ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (1,073)
  • Spacecraft Design, Testing and Performance  (981)
  • Seismology
  • Industrial Chemistry
  • Inorganic Chemistry
  • 2010-2014  (876)
  • 1960-1964  (147)
  • 1950-1954  (50)
Collection
Years
Year
  • 1
    Publication Date: 2018-06-06
    Description: The Global Microwave Imager (GMI) instrument must spin at a constant rate of 32 rpm continuously for the 3-year mission life. Therefore, GMI must be very precisely balanced about the spin axis and center of gravity (CG) to maintain stable scan pointing and to minimize disturbances imparted to the spacecraft and attitude control on-orbit. The GMI instrument is part of the core Global Precipitation Measurement (GPM) spacecraft and is used to make calibrated radiometric measurements at multiple microwave frequencies and polarizations. The GPM mission is an international effort managed by the National Aeronautics and Space Administration (NASA) to improve climate, weather, and hydro-meteorological predictions through more accurate and frequent precipitation measurements. Ball Aerospace and Technologies Corporation (BATC) was selected by NASA Goddard Space Flight Center to design, build, and test the GMI instrument. The GMI design has to meet a challenging set of spin balance requirements and had to be brought into simultaneous static and dynamic spin balance after the entire instrument was already assembled and before environmental tests began. The focus of this contribution is on the analytical and test activities undertaken to meet the challenging spin balance requirements of the GMI instrument. The novel process of measuring the residual static and dynamic imbalances with a very high level of accuracy and precision is presented together with the prediction of the optimal balance masses and their locations.
    Keywords: Spacecraft Design, Testing and Performance
    Type: The 42nd Aerospace Mechanism Symposium; 303-318; NASA/CP-2014-217519
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-11
    Description: The ISS External Survey integrates the requirements for photographic and video imagery of the International Space Station (ISS) for the engineering, operations, and science communities. An extensive photographic survey was performed on all Space Shuttle flights to the ISS and continues to be performed daily, though on a level much reduced by the limited available imagery. The acquired video and photo imagery is used for both qualitative and quantitative assessments of external deposition and contamination, surface degradation, dynamic events, and MMOD strikes. Many of these assessments provide important information about ISS surfaces and structural integrity as the ISS ages. The imagery is also used to assess and verify the physical configuration of ISS structure, appendages, and components.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARES Biennial Report 2012 Final; 122-124; JSC-CN-30442
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-11
    Description: In response to the planned retirement of the Space Shuttle Program, International Space Station (ISS) management began stockpiling spare parts on the ISS. Many of the larger orbital replacement units were stored on the Expedite the Processing of Experiments to Space Station (EXPRESS) Logistics Carriers (ELCs) mounted on the end of the S3 and P3 truss segments, immediately outboard of the Thermal Radiator Rotary Joints (TRRJs) and their attached radiators. In an August 2009 computer-aided design (CAD) assessment, it was determined that mounting the Cargo Transport Container (CTC) 2 on the inboard face of ELC4 as planned would create insufficient clearance between the CTC2 and the rotational envelope of the radiators when the TRRJs were rotated to a gamma angle of 35.0 degrees. The true clearance would depend on how the Unpressurized Cargo Carrier Attachment System (UCCAS) was mounted to the S3 truss and how the ELC4 was attached to it. If the plane of the UCCAS attachment points were tilted even slightly inboard, it would significantly change the clearance between CTC2 and the Starboard TRRJ (S-TRRJ) radiators. Additionally, since CTC2 would be covered in multilayer insulation (MLI), the true outer profile of CTC2 was not captured in the CAD models used for the clearance assessment. It was possible that, even if the S-TRRJ radiators cleared CTC2, they could snag the MLI covering. In the fall of 2010, the Image Science and Analysis Group (ISAG) was asked to perform an on-orbit clearance analysis to determine the location of CTC2 on ELC4 and the S-TRRJ radiators at the angle of closest approach so that a positive clearance could be assured. To provide the measurements as quickly as possible to aid in the assessment, it was decided that the clearance analysis would be broken into two phases. Phase I: The location and orientation of the UCCAS fittings, which support and hold the ELC4 in place, would be measured relative to the ISS Analytical Coordinate System (ISSACS) as defined by nine preexisting Space Vision System (SVS) targets affixed to the forward/zenith side of the S1 and S3 truss segments. The location of the outboard edge of the S-TRRJ radiator would also be measured when positioned at the angle of closest approach to CTC2 (gamma = 35.0 degrees). This data would allow the Digital Pre-Assembly Group to predict how the ELC4 would sit on the UCCAS and how that would translate into the clearance between CTC2 and the S-TRRJ radiators. Phase II: After the ELC4 was delivered and installed into the UCCAS, the position of the CTC2 mounting plate on the inboard face of ELC4, would be measured in the ISSACS coordinate system relative to the SVS control points used in Phase I. Although CTC2 would not yet be mounted on ELC4, the working envelope of CTC2 could be mathematically added to the measured position of ELC4 to produce a best estimate for CTC2's mounted location. Comparing CTC2's best estimated location to the S-TRRJ radiator (measured in Phase I); relative to the ISSACS coordinate system, would provide a direct measurement of the expected clearance. Due to the impending delivery of ELC4 (scheduled for January 2011), planning for the Phase I clearance analysis began immediately. Using the Dynamic Onboard Ubiquitous Graphics (DOUG) program, ISAG designed a way to acquire images of the SVS control points on truss segments S1 and S3, the aft facing edge of the S-TRRJ Heat Rejection Subsystem (HRS) radiator, and the three UCCAS latch mechanisms mounted on the zenith face of the S3 truss using the Space Station Remote Manipulator System (SSRMS). To minimize the number of SSRMS movements, the Special Purpose Dexterous Manipulator (SPDM) would be attached to the SSRMS. This would make it possible to park the SPDM in one position and acquire multiple images by changing the viewing orientation of the SPDM body cameras using the pan/tilt units on which they are mounted. Using this implementation concept, ISAG identified four SSRMS/SPDM positions from which the majority of the needed imagery could be acquired. Five additional images would be acquired using the CP-3 external ISS camera mounted on the S1 truss immediately inboard of ELC4. Based on a photogrammetric simulation, it was estimated that the measured location of the HRS radiator and UCCAS latch points would be accurate to about 0.3 in. in each of the three axes relative to ISSACS. Working with ROBO, ISAG collected 78 images of the ISS December 29, 2010. From this imagery, the best 40 were selected for use in the analysis process. The images were radiometrically enhanced to improve color and contrast and loaded into the FotoG analysis software along with the camera parameters and control data, which consisted of the coordinates for the nine SVS targets on the S1 and S3 trusses in the ISSACS coordinate system.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARES Biennial Report 2012 Final; 117-122; JSC-CN-30442
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-27
    Description: A consortium of innovative experts in additive manufacturing (AM) comprising Northrup Grumman Technical Services, University of Texas at El Paso (UTEP), Configurable Space Microsystems Innovations & Applications Center (COSMIAC), NASA Glenn Research Center (GRC), and Youngstown State University, have made significant breakthroughs in the goal of creating the first complete 3D printed small satellite. Since AM machines are relatively inexpensive, this should lead to many entrepreneurial opportunities for the small satellite community. Our technology advancements are focused on the challenges of embedding key components within the structure of the article. We have demonstrated, using advanced fused deposition modeling techniques, complex geometric shapes which optimize the spacecraft design. The UTEP Keck Center has developed a method that interrupts the printing process to insert components into specific cavities, resulting in a spacecraft that has minimal internal space allocated for what traditionally were functional purposes. This allows us to increase experiment and instrument capability by provided added volume in a confined small satellite space. Leveraging initial progress made on a NASA contract, the team investigated the potential of new materials that exploit the AM process, producing candidate compositions that exceed the capabilities of traditional materials. These "new materials" being produced and tested include some that have improved radiation shielding, increased permeability, enhanced thermal properties, better conductive properties, and increased structural performance. The team also investigated materials that were previously not possible to be made. Our testing included standard mechanical tests such as vibration, tensile, thermal cycling, and impact resistance as well as radiation and electromagnetic tests. The initial results of these products and their performance will be presented and compared with standard properties. The new materials with the highest probability to disrupt the future of small satellite systems by driving down costs will be highlighted, in conjunction with the electronic embedding process.
