorinity which it revealed, give the results far more scope than was expected.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2022-01-07
    Description: This review shows that the presence of seagrass microbial community is critical for the development of seagrasses; from seed germination, through to phytohormone production and enhanced nutrient availability, and defence against pathogens and saprophytes. The tight seagrass-bacterial relationship highlighted in this review supports the existence of a seagrass holobiont and adds to the growing evidence for the importance of marine eukaryotic microorganisms in sustaining vital ecosystems. Incorporating a micro-scale view on seagrass ecosystems substantially expands our understanding of ecosystem functioning and may have significant implications for future seagrass management and mitigation against human disturbance.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2022-01-31
    Description: Repeated and independent emergence of trait divergence that matches habitat differences is a sign of parallel evolution by natural selection. Yet, the molecular underpinnings that are targeted by adaptive evolution often remain elusive. We investigate this question by combining genome-wide analyses of copy number variants (CNVs), single nucleotide polymorphisms (SNPs), and gene expression across four pairs of lake and river populations of the three-spined stickleback (Gasterosteus aculeatus). We tested whether CNVs that span entire genes and SNPs occurring in putative cis-regulatory regions contribute to gene expression differences between sticklebacks from lake and river origins. We found 135 gene CNVs that showed a significant positive association between gene copy number and gene expression, suggesting that CNVs result in dosage effects that can fuel phenotypic variation and serve as substrates for habitat-specific selection. Copy number differentiation between lake and river sticklebacks also contributed to expression differences of two immune-related genes in immune tissues, cathepsin A and GIMAP7. In addition, we identified SNPs in cis-regulatory regions (eSNPs) associated with the expression of 1,865 genes, including one eSNP upstream of a carboxypeptidase gene where both the SNP alleles differentiated and the gene was differentially expressed between lake and river populations. Our study highlights two types of mutations as important sources of genetic variation involved in the evolution of gene expression and in potentially facilitating repeated adaptation to novel environments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2022-01-31
    Description: Cichlid fishes provide textbook examples of explosive phenotypic diversification and sympatric speciation, thereby making them ideal systems for studying the molecular mechanisms underlying rapid lineage divergence. Despite the fact that gene regulation provides a critical link between diversification in gene function and speciation, many genomic regulatory mechanisms such as microRNAs (miRNAs) have received little attention in these rapidly diversifying groups. Therefore, we investigated the posttranscriptional regulatory role of miRNAs in the repeated sympatric divergence of Midas cichlids (Amphilophus spp.) from Nicaraguan crater lakes. Using miRNA and mRNA sequencing of embryos from five Midas species, we first identified miRNA binding sites in mRNAs and highlighted the presences of a surprising number of novel miRNAs in these adaptively radiating species. Then, through analyses of expression levels, we identified putative miRNA/gene target pairs with negatively correlated expression level that were consistent with the role of miRNA in downregulating mRNA. Furthermore, we determined that several miRNA/gene pairs show convergent expression patterns associated with the repeated benthic/limnetic sympatric species divergence implicating these miRNAs as potential molecular mechanisms underlying replicated sympatric divergence. Finally, as these candidate miRNA/gene pairs may play a central role in phenotypic diversification in these cichlids, we characterized the expression domains of selected miRNAs and their target genes via in situ hybridization, providing further evidence that miRNA regulation likely plays a role in the Midas cichlid adaptive radiation. These results provide support for the hypothesis that extremely quickly evolving miRNA regulation can contribute to rapid evolutionary divergence even in the presence of gene flow.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2022-01-31
    Description: The Arctic Limnocalanus macrurus is a prominent representative of large copepods which performs several essential functions in freshwater and marine ecosystems. Being a cold stenotherm species, its distribution is primarily confined to deeper water layers. Based on the long-term observations from one of the largest spatially confined natural populations of this species in the Baltic Sea, we detected profound long-term variability of L. macrurus during 1958–2016: high abundances before the 1980s, then nearly disappearance in the 1990s and recovery in the 2000s. The main environmental parameters explaining the interannual variability of L. macrurus in spring were herring spawning stock biomass in preceding year, winter severity, and bottom water temperature in preceding summer. The effect of winter severity and water temperature was also non-linear. The sliding window correlation analysis pointed to a non-stationary relationship between the abundance of L. macrurus and the key variables. Given the observed pronounced seasonality in the population structure of L. macrurus (young stages dominated in the beginning of the year and only adults were left in the population in summer and autumn) we identified the dynamics of key environmental variables to understand this species under different ecosystem configurations and different combinations of drivers of change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2022-01-31
