ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-06-22
    Description: In this work, we analyse continuous measurements of microseisms to assess the reliability of the fundamental resonance frequency estimated by means of the horizontal-to-vertical (H/V) spectral ratio within the 0.1–1 Hz frequency range, using short-period sensors (natural period of 1 s). We apply the H/V technique to recordings of stations installed in two alluvial basins with different sedimentary cover thicknesses—the Lower Rhine Embayment (Germany) and the Gubbio Plain (Central Italy). The spectral ratios are estimated over the time–frequency domain, and we discuss the reliability of the results considering both the variability of the microseism activity and the amplitude of the instrumental noise. We show that microseisms measured by short period sensors allow the retrieval of fundamental resonance frequencies greater than about 0.1–0.2 Hz, with this lower frequency bound depending on the relative amplitude of themicroseism signal and the self-noise of the instruments. In particular,we show an examplewhere the considered short-period sensor is connected to instruments characterized by an instrumental noise level which allows detecting only fundamental frequencies greater than about 0.4 Hz. Since the frequency at which the peak of the H/V spectral ratio is biased depends upon the seismic signal-to-instrument noise ratio, the power spectral amplitude of instrumental self-noise should be always considered when interpreting the frequency of the peak as the fundamental resonance frequency of the investigated site.
    Description: Published
    Description: 175-184
    Description: 4.1. Metodologie sismologiche per l'ingegneria sismica
    Description: JCR Journal
    Description: open
    Keywords: site effects ; fourier analysis ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...