    Keywords: Spacecraft Design, Testing and Performance
    Type: GRC-E-DAA-TN15788 , E-18939 , AIAA/USU Conference on Small Satellites; 4-7 Aug.; Logan, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-19
    Description: While orbital debris of ten centimeters or more are tracked and catalogued, the difficulty of finding and accurately accounting for forces acting on the objects near the ten centimeter threshold results in both uncertainty of their presence and location. These challenges result in difficult decisions for operators balancing potential costly operational approaches with system loss risk. In this paper, numerical simulations and an experiment using the multishock shield system is described for a cylindrical projectile composed of Nylon, aluminum and void that is approximately 8 cm in diameter and 10 cm in length weighing 670 g impacting the multishock shield normal to the surface with approximately 16.5 MJ of kinetic energy. The multishock shield system has been optimized to facilitate the fragmentation, spread and deceleration of the projectile remnants using hydrodynamic simulations of the impact event. The characteristics and function of each of the layers of the multishock system will be discussed along with considerations for deployment and improvement.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-30655 , International Astronautical Congress 2014; Sep 29, 2014 - Oct 03, 2014; Toronto, Ontario, Canada; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-19
    Description: Low Earth orbit is usually considered a relatively benign environment for internal charging threats due to the low flux of penetrating electrons with energies of a few MeV that are encountered over an orbit. There are configurations, however, where insulators and ungrounded conductors used on the outside of a spacecraft hull may charge when exposed to much lower energy electrons of some 100's keV in a process that is better characterized as internal charging than surface charging. For example, the minimal radiation shielding afforded by thin thermal control materials such as metalized polymer sheets (e.g., aluminized Kapton or Mylar) and multilayer insulation may allow electrons of 100's of keV to charge underlying materials. Yet these same thermal control materials protect the underlying insulators and ungrounded conductors from surface charging currents due to electrons and ions at energies less than a few keV as well as suppress the photoemission, secondary electron, and backscattered electron processes associated with surface charging. We investigate the conditions required for this low Earth orbit "internal charging" to occur and evaluate the environments for which the process may be a threat to spacecraft. First, we describe a simple one-dimensional internal charging model that is used to compute the charge accumulation on materials under thin shielding. Only the electron flux that penetrates exposed surface shielding material is considered and we treat the charge balance in underlying insulation as a parallel plate capacitor accumulating charge from the penetrating electron flux and losing charge due to conduction to a ground plane. Charge dissipation due to conduction can be neglected to consider the effects of charging an ungrounded conductor. In both cases, the potential and electric field is computed as a function of time. An additional charge loss process is introduced due to an electrostatic discharge current when the electric field reaches a prescribed breakdown strength. For simplicity, the amount of charge lost in the discharge is treated as a random percentage of the total charge between a set maximum and minimum amount so a user can consider partial discharges of insulating materials (small loss of charge) or arcing from a conductor (large loss of charge). We apply the model to electron flux measurements from the NOAA-19 spacecraft to demonstrate that charging can reach levels where electrostatic discharges occur and estimate the magnitude of the discharge.
    Keywords: Spacecraft Design, Testing and Performance
    Type: M14-3266 , Spacecraft Charging and Technology Conference (13th SCTC, 2014); Jun 23, 2014 - Jun 27, 2014; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: While quite a lot is known about the orbital debris environment and how to limit its growth, more remains to be learned. The curent priorities for research and development, from the NASA Goddard Space Flight Center perspective, will be discussed.
    Keywords: Spacecraft Design, Testing and Performance
    Type: GSFC-E-DAA-TN19207 , 2014 Center for Orbital Debris Education and Research Workshop (CODER); Nov 18, 2014 - Nov 20, 2014; College Park, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: M15-4192 , MSFC Tech Exposition; Oct 27, 2014; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: EXPRESS Racks provide capability for payload access to ISS resources. The successful on-orbit operations and versatility of the EXPRESS Rack has facilitated the operations of many scientific areas, with the promise of continued payload support for years to come. EXPRESS Racks are currently deployed in the US Lab, Columbus and JEM. Process improvements and enhancements continue to improve the accommodations and make the integration and operations process more efficient. Payload Integration Managers serve as the primary interface between the ISS Program and EXPRESS Payload Developers. EXPRESS Project coordinates across multiple functional areas and organizations to ensure integrated EXPRESS Rack and subrack products and hardware are complete, accurate, on time, safe, and certified for flight. NASA is planning to expand the EXPRESS payload capacity by developing new Basic Express Racks expected to be on ISS in 2018.
    Keywords: Spacecraft Design, Testing and Performance
    Type: M15-4161 , Annual Meeting of the American Society for Gravitational and Space Research; Oct 22, 2014 - Oct 26, 2014; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: M15-4193 , Marshall Technology Exposition; Oct 27, 2014; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-07-13
    Description: The International Space Station program is developing a robotically-operated leak locator tool to be used externally. The tool would consist of a Residual Gas Analyzer for partial pressure measurements and a full range pressure gauge for total pressure measurements. The primary application is to detect NH3 coolant leaks in the ISS thermal control system.An analytical model of leak plume physics is presented that can account for effusive flow as well as plumes produced by sonic orifices and thruster operations. This model is used along with knowledge of typical RGA and full range gauge performance to analyze the expected instrument sensitivity to ISS leaks of various sizes and relative locations (directionality).The paper also presents experimental results of leak simulation testing in a large thermal vacuum chamber at NASA Goddard Space Flight Center. This test characterized instrument sensitivity as a function of leak rates ranging from 1 lbmyr. to about 1 lbmday. This data may represent the first measurements collected by an RGA or ion gauge system monitoring off-axis point sources as a function of location and orientation. Test results are compared to the analytical model and used to propose strategies for on-orbit leak location and environment characterization using the proposed instrument while taking into account local ISS conditions and the effects of ramwake flows and structural shadowing within low Earth orbit.
    Keywords: Spacecraft Design, Testing and Performance
    Type: GSFC-E-DAA-TN15807 , International Symposium on Rarefied Gas Dynamics; Jul 13, 2014 - Jul 18, 2014; Xian; China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-13
    Description: In the development of flight insulation systems for large cryogenic orbital storage (spray on foam and multilayer insulation), testing need include all environments that are experienced during flight. While large efforts have been expended on studying, bounding, and modeling the orbital performance of the insulation systems, little effort has been expended on the ground hold and ascent phases of a mission. Historical cryogenic in-space systems that have flown have been able to ignore these phases of flight due to the insulation system being within a vacuum jacket. In the development phase of the Nuclear Mars Vehicle and the Shuttle Nuclear Vehicle, several insulation systems were evaluated for the full mission cycle. Since that time there had been minimal work on these phases of flight until the Constellation program began investigating cryogenic service modules and long duration upper stages. With the inception of the Cryogenic Propellant Storage and Transfer Technology Demonstration Mission, a specific need was seen for the data and as such, several tests were added to the Cryogenic Boil-off Reduction System liquid hydrogen test matrix to provide more data on a insulation system. Testing was attempted with both gaseous nitrogen (GN2) and gaseous helium (GHe) backfills. The initial tests with nitrogen backfill were not successfully completed due to nitrogen liquefaction and solidification preventing the rapid pumpdown of the vacuum chamber. Subsequent helium backfill tests were successful and showed minimal degradation. The results are compared to the historical data.