    Description: The Swan Islands Transform Fault (SITF) marks the southern boundary of the Cayman Trough and the ocean–continent transition of the North American–Caribbean Plate boundary offshore Honduras. The CAYSEIS experiment acquired a 180-km-long seismic refraction and gravity profile across this transform margin, ∼70 km to the west of the Mid-Cayman Spreading Centre (MCSC). This profile shows the crustal structure across a transform fault system that juxtaposes Mesozoic-age continental crust to the south against the ∼10-Myr-old ultraslow spread oceanic crust to the north. Ocean-bottom seismographs were deployed along-profile, and inverse and forward traveltime modelling, supported by gravity analysis, reveals ∼23-km-thick continental crust that has been thinned over a distance of ∼70 km to ∼10 km-thick at the SITF, juxtaposed against ∼4-km-thick oceanic crust. This thinning is primarily accommodated within the lower crust. Since Moho reflections are not widely observed, the 7.0 km s−1 velocity contour is used to define the Moho along-profile. The apparent lack of reflections to the north of the SITF suggests that the Moho is more likely a transition zone between crust and mantle. Where the profile traverses bathymetric highs in the off-axis oceanic crust, higher P-wave velocity is observed at shallow crustal depths. S-wave arrival modelling also reveals elevated velocities at shallow depths, except for crust adjacent to the SITF that would have occupied the inside corner high of the ridge-transform intersection when on axis. We use a Vp/Vs ratio of 1.9 to mark where lithologies of the lower crust and uppermost mantle may be exhumed, and also to locate the upper-to-lower crustal transition, identify relict oceanic core complexes and regions of magmatically formed crust. An elevated Vp/Vs ratio suggests not only that serpentinized peridotite may be exposed at the seafloor in places, but also that seawater has been able to flow deep into the crust and upper mantle over 20–30-km-wide regions which may explain the lack of a distinct Moho. The SITF has higher velocities at shallower depths than observed in the oceanic crust to the north and, at the seabed, it is a relatively wide feature. However, the velocity–depth model subseabed suggests a fault zone no wider than ∼5–10 km, that is mirrored by a narrow seabed depression ∼7500 m deep. Gravity modelling shows that the SITF is also underlain, at 〉2 km subseabed, by a ∼20-km-wide region of density 〉3000 kg m−3 that may reflect a broad region of metamorphism. The residual mantle Bouguer anomaly across the survey region, when compared with the bathymetry, suggests that the transform may also have a component of left-lateral trans-tensional displacement that accounts for its apparently broad seabed appearance, and that the focus of magma supply may currently be displaced to the north of the MCSC segment centre. Our results suggest that Swan Islands margin development caused thinning of the adjacent continental crust, and that the adjacent oceanic crust formed in a cool ridge setting, either as a result of reduced mantle upwelling and/or due to fracture enhanced fluid flow.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    Oxford University Press
    In:  Geophysical Journal International, 219 (3). pp. 1876-1884.
    Publication Date: 2022-01-31
    Description: Standard seismic acquisition and processing require appropriate source-receiver offsets. P-cable technology represents the opposite, namely, very short source-receiver offsets at the price of increased spatial and lateral resolution with a high-frequency source. To use this advantage, a processing flow excluding offset information is required. This aim can be achieved with a processing tuned to diffractions because point diffractions scatter the same information in offset and midpoint direction. Usually, diffractions are small amplitude events and a careful diffraction separation is required as a first step. We suggest the strategy to use a multiparameter stacking operator, e.g, common-reflection surface, and stack along the midpoint direction. The obtained kinematic wavefront attributes are used to calculate time-migration velocities. A diffractivity map serves as filter to refine the velocities. This strategy is applied to a 3D P-cable data set to obtain a time-migrated image.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    Oxford University Press
    In:  The Oxford Handbook of the Macroeconomics of Global Warming
    Publication Date: 2022-03-21
    Type: info:eu-repo/semantics/bookPart
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    Oxford University Press
    In:  Climate Justice in a Non-Ideal World
    Publication Date: 2022-03-21
    Type: info:eu-repo/semantics/bookPart
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...