ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (7)
  • American Physical Society (APS)
  • American Geophysical Union (AGU)
  • Annual Reviews
  • 2015-2019  (6)
  • 1980-1984  (1)
  • 1935-1939
Collection
Years
Year
  • 1
    facet.materialart.
    Unknown
    Annual Reviews
    In:  Annual Review of Marine Science, 9 (1). pp. 413-444.
    Publication Date: 2020-06-11
    Description: Marine zooplankton comprise a phylogenetically and functionally diverse assemblage of protistan and metazoan consumers that occupy multiple trophic levels in pelagic food webs. Within this complex network, carbon flows via alternative zooplankton pathways drive temporal and spatial variability in production-grazing coupling, nutrient cycling, export, and transfer efficiency to higher trophic levels. We explore current knowledge of the processing of zooplankton food ingestion by absorption, egestion, respiration, excretion, and growth (production) processes. On a global scale, carbon fluxes are reasonably constrained by the grazing impact of microzooplankton and the respiratory requirements of mesozooplankton but are sensitive to uncertainties in trophic structure. The relative importance, combined magnitude, and efficiency of export mechanisms (mucous feeding webs, fecal pellets, molts, carcasses, and vertical migrations) likewise reflect regional variability in community structure. Climate change is expected to broadly alter carbon cycling by zooplankton and to have direct impacts on key species.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Annual Reviews
    In:  Annual Review of Marine Science, 10 (1). pp. 443-473.
    Publication Date: 2020-06-09
    Description: Mixing efficiency is the ratio of the net change in potential energy to the energy expended in producing the mixing. Parameterizations of efficiency and of related mixing coefficients are needed to estimate diapycnal diffusivity from measurements of the turbulent dissipation rate. Comparing diffusivities from microstructure profiling with those inferred from the thickening rate of four simultaneous tracer releases has verified, within observational accuracy, 0.2 as the mixing coefficient over a 30-fold range of diapycnal diffusivities. Although some mixing coefficients can be estimated from pycnocline measurements, at present mixing efficiency must be obtained from channel flows, laboratory experiments, and numerical simulations. Reviewing the different approaches demonstrates that estimates and parameterizations for mixing efficiency and coefficients are not converging beyond the at-sea comparisons with tracer releases, leading to recommendations for a community approach to address this important issue.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Geophysical Union (AGU)
    In:  Geophysical Research Letters, 7 (10). pp. 797-800.
    Publication Date: 2020-07-30
    Description: The rate of reaction of OH with CS2 to form OCS by reaction (1) has been measured through observation of O14CS following 254 nm equation image photolysis of mixtures of H2O2 with 14CS2. The OH concentrations have been monitored through simultaneous measurement in the same cell of either (a) the oxidation of CO to CO2, or (b) the removal of a hydrocarbon such as C3H8 or iso-C4H10. The upper limit for the formation of OCS based on (a) corresponds to a rate constant k1 〈 0.3 × 10−14 cm³ molecule−1 sec−1. Other chemical reactions in the system have led to the formation of both 14CO and 14CO2, indicating the existence of a complex combination of reactions such that the observed O14CS need not have been formed by (1). The rate of reaction (1) is sufficiently slow that it is neither an important atmospheric sink for CS2 nor an important source for atmospheric OCS. The reaction of OH with OCS has not been measured in these experiments, but by analogy with k1 it is probably not an important atmospheric sink for OCS nor an important source of SO2.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Annual Reviews
    In:  Annual Review of Earth and Planetary Sciences, 45 (1). pp. 593-617.
    Publication Date: 2020-06-09
    Description: The evolutionary trajectory of early complex life on Earth is interpreted largely from the fossils of the Precambrian soft-bodied Ediacara Biota, which appeared and evolved during a time of dynamic biogeochemical and environmental fluctuation in the global ocean. The Ediacara Biota is historically divided into three successive Assemblages—the Avalon, the White Sea, and the Nama—which are marked by the appearance of novel biological traits and ecological strategies. In particular, the younger White Sea and Nama Assemblages record a “second wave” of ecological innovations, which included not only the development of uniquely Ediacaran body plans and ecologies, such as matground adaptations, but also the dual emergence of bilaterian-grade animals and Phanerozoic-style ecological innovations, including spatial heterogeneity, complex reproductive strategies, ecospace utilization, motility, and substrate competition. The late Ediacaran was an evolutionarily dynamic time characterized by strong environmental control over the distribution of taxa in time and space.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Annual Reviews
    In:  Annual Review of Marine Science, 9 (1). pp. 311-335.