    Keywords: Spacecraft Design, Testing and Performance
    Type: GRC-E-DAA-TN15357 , Propulsion and Energy Forum 2014; Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-13
    Description: The Morpheus prototype lander is a testbed capable of vertical takeoff and landing developed by NASA Johnson Space Center to assess advanced space technologies. Morpheus completed a series of flight tests at Kennedy Space Center to demonstrate autonomous landing and hazard avoidance for future exploration missions. As a prototype vehicle being tested in Earth's atmosphere, Morpheus requires a robust roll control system to counteract aerodynamic forces. This paper describes the control algorithm designed that commands jet firing and delay times based on roll orientation. Design, analysis, and testing are supported using a high fidelity, 6 degree-of-freedom simulation of vehicle dynamics. This paper also details the wind profiles generated using historical wind data, which are necessary to validate the roll control system in the simulation environment. In preparation for Morpheus testing, the wind model was expanded to create day-of-flight wind profiles based on data delivered by Kennedy Space Center. After the test campaign, a comparison of flight and simulation performance was completed to provide additional model validation.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-32230 , AIAA Guidance, Navigation, and Control Conference (GN and C); Jan 05, 2015 - Jan 09, 2015; Kissimmee, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-13
    Description: Relative navigation remains the most challenging part of spacecraft rendezvous and docking. In recent years, flash LIDARs, have been increasingly selected as the go-to sensors for proximity operations and docking. Flash LIDARS are generally lighter and require less power that scanning Lidars. Flash LIDARs do not have moving parts, and they are capable of tracking multiple targets as well as generating a 3D map of a given target. However, there are some significant drawbacks of Flash Lidars that must be resolved if their use is to be of long-term significance. Overcoming the challenges of Flash LIDARs for navigation-namely, low technology readiness level, lack of historical performance data, target identification, existence of false positives, and performance of vision processing algorithms as intermediaries between the raw sensor data and the Kalman filter-requires a world-class testing facility, such as the Lockheed Martin Space Operations Simulation Center (SOSC). Ground-based testing is a critical step for maturing the next-generation flash LIDAR-based spacecraft relative navigation. This paper will focus on the tests of an integrated relative navigation system conducted at the SOSC in January 2014. The intent of the tests was to characterize and then improve the performance of relative navigation, while addressing many of the flash LIDAR challenges mentioned above. A section on navigation performance and future recommendation completes the discussion.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-32220 , 2015 IEEE Aerospace Conference; Mar 07, 2015 - Mar 14, 2015; Big Sky, Montana; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-13
    Description: NASA's Edison program is intending to launch the Edison Demonstration of Smallsat Networks (EDSN) project, a swarm of 8 1.5U cubesats in the fall of 2014 to demonstrate intra-swarm communications and multi-point in situ space physics data acquisition. Due to late changes in the duty cycles of various components, potential overheating issues appeared. In addition, it was determined that capacity loss due to the coldness of the batteries was unacceptable, so mitigation was required. This paper will discuss the thermal modeling, testing, and results of the EDSN mission.
    Keywords: Spacecraft Design, Testing and Performance
    Type: M14-3447 , International Conference on Environmental Systems (ICES) 2014; Jul 13, 2014 - Jul 17, 2014; Tucson, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: M14-4020 , Annual Space and Missile Defense Symposium (SMD); Aug 14, 2014; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-13
    Description: Starting in Jan 2012, the Advanced Exploration Systems (AES) Autonomous Mission Operations (AMO) Project began to investigate the ability to create and execute "single button" crew initiated autonomous activities [1]. NASA Marshall Space Flight Center (MSFC) designed and built a fluid transfer hardware test-bed to use as a sub-system target for the investigations of intelligent procedures that would command and control a fluid transfer test-bed, would perform self-monitoring during fluid transfers, detect anomalies and faults, isolate the fault and recover the procedures function that was being executed, all without operator intervention. In addition to the development of intelligent procedures, the team is also exploring various methods for autonomous activity execution where a planned timeline of activities are executed autonomously and also the initial analysis of crew procedure development. This paper will detail the development of intelligent procedures for the NASA MSFC Autonomous Fluid Transfer System (AFTS) as well as the autonomous plan execution capabilities being investigated. Manned deep space missions, with extreme communication delays with Earth based assets, presents significant challenges for what the on-board procedure content will encompass as well as the planned execution of the procedures.
    Keywords: Spacecraft Design, Testing and Performance
    Type: M14-3502 , Space Ops 2014; May 05, 2014 - May 09, 2014; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-13
    Description: There is a heightened interest within NASA for the design, development, and flight implementation of mixed-actuator hybrid attitude control systems for science spacecraft that have less than three functional reaction wheel actuators. This interest is driven by a number of recent reaction wheel failures on aging, but what could be still scientifically productive, NASA spacecraft if a successful hybrid attitude control mode can be implemented. Over the years, hybrid (mixed-actuator) control has been employed for contingency attitude control purposes on several NASA science mission spacecraft. This paper provides a historical perspective of NASA's previous engineering work on spacecraft mixed-actuator hybrid control approaches. An update of the current situation will also be provided emphasizing why NASA is now so interested in hybrid control. The results of the NASA Spacecraft Hybrid Attitude Control Workshop, held in April of 2013, will be highlighted. In particular, the lessons learned captured from that workshop will be shared in this paper. An update on the most recent experiences with hybrid control on the Kepler spacecraft will also be provided. This paper will close with some future considerations for hybrid spacecraft control.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NF1676L-18796 , GNC 2014: International ESA Conference on Guidance, Navigation, and Control Systems; Jun 02, 2014 - Jun 06, 2014; Porto; Portugal
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-31520 , NASA In-Space Inspection Tech Workshop; Jul 15, 2014 - Jul 17, 2014; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-31487 , NASA-In-Space Inspection Technology Workshop; Jul 15, 2014 - Jul 16, 2014; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-13
    Description: The Autonomous precision Landing and Hazard Avoidance Technology (ALHAT) project has developed a suite of prototype sensors for enabling autonomous and safe precision land- ing of robotic or crewed vehicles on solid solar bodies under varying terrain lighting condi- tions. The sensors include a Lidar-based Hazard Detection System (HDS), a multipurpose Navigation Doppler Lidar (NDL), and a long-range Laser Altimeter (LAlt). Preparation for terrestrial ight testing of ALHAT onboard the Morpheus free- ying, rocket-propelled ight test vehicle has been in progress since 2012, with ight tests over a lunar-like ter- rain eld occurring in Spring 2014. Signi cant work e orts within both the ALHAT and Morpheus projects has been required in the preparation of the sensors, vehicle, and test facilities for interfacing, integrating and verifying overall system performance to ensure readiness for ight testing. The ALHAT sensors have undergone numerous stand-alone sensor tests, simulations, and calibrations, along with integrated-system tests in special- ized gantries, trucks, helicopters and xed-wing aircraft. A lunar-like terrain environment was constructed for ALHAT system testing during Morpheus ights, and vibration and thermal testing of the ALHAT sensors was performed based on Morpheus ights prior to ALHAT integration. High- delity simulations were implemented to gain insight into integrated ALHAT sensors and Morpheus GN&C system performance, and command and telemetry interfacing and functional testing was conducted once the ALHAT sensors and electronics were integrated onto Morpheus. This paper captures some of the details and lessons learned in the planning, preparation and integration of the individual ALHAT sen- sors, the vehicle, and the test environment that led up to the joint ight tests.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-31442 , AIAA Space 2014 Conference; Aug 04, 2014 - Aug 07, 2014; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-13
    Description: In April 2012, NASA directed Boeing to conduct a study to assess the feasibility of implementing a simplified soft capture system, as a possible replacement for the soft capture system portion of the baseline NASA Docking System (NDS). This paper describes the study conducted and conclusions drawn that supported the selection of the Soft Impact Mating and Attenuation Concept (SIMAC) as the replacement of the International Low Impact Docking System's (iLIDS) soft capture system.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-31396 , AIAA Space and Astronautics Forum and Exposition (SPACE 2014); Jul 14, 2014 - Jul 15, 2014; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: M14-3329 , Nuclear Emerging Technologies for Space (NETS); Feb 24, 2014 - Feb 26, 2014; Stennis Space Center, MS; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: Space Simulation Conference; Nov 03, 2014 - Nov 06, 2014; Baltimore, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-13
    Description: In July, 2014 JPL's Environmental Test Laboratory successfully performed a launch depressurization test on an inflatable space habitat proposed to be installed on the International Space Station. The inflatable habitat is to be launched in the SpaceX Dragon Trunk. During the launch, the unpressurized Dragon Trunk will rapidly change from ground level atmospheric pressure to the vacuum of space. Since the inflatable habitat is tightly folded during launch with multiple layers of bladder, Kevlar fabric sections, and micro-meteoroid shielding, it was not possible to analyze or simulate how the residual air pockets would behave during the launch. If the inflatable habitat does not vent adequately and expands, it could rupture the payload bay of the launch vehicle. A launch depressurization test was chosen as the best way to qualify the inflatable habitat. When stowed, the inflatable habitat measured approximately 241 cm (95 inches) in diameter by 152 cm (60 inches) high and weighed close to 1361 kg (3,000 pounds). Two vacuum chambers connected by a large vacuum line were used to perform this test. The inflatable habitat was mounted in the smaller chamber, which was 396 cm (13 feet) in diameter and 1128 cm (37 feet) high. The larger chamber, which was 823 cm (27 feet) in diameter and 2,591 cm (85 feet) high, was rough pumped and used as a vacuum reservoir. A two stage axial type compressor and ten Stokes vacuum pumps were also used during the depressurization. Opening a butterfly valve on the vacuum line, at the smaller chamber, was manually controlled so that the smaller chamber's depressurization rate matched the launch pressure profile.
