ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Description: The tectonic deformation of the Lipari-Vulcano complex, one of the most important active volcanic areas of Mediterranean region, is studied here through the analysis of ten years (1996-2006) of GPS data from both 3 permanent and 13 non-permanent stations. This area can be considered crucial for the understanding of the Eurasia-Africa plates interaction in the Mediterranean area, and, in general, this work emphasize a methodological approach, already applied in other areas worldwide (e.g. Shen et al., 1996, El-Fiki and Kato, 1999) where geodetic data and strain parameters maps of critical areas can help to improve our understanding of their geodynamical aspects. In this framework, this study is aimed at providing a kinematic deformation model on the basis of the dense geodetically estimated velocities of the Lipari-Vulcano complex. In particular, the observed deformation pattern can be described by a mix between 1) the main N-S regional compression and 2) a NNE-SSW compression with a small right-lateral strike slip component acting along a tectonic structure N°40W trending located between the two islands. This pattern was inspected through a simplified synthetic model.
    Description: This research has benefited from funding provided by the Italian Presidenza del Consiglio dei Ministri – Dipartimento della Protezione Civile (DPC).
    Description: Published
    Description: 370–377
    Description: 1.9. TTC - Rete GPS nazionale
    Description: JCR Journal
    Description: reserved
    Keywords: GPS ; Aeolian Islands ; strain ; modelling ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: We present an improved evaluation of the current strain and stress fields in Southern Apennines (Italy) obtained through a careful analysis of geodetic, seismological and borehole data. In particular, our analysis provides an updated comparison between the accrued strain recorded by geodetic data, and the strain released by seismic activity in a region hit by destructive historical earthquakes. To this end, we have used 9 years of GPS observations (2001-2010) from a dense network of permanent stations, a dataset of 73 well constrained stress indicators (borehole breakouts and focal mechanisms of moderate to large earthquakes), and published estimations of the geological strain accommodated by active faults in the region. Although geodetic data are generally consistent with seismic and geologic information, previously unknown features of the current deformation in southern Italy emerge from this analysis. The newly obtained GPS velocity field supports the well-established notion of a dominant NE-SW-oriented extension concentrated in a ~50 km wide belt along the topographic relief of the Apennines, as outlined by the distribution of seismogenic normal faults. Geodetic deformation is, however, non uniform along the belt, with two patches of higher strain-rate and shear stress accumulation in the north (Matese Mountains) and in the south (Irpinia area). Low geodetic strain-rates are found in the Bradano basin and Apulia plateau to the east. Along the Ionian Sea margin of southern Italy, in southern Apulia and eastern Basilicata and Calabria, geodetic velocities indicate NW-SE extension which is consistent with active shallow-crustal gravitational motion documented by geological studies. In the west, along the Tyrrhenian margin of the Campania region, the tectonic geodetic field is disturbed by volcanic processes. Comparison between the magnitude of the geodetic and the seismic strain-rates (computed using a long historical seismicity catalogue) allow detecting areas of high correlation, particularly along the axis of the mountain chain, indicating that most of the geodetic strain is released by earthquakes. This relation does not hold for the instrumental seismic catalogue, as a consequence of the limited time span covered by instrumental data. In other areas (e.g. Murge plateau in central Apulia), where seismicity is very low or absent, the yet appreciable geodetic deformation might be accommodated in aseismic mode. Overall, the excellent match between the stress and the strain-rate directions in much of the Apennines indicates that both earthquakes and ground deformation patterns are driven by the same crustal forces.
    Description: Published
    Description: 1270-1282
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Satellite geodesy ; Plate motions ; Neotectonics ; Europe ; Apennines ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: This thematic issue of Geofluids includes 11 papers representing the three main topics discussed in the 10th edition of the International Conference on Gas Geochemistry (ICGG-10): (i) gas in petroleum systems and seepage, (ii) gas in geothermal systems and volcanoes and (iii) gas, seismicity and geohazards. ICGG-10 was held in 2009 in Romania, a country extraordinarily rich in surface gas manifestations, that offers innumerable opportunities for innovative studies on gas geochemistry. We briefly describe the present knowledge on gases occurring both in petroliferous sedimentary basins and geothermal areas of Romania. The 11 contributions of this special issue, which include data from eight countries, are then summarised. Based on these papers and other works presented at the ICGG-10, we find that significant advances in analytical capabilities, data treating and interpretation have led to innovative insights into the origin, distribution and environmental impact of gases migrating to the Earth’s surface. It is increasingly clear, in particular, that gas geochemistry can be more effective for petroleum exploration, volcano-tectonic, geodynamic and environmental studies, if multiparametric studies are performed and the data are interpreted in the geological context.