    Publication Date: 2020-06-11
    Description: Mixotrophs are important components of the bacterioplankton, phytoplankton, microzooplankton, and (sometimes) zooplankton in coastal and oceanic waters. Bacterivory among the phytoplankton may be important for alleviating inorganic nutrient stress and may increase primary production in oligotrophic waters. Mixotrophic phytoflagellates and dinoflagellates are often dominant components of the plankton during seasonal stratification. Many of the microzooplankton grazers, including ciliates and Rhizaria, are mixotrophic owing to their retention of functional algal organelles or maintenance of algal endosymbionts. Phototrophy among the microzooplankton may increase gross growth efficiency and carbon transfer through the microzooplankton to higher trophic levels. Characteristic assemblages of mixotrophs are associated with warm, temperate, and cold seas and with stratification, fronts, and upwelling zones. Modeling has indicated that mixotrophy has a profound impact on marine planktonic ecosystems and may enhance primary production, biomass transfer to higher trophic levels, and the functioning of the biological carbon pump.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Annual Reviews
    In:  Annual Review of Marine Science, 10 (1). pp. 397-420.
    Publication Date: 2020-06-09
    Description: The oceanic bottom boundary layer extracts energy and momentum from the overlying flow, mediates the fate of near-bottom substances, and generates bedforms that retard the flow and affect benthic processes. The bottom boundary layer is forced by winds, waves, tides, and buoyancy and is influenced by surface waves, internal waves, and stratification by heat, salt, and suspended sediments. This review focuses on the coastal ocean. The main points are that (a) classical turbulence concepts and modern turbulence parameterizations provide accurate representations of the structure and turbulent fluxes under conditions in which the underlying assumptions hold, (b) modern sensors and analyses enable high-quality direct or near-direct measurements of the turbulent fluxes and dissipation rates, and (c) the remaining challenges include the interaction of waves and currents with the erodible seabed, the impact of layer-scale two- and three-dimensional instabilities, and the role of the bottom boundary layer in shelf-slope exchange.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Annual Reviews
    In:  Annual Review of Marine Science, 10 (1). pp. 229-260.
    Publication Date: 2020-06-11
    Description: Oxygen loss in the ocean, termed deoxygenation, is a major consequence of climate change and is exacerbated by other aspects of global change. An average global loss of 2% or more has been recorded in the open ocean over the past 50-100 years, but with greater oxygen declines in intermediate waters (100-600 m) of the North Pacific, the East Pacific, tropical waters, and the Southern Ocean. Although ocean warming contributions to oxygen declines through a reduction in oxygen solubility and stratification effects on ventilation are reasonably well understood, it has been a major challenge to identify drivers and modifying factors that explain different regional patterns, especially in the tropical oceans. Changes in respiration, circulation (including upwelling), nutrient inputs, and possibly methane release contribute to oxygen loss, often indirectly through stimulation of biological production and biological consumption. Microbes mediate many feedbacks in oxygen minimum zones that can either exacerbate or ameliorate deoxygenation via interacting nitrogen, sulfur, and carbon cycles. The paleo-record reflects drivers of and feedbacks to deoxygenation that have played out through the Phanerozoic on centennial, millennial, and hundred-million-year timescales. Natural oxygen variability has made it difficult to detect the emergence of a climate-forced signal of oxygen loss, but new modeling efforts now project emergence to occur in many areas in 15-25 years. Continued global deoxygenation is projected for the next 100 or more years under most emissions scenarios, but with regional heterogeneity. Notably, even small changes in oxygenation can have significant biological effects. New efforts to systematically observe oxygen changes throughout the open ocean are needed to help address gaps in understanding of ocean deoxygenation patterns and drivers.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...