    Keywords: Spacecraft Design, Testing and Performance
    Type: Space Simulation Conference; Nov 03, 2014 - Nov 06, 2014; Baltimore, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-13
    Description: The introduction of the Space Launch System will provide NASA with a new means of access to space beyond low Earth orbit (LEO), creating opportunities for scientific research in a range of spacecraft sizes. This presentation describes the preliminary design of the BioSentinel spacecraft, a CubeSat measuring 10cm x 20cm x 30cm, which has been manifested for launch on the maiden voyage of the Space Launch System in 2017. BioSentinel will provide the first direct experimental data from a biological study conducted beyond LEO in over forty years, which in turn will help to pave the way for future human exploration missions. The combination of an advanced biology payload with standard spacecraft bus components required for operation in deep space within a CubeSat form factor poses a unique challenge, and this paper will describe the early design trades under consideration. The baseline spacecraft design calls for the biology payload to occupy four cube-units of volume (denoted 4U), with all spacecraft bus components occupying the remaining 2U.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN14135 , Interplanetary Small Satellite Conference; Apr 28, 2014 - Apr 29, 2014; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-12
    Description: Over the last decade, a number of very small satellites have been launched into space. These have been called nanosatellites (generally of a weight between 1 and 10 kg) or picosatellites (weight 〈1 kg). This also includes CubeSats, which are based on 10-cm cube units. With the addition of the Japanese Experiment Module (JEM) Small Satellite Orbital Deployer (J-SSOD) to the International Space Station (ISS), CubeSats are easily cycled through the JEM airlock and deployed into space (fig. 1). The number of CubeSats launched since 2003 was approaching 100 at the time of publication, and the authors expect this trend in research to continue, particularly for high school and college flight experiments. Because these spacecraft are so small, there is usually no allowance for shielding or active heating or cooling of the avionics and other hardware. Parts that are usually ignored in the thermal analysis of larger spacecraft may contribute significantly to the heat load of a tiny satellite. In addition, many small satellites have commercial-off-the-shelf (COTS) components. To reduce costs, many providers of COTS components do not include the optical and physical parameters necessary for accurate thermal analysis. Marshall Space Flight Center participated in the development and analysis of the Space Missile Defense Command-Operational Nanosatellite Effect (SMDC-ONE) and the Edison Demonstration of Smallsat Networks (EDSN) nanosatellites. These optical property measurements are documented here in hopes that they may benefit future nanosatellite and picosatellite programs and aid thermal analysis to ensure project goals are met, with the understanding that material properties may vary by vendor, batch, manufacturing process, and preflight handling. Where possible, complementary data are provided from ground simulations of the space environment and flight experiments, such as the Materials on International Space Station Experiment (MISSE) series. NASA gives no recommendation, endorsement, or preference, either expressed or implied, concerning materials and vendors used. Solar absorptance was calculated from spectral reflectance measurements made from 250 to 2,800 nm with an AZ Technology Laboratory Portable Spectroreflectometer (LPSR) model 300. ASTM E-903 was the test method used under normal laboratory conditions, and ASTM E-490 was the solar spectral irradiance data used to calculate solar absorptance. Most of the samples were flat, but stray light was minimized as much as possible with either a blackbody or black cloth as sample background. The LPSR has repeatability of approximately +/-1%, where solar absorptance is given as range, that is, from actual measurements taken across the sample. Infrared emittance measurements were made with an AZ Technology TEMP 2000A infrared reflectometer. This instrument measures the total hemispheric reflectance averaged over 3-35 micrometer wavelengths. ASTM E-408 was the test method used under normal laboratory conditions. 3 Stray light was minimized as much as possible. The TEMP 2000A has repeatability of approximately +/-0.5%, where infrared emittance is given as a range, that is, from actual measurements taken across the sample.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA/TM-2014-218195 , M-1384
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-12
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: M14-3410
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-12
    Description: This project will advance the Autonomous Deep-space navigation capability applied to Autonomous Rendezvous and Docking (AR&D) Guidance, Navigation and Control (GNC) system by testing it on hardware, particularly in a flight processor, with a goal of limited testing in the Integrated Power, Avionics and Software (IPAS) with the ARCM (Asteroid Retrieval Crewed Mission) DRO (Distant Retrograde Orbit) Autonomous Rendezvous and Docking (AR&D) scenario. The technology, which will be harnessed, is called 'optical flow', also known as 'visual odometry'. It is being matured in the automotive and SLAM (Simultaneous Localization and Mapping) applications but has yet to be applied to spacecraft navigation. In light of the tremendous potential of this technique, we believe that NASA needs to design a optical navigation architecture that will use this technique. It is flexible enough to be applicable to navigating around planetary bodies, such as asteroids.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-31065
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-12
    Description: The Wide Field X-Ray Telescope (WFXT) is an astrophysics mission concept for detecting and studying extra-galactic x-ray sources, including active galactic nuclei and clusters of galaxies, in an effort to further understand cosmic evolution and structure. This Technical Memorandum details the results of a mission concept study completed by the Advanced Concepts Office at NASA Marshall Space Flight Center in 2012. The design team analyzed the mission and instrument requirements, and designed a spacecraft that enables the WFXT mission while using high heritage components. Design work included selecting components and sizing subsystems for power, avionics, guidance, navigation and control, propulsion, structures, command and data handling, communications, and thermal control.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA/TM-2014-218191 , M-1380
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-19
    Description: Spacecraft multibody separation events during atmospheric descent require complex testing and analysis to validate the flight separation dynamics model and to verify no recontact. NASA Orion MultiPurpose Crew Vehicle (MPCV) teams examined key model parameters and risk areas to develop a robust but affordable test campaign in order to validate and verify the Forward Bay Cover (FBC) separation event for Exploration Flight Test1 (EFT1). The FBC jettison simulation model is highly complex, consisting of dozens of parameters varied simultaneously, with numerous multiparameter interactions (coupling and feedback) among the various model elements, and encompassing distinct nearfield, midfield, and farfield regimes. The test campaign was composed of componentlevel testing (for example gaspiston thrusters and parachute mortars), ground FBC jettison tests, and FBC jettison airdrop tests that were accomplished by a highly multidisciplinary team. Three ground jettison tests isolated the testing of mechanisms and structures to anchor the simulation models excluding aerodynamic effects. Subsequently, two airdrop tests added aerodynamic and parachute parameters, and served as integrated system demonstrations, which had been preliminarily explored during the Orion Pad Abort1 (PA1) flight test in May 2010. Both ground and drop tests provided extensive data to validate analytical models and to verify the FBC jettison event for EFT1, but more testing is required to support human certification, for which NASA and Lockheed Martin are applying knowledge from Apollo and EFT1 testing and modeling to develop a robust but affordable human spacecraft capability.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-32189 , AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar; Mar 30, 2015 - Apr 02, 2015; Daytona Beach, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-19
    Description: The complex interaction between the International Space Station (ISS) and the surrounding plasma environment often generates unpredictable environmental situations that affect operations. Examples of affected systems include extravehicular activity (EVA) safety, solar panel efficiency, and scientific instrument integrity. Models and heuristicallyderived best practices are wellsuited for routine operations, but when it comes to unusual or anomalous events or situations, especially those driven by space weather, there is no substitute for realtime monitoring. Space environment data collected in realtime (or nearreal time) can be used operationally for both realtime alarms and data sources in assimilative models to predict environmental conditions important for operational planning. Fixed space weather instruments mounted to the ISS can be used for monitoring the ambient space environment, but knowing whether or not (or to what extent) the ISS affects the measurements themselves requires adequate space situational awareness (SSA) local to the ISS. This paper presents a mission concept to use a suite of plasma instruments mounted at the end of the ISS robotic arm to systematically explore the interaction between the Space Station structure and its surrounding environment. The Situational Awareness Sensor Suite for the ISS (SASSI) would be deployed and operated on the ISS Express Logistics Carrier (ELC) for longterm "survey mode" observations and the Space Station Remote Manipulator System (SSRMS) for shortterm "campaign mode" observations. Specific areas of investigation include: 1) ISS frame and surface charging during perturbations of the local ISS space environment, 2) calibration of the ISS Floating Point Measurement Unit (FPMU), 3) long baseline measurements of ambient ionospheric electric potential structures, 4) electromotive force-induced currents within large structures moving through a magnetized plasma, and 5) wakeinduced ion waves in both electrostatic (i.e. particles) and electromagnetic modes. SASSI will advance the understanding of plasmaboundary interaction phenomena, demonstrate a suite a sensors acting in concert to provide effective SSA, and validate and/or calibrate existing ISS space environment instruments and models.