    Description: Published
    Description: 457-462
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: geothermal gas ; international conference on gas geochemistry ; natural gas ; romania ; seeps ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: Gas seepage from petroleum basins is the second largest natural source of methane to the atmosphere, after wetlands. The uncertainty in global emission estimates should be reduced by extending the flux database which is fundamental for defining the emission factors and the actual area of seepage adopted for up-scaling. As a contribution to this goal, we report a new seepage data-set for the Transylvanian Basin, one of the largest natural gas producing regions of Europe, that is characterized by the widespread occurrence of natural leakages of gas at the surface, including at least 73 mud volcanoes and gas seeps. In this study, methane flux was measured using closed-chambers, from 12 seepage sites, in correspondence with focused gas vents (mud volcano craters, bubbling pools, and flammable gas leaks), in the soil surrounding the vents, and at 15 sites located far from macroseep zones but close to gas fields. Fluxes from individual vents (macro-seeps) were found to reach orders of kg CH4 m)2 day)1 (up to 12 kg m)2 day)1) and diffuse fluxes from soils (miniseepage) were found to be up to a few g CH4 m)2 day)1. Far from seep zones, positive CH4 fluxes (microseepage) may occur locally, typically on the order of tens to hundreds of mg m)2 day)1. The values, as well as the occurrence of seepage even far from vent zones and in mud volcanoes that are apparently extinct, are coherent with results obtained in other countries. Gas fluxes from macro-seeps and soils may change seasonally, but the interannual variation of the average emission factor was found to be minimal. The total CH4 output for Transylvania macro-seeps is estimated conservatively to be around 680 t year)1; the total geo-CH4 seepage emission from the Transylvania petroleum system could be approximately 40 · 103 t year)1, and at least 100 · 103 t year)1 for all Romanian petroleum systems, that is roughly 10% of the total anthropogenic CH4 emission in the country.
    Description: Published
    Description: 463-475
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: gas reservoirs ; methane emissions ; mud volcanoes ; seeps ; Transylvanian Basin ; 04. Solid Earth::04.05. Geomagnetism::04.05.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: Natural gas seeps in the Alpine region are poorly investigated. However, they can provide useful information regarding the hydrocarbon potential of sedimentary Alpine units and related geofluid migration, typically controlled by pressurized gas accumulations and tectonics. A gas seep located near Giswil, in the Swiss Northern Alps, was investigated, for the first time, for molecular and isotopic gas composition, methane flux to the atmosphere, and gas flux variations over time. The analyses indicated that the gas was thermogenic (CH4 〉 96%; d13C1: )35.5& to )40.2&) and showed evidence of subsurface petroleum biodegradation (13C-enriched CO2, and very low C3+ concentrations). The source rock in the region is marine Type II kerogen, which is likely the same as that providing thermogenic gas in the nearby Wilen shallow well, close to Lake Sarnen. However, the lack of d13CCO2 and d13C3 data for that well prevented us from determining whether the Wilen and Giswil seeps are fed by the same reservoir and seepage system. Gas fluxes from the Giswil seep, measured using a closedchamber system, were significant and mainly from two major vents. However, a substantial gas exhalation from the soil occurs diffusely in an area of at least 115 m2, leading to a total CH4 output conservatively estimated to be at least 16 tonnes per year. Gas flux variations, monitored over a 1-month period by a special tent and flowmeter, showed not only daily meteorological oscillations, but also an intrinsic ‘pulsation’ with periods of enhanced flux that lasted 2–6 h each, occurring every few days. The pulses are likely related to episodes of gas pressure build-up and discharge along the seepage system. However, to date, no relationship to seismicity in the active Sarnen strike-slip fault system has been established.
    Description: Published
    Description: 476-485
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: Alps ; isotopes ; methane ; organic geochemistry ; seeps ; Switzerland ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...