    Keywords: Spacecraft Design, Testing and Performance
    Type: M14-3478 , Spacecraft Charging Technology Conference (SCTC); Jun 23, 2014 - Jun 27, 2014; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-19
    Description: The 700 km x 5.8 Re orbit of the two Van Allen Probes spacecraft provide a unique opportunity to investigate spacecraft charging in geostationary transfer orbits. We use records from the Helium Oxygen Proton Electron (HOPE) plasma spectrometer to identify candidate surface charging events based on the "ion line" charging signature in the ion records. We summarize the energetic particle environment and the conditions necessary for charging to occur in this environment. We discuss the altitude, duration, and magnitude of events observed in the Van Allen Probes from the beginning of the mission to present time. In addition, we explore what information the dual satellites provide on the spatial and temporal variations in the charging environments.
    Keywords: Spacecraft Design, Testing and Performance
    Type: M14-3904 , 2014 AGU Fall Meeting; Dec 15, 2014 - Dec 19, 2014; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-19
    Description: Variances in atmospheric density are directly related to the variances in solar flux intensity between 11- year solar cycles. The Orbital Debris Engineering Model (ORDEM 3.0) uses a solar flux table as input for calculating orbital lifetime of intact and debris objects in Low-Earth Orbit. Long term projections in solar flux activity developed by the NASA Orbital Debris Program Office (ODPO) extend the National Oceanic and Atmospheric Administration Space Environment Center (NOAA/SEC) daily historical flux values with a 5-year projection. For purposes of programmatic scheduling, the Q2 2009 solar flux table was chosen for ORDEM 3.0. Current solar flux activity shows that the current solar cycle has entered a period of lower solar flux intensity than previously forecasted in 2009. This results in a deviation of the true orbital debris environment propagation in ORDEM 3.0. In this paper, we present updated orbital debris populations in LEO using the latest solar flux values. We discuss the effects on recent breakup events such as the FY-1C anti-satellite test and the Iridium 33 / Cosmos 2251 accidental collision. Justifications for chosen solar flux tables are discussed.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-30560 , Scientific Assembly of the Committee on Space Research (COSPAR-2014); Aug 02, 2014 - Aug 10, 2014; Moscow, Russia; Russia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-19
    Description: This paper discusses the methodology used to model common cause failures of thrusters on the International Space Station (ISS) Visiting Vehicles. The ISS Visiting Vehicles each have as many as 32 thrusters, whose redundancy makes them susceptible to common cause failures. The Global Alpha Model (as described in NUREG/CR5485) can be used to represent the system common cause contribution, but NUREG/CR5496 supplies global alpha parameters for groups only up to size six. Because of the large number of redundant thrusters on each vehicle, regression is used to determine parameter values for groups of size larger than six. An additional challenge is that Visiting Vehicle thruster failures must occur in specific combinations in order to fail the propulsion system; not all failure groups of a certain size are critical.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-30604 , Probabilistic Safety Assessment & Management Conference; Jun 22, 2014 - Jun 27, 2014; Honolulu, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-20
    Description: To support NASAs long term goal of landing humans on Mars, technologies which enable the landing of heavy payloads are being developed. Current entry, decent, and landing technologies are not practical for this class of payloads due to geometric constraints dictated by current launch vehicle fairing limitations. Therefore, past and present technologies are now being explored to provide a mass and volume efficient solution to atmospheric entry, including Hypersonic Inflatable Aerodynamic Decelerators (HIADs). At the beginning of 2014, a 6m HIAD inflatable structure with an integrated flexible thermal protection system (TPS) was subjected to a static load test series to verify the designs structural performace. The 6m HIAD structure was constructed in a stacked toroid configuration using nine inflatable torus segments composed of fiber reinforced thin films, which were joined together using adhesives and high strength textile woven structural straps to help distribute the loads throughout the inflatable structure. The 6m flexible TPS was constructed using multiple layers of high performance materials to protect the inflatable structure from heat loads that would be seen during atmospheric entry. To perform the static load test series, a custom test fixture was constructed. The fixture consisted of a structural tub rim with enough height to allow for displacement of the inflatable structure as loads were applied. The bottom of the tub rim had an airtight seal with the floor. The centerbody of the inflatable structure was attached to a pedestal mount as seen in Figure 1. Using an impermeable membrane seal draped over the test article, partial vacuum was pulled beneath the HIAD, resulting in a uniform static pressure load applied to the outer surface. During the test series an extensive amount of instrumentation was used to provide many data sets including: deformed shape, shoulder deflection, strap loads, cord loads, inflation pressures, and applied static load.In this overview, the 6m HIAD static load test series will be discussed in detail, including the 6m HIAD inflatable structure and flexible TPS design, test setup and execution, and finally initial results and conclusions from the test series.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN14203 , International Planetary Probe Workshop; Jun 16, 2014 - Jun 20, 2014; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-20
    Description: Attitude control for very small spacecraft, commonly referred to as nanosatellites or CubeSats, has traditionally been carried out using reaction wheels and magnetic torquers as the primary actuators. However, as these spacecraft begin to be considered for a broader range of scientific applications, including some beyond low Earth orbit, it has become necessary to also consider thruster systems for actuation. In recent years a number of thruster designs that conform to the mass, volume, and power constraints of nanosatellites have become commercially available, including cold gas systems, pulsed plasma thrusters (PPTs), and micro-electrospray propulsion (MEP) systems. The challenge now facing the nanosatellite community is to determine which thruster solutions are appropriate for a particular application, and what the best method of control might be. This paper will compare the implementation of a cold gas system with that of an MEP or PPT system for an upcoming nanosatellite mission using a previously reported saturation-restricted control law. Results are presented for this controller both with and without a fuel-optimal thruster allocation scheme, and an assessment on incorporating these technologies in an upcoming NASA mission is offered.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN15901 , AIAA SciTech; Jun 30, 2014; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-20
    Description: In order to measure afterbody heat fluxes over a model in the ballistic range, the required modifications to a proven technique for measuring forebody heat fluxes are described. This involves the use of an extended helium gas plume to remove the glowing wake and the use of special high conductivity, high temperature capable graphite-filled plastic for the afterbody. The models and test conditions are described. Data in the form of plots of the surface temperature of the models are presented. Finally, experimental and computational fluid dynamic (CFD) heat flux data for forebody and afterbody heat fluxes are presented and compared. Data are presented for a 45 degree sphere-cone (with a projecting rear stud) at 2.70 km/s and for a sphere at 4.76 km/s. Both models were launched into 76 Torr of CO2 gas. The experimental forebody heat fluxes were within 1.5% of the CFD values. The experimental afterbody heat fluxes were within 1% of the CFD values for the sphere, but only 51% of the CFD values for the sphere-cone.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN17696 , Meeting of Aeroballistic Range Association; Oct 19, 2014 - Oct 24, 2014; Arcachon; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-20
    Description: An integrated tool called the Multi Mission System Analysis for Planetary Entry Descent and Landing (M-SAPE) is being developed as part of NASAs In-Space Propulsion Technology (ISPT) program. Part of M-SAPEs development requires the formulation of mass estimating relationships (MERs) to determine the vehicle's Thermal Protection System (TPS) material and required thickness for safe Earth entry. The objective of this study was to develop MERs using simple correlations that were non-ITAR and matched as accurately as possible NASAs high-fidelity ablation modeling tool, the Fully Implicit Ablation and Thermal Analysis Program (FIAT ). These MERs would be a first-estimate for feasibility studies; it is understood that higher-fidelity modeling like FIAT would be necessary once a proposed trajectory was down-selected. The trajectory space for these MERS consisted of 840 different trajectories, and a materials heating limit was the main constraint for an allowable trajectory. MERs for the vehicle fore body included the ablating materials Phenolic Impregnated Carbon Ablator (PICA ) and Carbon Phenolic atop Advanced Carbon-Carbon. For the backshell the materials were Silicone Impregnated Reusable Ceramic Ablator (SIRCA ), Acusil II, SLA-561V, and LI-900. The MERFIAT ratio indicates MERs are accurate to within 14 percent (at one standard deviation) of FIAT prediction, and the most any MER can under-predict TPS thickness is 18.7 percent of FIAT prediction. This poster focuses on the development of these MERs, the resulting equations, model limitations, and model accuracy.
    Keywords: Spacecraft Design, Testing and Performance
    Type: TSM-15698 , ARC-E-DAA-TN15698 , International Planetary Probe Workshop; Jun 16, 2014 - Jun 20, 2014; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-08-24
    Description: Flight has always captured man's imagination. This is evidenced by the great variety of aerial vehicles that exist today. Everything from fixed-wing to rotorcraft; satellites to spaceships;mono-wing to quadrotor. However, despite the wide variety of flying vehicles, not one of them has attained eternal flight. Accomplishing this feat is one of the great challenges still facing the aviation community. Motivation Achieving eternal flight opens the doors to atmospheric satellites. Existing satellites have a great number of capabilities that enrich our lives; however,their distance from the surface of the earth precludes certain types of transmission capabilities. Once eternal flight is achieved, that vehicle can serve the same role as ordinary satellites, but its close proximity will allow for real time two way communications,like wireless broadband internet. And with active controls, atmospheric satellites would not be constrained to geosynchronous orbits, like our existing satellite technology. Many projects are under way to achieve this goal;however, most of these research efforts follow the same design methodology, and have exhausted the limits of this particular design. This concept introduces a completely new aerial vehicle structure,which uses the best features of fixed-wing and rotorcraft designs. Combining the best features of different classes of aircraft, expands the capabilities beyond what either one can achieve on its own.
    Keywords: Spacecraft Design, Testing and Performance
    Type: HQ-E-DAA-TN63084
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-12
    Description: This paper addresses stabilization and control issues in autonomous capture and manipulation of non-cooperative space objects such as asteroids, space debris, and orbital spacecraft in need of servicing. Such objects are characterized by unknown mass-inertia properties, unknown rotational motion, and irregular shapes, which makes it a challenging control problem. The problem is further compounded by the presence of inherent nonlinearities, signi cant elastic modes with low damping, and parameter uncertainties in the spacecraft. Robust dissipativity-based control laws are presented and are shown to provide global asymptotic stability in spite of model uncertainties and nonlinearities. It is shown that robust stabilization can be accomplished via model-independent dissipativity-based controllers using thrusters alone, while stabilization with attitude and position control can be accomplished using thrusters and torque actuators.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA/TM-2014-218668 , L-20512 , NF1676L-20478
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-08-13
    Description: The Terrestrial HIAD Orbital Reentry (THOR) is planned for flight in 2016 as a secondary payload on an Orbital Sciences commercial resupply mission to the International Space Station. THOR will launch with its Hypersonic Inflatable Aerodynamic Decelerator (HIAD) stowed as a small cylinder between the second stage motor and the launch vehicle fairing. Once the Cygnus cargo vehicle has separated from the second stage, THOR will likewise separate, autonomously re-orient itself, perform a deorbit burn, then inflate the HIAD to a 3.5m diameter cone before atmospheric interface. THOR is a follow-on mission to the IRVE-3 flight test of 2012. The high energy of orbital reentry will allow THOR to demonstrate the performance of its improved, second-generation inflatable structure and flexible TPS materials, in a more energetic entry environment than previous suborbital test flights.This paper discusses the sequence of events planned to occur as part of the THOR mission. Specific topics will include the THOR mission concept, reentry vehicle design for the expected flight environment, the on-board sensors that will allow quantification of vehicle performance, and how we intend to retrieve the flight data from a reentry vehicle splashing down in international waters.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NF1676L-18744 , International Planetary Probe Workshop; Jun 16, 2014 - Jun 20, 2014; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-08-13
    Description: The NASA Engineering and Safety Center (NESC) and Lockheed Martin (LM) performed random vibration testing on a single spring strut development unit to assess its ability to withstand qualification level random vibration environments. Failure of the strut while exposed to random vibration resulted in a follow-on failure investigation, design changes, and additional development tests. This paper focuses on the results of the failure investigations referenced in detail in the NESC final report including identified lessons learned to aid in future design iterations of the spring strut and to help other mechanism developers avoid similar pitfalls.
    Keywords: Spacecraft Design, Testing and Performance
    Type: M14-3169 , Aerospace Mechanisms Symposium; May 14, 2014 - May 16, 2014; Baltimore, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: Spacecraft and Launch Vehicle Dynamic Environments Workshop; Jun 03, 2014 - Jun 05, 2014; El Segundo, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: M15-4254 , Advanced Space Propulsion Workshop; Nov 17, 2014 - Nov 19, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-08-13
    Description: The Advanced Concepts Office at NASA's George C. Marshall Space Flight Center conducted a study of two configurations of a three stage, inline, liquid propellant small launch vehicle concept developed on the premise of maximizing affordability by targeting a specific payload capability range based on current industry demand. The initial configuration, NESC-1, employed liquid oxygen as the oxidizer and rocket propellant grade kerosene as the fuel in all three stages. The second and more heavily studied configuration, NESC-4, employed liquid oxygen and rocket propellant grade kerosene on the first and second stages and liquid oxygen and liquid methane fuel on the third stage. On both vehicles, sensitivity studies were first conducted on specific impulse and stage propellant mass fraction in order to baseline gear ratios and drive the focus of concept development. Subsequent sensitivity and trade studies on the NESC-4 configuration investigated potential impacts to affordability due to changes in gross liftoff weight and/or vehicle complexity. Results are discussed at a high level to understand the severity of certain sensitivities and how those trade studies conducted can either affect cost, performance or both.
    Keywords: Spacecraft Design, Testing and Performance
    Type: M14-3270 , JANNAF Propulsion Meeting; May 19, 2014 - May 22, 2014; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-08-13
    Description: Commodities are transferred between the Multi-Purpose Crew Vehicle (MPCV) crew module (CM) and service module (SM) via an external umbilical that is driven apart with spring-loaded struts after the structural connection is severed. The spring struts must operate correctly for the modules to separate safely. There was no vibration testing of strut development units scoped in the MPCV Program Plan; therefore, any design problems discovered as a result of vibration testing would not have been found until the component qualification. The NASA Engineering and Safety Center (NESC) and Lockheed Martin (LM) performed random vibration testing on a single spring strut development unit to assess its ability to withstand qualification level random vibration environments. Failure of the strut while exposed to random vibration resulted in a follow-on failure investigation, design changes, and additional development tests. This paper focuses on the results of the failure investigations including identified lessons learned and best practices to aid in future design iterations of the spring strut and to help other mechanism developers avoid similar pitfalls.
    Keywords: Spacecraft Design, Testing and Performance
    Type: M13-2989 , Aerospace Mechanisms Symposium; May 14, 2014 - May 16, 2014; Baltimore, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-08-13
    Description: In order to study the complex interactions between the space environment surrounding the ISS and the ISS surface materials, we propose to use lowcost, high-TRL plasma sensors on the ISS robotic arm to probe the ISS space environment. During many years of ISS operation, we have been able to condut effective (but not perfect) extravehicular activities (both human and robotic) within the perturbed local ISS space environment. Because of the complexity of the interaction between the ISS and the LEO space environment, there remain important questions, such as differential charging at solar panel junctions (the so-called "triple point" between conductor, dielectric, and space plasma), increased chemical contamination due to ISS surface charging and/or thruster activation, water dumps, etc, and "bootstrap" charging of insulating surfaces. Some compelling questions could synergistically draw upon a common sensor suite, which also leverages previous and current MSFC investments. Specific questions address ISS surface charging, plasma contactor plume expansion in a magnetized drifting plasma, and possible localized contamination effects across the ISS.
    Keywords: Spacecraft Design, Testing and Performance
    Type: M14-3201 , 2014 National Space and Missile Materials Symposium (NSMMS); Jun 23, 2014 - Jun 26, 2014; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-08-13
    Description: The Advanced Concepts Office at NASA's George C. Marshall Space Flight Center conducted a study of two configurations of a three-stage, inline, liquid propellant small launch vehicle concept developed on the premise of maximizing affordability by targeting a specific payload capability range based on current and future industry demand. The initial configuration, NESC-1, employed liquid oxygen as the oxidizer and rocket propellant grade kerosene as the fuel in all three stages. The second and more heavily studied configuration, NESC-4, employed liquid oxygen and rocket propellant grade kerosene on the first and second stages and liquid oxygen and liquid methane fuel on the third stage. On both vehicles, sensitivity studies were first conducted on specific impulse and stage propellant mass fraction in order to baseline gear ratios and drive the focus of concept development. Subsequent sensitivity and trade studies on the NESC-4 concept investigated potential impacts to affordability due to changes in gross liftoff mass and/or vehicle complexity. Results are discussed at a high level to understand the impact severity of certain sensitivities and how those trade studies conducted can either affect cost, performance, or both.
    Keywords: Spacecraft Design, Testing and Performance
    Type: M14-3482 , JANNAF Propulsion Meeting; May 19, 2014 - May 22, 2014; Charleston, SC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-12
    Description: Two Dual Ion Spectrometer flight units of the Fast Plasma Instrument Suite (FPI) for the Magnetospheric Multiscale Mission (MMS) have returned to MSFC for flight testing. Anticipated to begin on June 30, tests will ensue in the Low Energy Electron and Ion Facility of the Heliophysics and Planetary Science Office (ZP13), managed by Dr. Victoria Coffey of the Natural Environments Branch of the Engineering Directorate (EV44). The MMS mission consists of four identical spacecraft, whose purpose is to study magnetic reconnection in the boundary regions of Earth's magnetosphere.
    Keywords: Spacecraft Design, Testing and Performance
    Type: M14-3870
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-12
    Description: An efficient algorithm is described for interpolating optimal values for spacecraft Reaction Control System jet firing duty cycles. The algorithm uses the symmetrical geometry of the optimal solution to reduce the number of calculations and data storage requirements to a level that enables implementation on the small real time flight control systems used in spacecraft. The process minimizes acceleration direction errors, maximizes control authority, and minimizes fuel consumption.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA/TM-2014-218317 , E-18919 , GRC-E-DAA-TN13964
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-12
    Description: Acceptance of new spacecraft structural architectures and concepts requires validated design methods to minimize the expense involved with technology validation via flighttesting. This paper explores the implementation of probabilistic methods in the sensitivity analysis of the structural response of a Hypersonic Inflatable Aerodynamic Decelerator (HIAD). HIAD architectures are attractive for spacecraft deceleration because they are lightweight, store compactly, and utilize the atmosphere to decelerate a spacecraft during re-entry. However, designers are hesitant to include these inflatable approaches for large payloads or spacecraft because of the lack of flight validation. In the example presented here, the structural parameters of an existing HIAD model have been varied to illustrate the design approach utilizing uncertainty-based methods. Surrogate models have been used to reduce computational expense several orders of magnitude. The suitability of the design is based on assessing variation in the resulting cone angle. The acceptable cone angle variation would rely on the aerodynamic requirements.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA/TM-2014-218290 , L-20406 , NF1676L-18818
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-12
    Description: This report describes an integrated system for Multi-mission System Analysis for Planetary Entry (M-SAPE). The system in its current form is capable of performing system analysis and design for an Earth entry vehicle suitable for sample return missions. The system includes geometry, mass sizing, impact analysis, structural analysis, flight mechanics, TPS, and a web portal for user access. The report includes details of M-SAPE modules and provides sample results. Current M-SAPE vehicle design concept is based on Mars sample return (MSR) Earth entry vehicle design, which is driven by minimizing risk associated with sample containment (no parachute and passive aerodynamic stability). By M-SAPE exploiting a common design concept, any sample return mission, particularly MSR, will benefit from significant risk and development cost reductions. The design provides a platform by which technologies and design elements can be evaluated rapidly prior to any costly investment commitment.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA/TM2014-218507 , L-20440 , NF1676L-19269
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-12
    Description: At the request of the Science Mission Directorate Chief Engineer, the NASA Technical Fellow for Guidance, Navigation & Control assembled and facilitated a workshop on Spacecraft Hybrid Attitude Control. This multi-Center, academic, and industry workshop, sponsored by the NASA Engineering and Safety Center (NESC), was held in April 2013 to unite nationwide experts to present and discuss the various innovative solutions, techniques, and lessons learned regarding the development and implementation of the various hybrid attitude control system solutions investigated or implemented. This report attempts to document these key lessons learned with the 16 findings and 9 NESC recommendations.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA/TM-2014-218539 , NESC-RP-13-00856 , L-20482 , NF1676L-20008
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-12
    Description: The thermal protection system disclosed herein is suitable for use with a spacecraft such as a reentry module or vehicle, where the spacecraft has a convex surface to be protected. An embodiment of the thermal protection system includes a plurality of heat resistant panels, each having an outer surface configured for exposure to atmosphere, an inner surface opposite the outer surface and configured for attachment to the convex surface of the spacecraft, and a joint edge defined between the outer surface and the inner surface. The joint edges of adjacent ones of the heat resistant panels are configured to mate with each other to form staggered joints that run between the peak of the convex surface and the base section of the convex surface.
    Keywords: Spacecraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN17046 , Small Satellite Conference; Aug 02, 2014 - Aug 07, 2014; Logan, Ut.; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: This short course will review the basics of thermal vacuum testing, including some Goddard history, and the development of our GEVS document.
    Keywords: Spacecraft Design, Testing and Performance
    Type: GSFC-E-DAA-TN17259 , Thermal & Fluids Analysis Workshop (TFAWS); Aug 04, 2014 - Aug 08, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-13
    Description: As early as 2004, the Photovoltaic Thermal Control System (PVTCS) for the International Space Station's 2B electrical power channel began slowly leaking ammonia overboard. Initially, the operations strategy was "feed the leak," a strategy successfully put into action via Extra Vehicular Activity (EVA) during the STS-134 Space Shuttle mission. This recharge was to have allowed for continued power channel operation into 2014 or 2015, at which point another EVA would have been required. In mid-2012, the leak rate increased from 1.5lbm/year to approximately 5lbm/year. As a result, an EVA was planned and executed within a 5 week timeframe to drastically alter the architecture of the PVTCS via connection to an adjacent dormant thermal control system. This EVA, US EVA 20, was successfully executed on November 1, 2012 and left the 2B PVTCS in a configuration where the system was now being adequately cooled via a different radiator than what the system was designed to utilize. Data monitoring over the next several months showed that the isolated radiator had not been leaking, and the system itself continued to leak steadily until May 9th, 2013. It was on this day that the ISS crew noticed the visible presence of ammonia crystals escaping from the 2B channel's truss segment, signifying a rapid acceleration of the leak from 5lbm/year to 5lbm/day. Within 48 hours of the crew noticing the leak, US EVA 21 was in progress to replace the coolant pump - the only remaining replaceable leak source. This was successful, and telemetry monitoring has shown that indeed the coolant pump was the leak source and was thus isolated from the running 2B PVTCS. This paper will explore the management of the 2B PVTCS leak from the operations perspective.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-30696 , SpaceOps 2014 International Conference on Space Operations; May 05, 2014 - May 09, 2014; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-13
    Description: Todays presentation describes preliminary results from a study of extreme auroral charging in low Earth orbit. Goal of study is to document characteristics of auroral charging events of importance to spacecraft design, operations, and anomaly investigations.
    Keywords: Spacecraft Design, Testing and Performance
    Type: M14-3807 , Spacecraft Charging Technology Conference; Jun 23, 2014 - Jun 27, 2014; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-13
    Description: Human exploration of the solar system requires fully autonomous systems when travelling more than 5 light minutes from Earth. This autonomy is necessary to manage a large, complex spacecraft with limited crew members and skills available. The communication latency requires the vehicle to deal with events with only limited crew interaction in most cases. The engineering of these systems requires an extensive knowledge of the spacecraft systems, information theory, and autonomous algorithm characteristics. The characteristics of the spacecraft systems must be matched with the autonomous algorithm characteristics to reliably monitor and control the system. This presents a large system engineering problem. Recent work on product-focused, elegant system engineering will be applied to this application, looking at the full autonomy stack, the matching of autonomous systems to spacecraft systems, and the integration of different types of algorithms. Each of these areas will be outlined and a general approach defined for system engineering to provide the optimal solution to the given application context.
    Keywords: Spacecraft Design, Testing and Performance
    Type: M14-3318 , IEEE Prognostics and Health Management (PHM) 2014 Conference; Jun 22, 2014 - Jun 25, 2014; Spokane, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN15571 , International Planetary Probe Workshop; Jun 16, 2014 - Jun 20, 2014; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-13
    Description: One of NASA Johnson Space Center's test articles of the amine-based carbon dioxide (CO2) and water vapor sorbent system known as the CO2 And Moisture Removal Amine Swing-bed, or CAMRAS, was incorporated into a payload on the International Space Station (ISS). The intent of the payload is to demonstrate the spacecraft-environment viability of the core atmosphere revitalization technology baselined for the new Orion vehicle. In addition to the air blower, vacuum connection, and controls needed to run the CAMRAS, the payload incorporates a suite of sensors for scientific data gathering, a water save function, and an air save function. The water save function minimizes the atmospheric water vapor reaching the CAMRAS unit, thereby reducing ISS water losses that are otherwise acceptable, and even desirable, in the Orion environment. The air save function captures about half of the ullage air that would normally be vented overboard every time the cabin air-adsorbing and space vacuum-desorbing CAMRAS beds swap functions. The JSC team conducted 1000 hours of on-orbit Amine Swingbed Payload testing in 2013 and early 2014. This paper presents the basics of the payload's design and history, as well as a summary of the test results, including comparisons with prelaunch testing.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-31269 , International Conference on Environmental Systems; Jul 13, 2014 - Jul 17, 2014; Tucson, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-13
    Description: Porous monolithic ablative systems insulate atmospheric reentry vehicles from reentry plasmas generated by atmospheric braking from orbital and exo-orbital velocities. Due to the necessity that these materials create a temperature gradient up to several thousand Kelvin over their thickness, it is important that these materials are near their pristine state prior to reentry. These materials may also be on exposed surfaces to space environment threats like orbital debris and meteoroids leaving a probability that these exposed surfaces will be below their prescribed values. Owing to the typical small size of impact craters in these materials, the local flow fields over these craters and the ablative process afford some margin in thermal protection designs for these locally reduced performance values. In this work, tests to develop ballistic performance models for thermal protection materials typical of those being used on Orion are discussed. A density profile as a function of depth of a typical monolithic ablator and substructure system is shown in Figure 1a.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-30960 , Hypervelocity Impact Symposium; Apr 27, 2015 - May 01, 2015; Boulder, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-13
    Description: The Nuclear Cryogenic Propulsion Stage (NCPS) is an in-space transportation vehicle, comprised of three main elements, designed to support a long-stay human Mars mission architecture beginning in 2035. The stage conceptual design and the mission analysis discussed here support the current nuclear thermal propulsion going on within partnership activity of NASA and the Department of Energy (DOE). The transportation system consists of three elements: 1) the Core Stage, 2) the In-line Tank, and 3) the Drop Tank. The driving mission case is the piloted flight to Mars in 2037 and will be the main point design shown and discussed. The corresponding Space Launch System (SLS) launch vehicle (LV) is also presented due to it being a very critical aspect of the NCPS Human Mars Mission architecture due to the strong relationship between LV lift capability and LV volume capacity.
    Keywords: Spacecraft Design, Testing and Performance
    Type: M14-3204 , Nuclear and Emerging Technologies for Space (NETS); Feb 24, 2014 - Feb 26, 2014; Stennis Space Center, MS; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-13
    Description: This paper describes a microsatellite spacecraft with supporting mission profile and architecture, designed to enable preliminary in-situ characterization of a significant number of Near Earth Objects (NEOs) at reasonably low cost. The spacecraft will be referred to as the NEO-Scout. NEO-Scout spacecraft are to be placed in Geosynchronous Equatorial Orbit (GEO), cis-lunar space, or on earth escape trajectories as secondary payloads on launch vehicles headed for GEO or beyond, and will begin their mission after deployment from the launcher. A distinguishing key feature of the NEO-Scout system is to design the spacecraft and mission timeline so as to enable rendezvous with and landing on the target NEO during NEO close approach (〈0.3 AU) to the Earth-Moon system using low-thrust/high-impulse propulsion systems. Mission durations are on the order 100 to 400 days. Mission feasibility and preliminary design analysis are presented, along with detailed trajectory calculations.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-31003 , SpaceOps 2014; May 05, 2014 - May 09, 2014; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-13
    Description: The NASA Multi-Mission Space Exploration Vehicle (MMSEV) Team has developed an alternate configuration of the vehicle that can be used as a lunar lander. The MMSEV was originally conceived of during the Constellation program as the successor to the Apollo lunar rover as a pressurized rover for two-person, multiday excursions on the lunar surface. Following the cancellation of the Constellation program, the MMSEV has been reconfigured to serve as a free-flying scout vehicle for exploration of a Near Earth Asteroid and is also being assessed for use as a Habitable Airlock in a Cislunar microgravity spacecraft. The Alternate MMSEV (AMMSEV) variant of the MMSEV would serve as the transport vehicle for a four-person lunar crew, providing descent from an orbiting spacecraft or space station and ascent back to the spaceborne asset. This paper will provide a high level overview of the MMSEV and preliminary results from human-in-the-loop testing.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-30087 , National Society of Black Engineers (NSBE) Aerospace systems Conference; Jan 22, 2014 - Jan 25, 2014; Los Angeles, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-13
    Description: NASA's Morpheus Project has developed and tested a prototype planetary lander capable of vertical takeoff and landing, that is designed to serve as a testbed for advanced spacecraft technologies. The lander vehicle, propelled by a LOX/Methane engine and sized to carry a 500kg payload to the lunar surface, provides a platform for bringing technologies from the laboratory into an integrated flight system at relatively low cost. Morpheus onboard software is autonomous from ignition all the way through landing, and is designed to be capable of executing a variety of flight trajectories, with onboard fault checks and automatic contingency responses. The Morpheus 1.5A vehicle performed 26 integrated vehicle test flights including hot-fire tests, tethered tests, and two attempted freeflights between April 2011 and August 2012. The final flight of Morpheus 1.5A resulted in a loss of the vehicle. In September 2012, development began on the Morpheus 1.5B vehicle, which subsequently followed a similar test campaign culminating in free-flights at a simulated planetary landscape built at Kennedy Space Center's Shuttle Landing Facility. This paper describes the integrated test campaign, including successes and setbacks, and how the system design for handling faults and failures evolved over the course of the project.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-29989 , 2014 IEEE Aerospace Conference; Mar 01, 2014 - Mar 08, 2014; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-13
    Description: The human factors insights of how they are incorporated into the vehicle are crucial towards designing and planning the internal designs necessary for future spacecraft and missions. The adjusted mission concept of supporting the Asteroid Redirect Crewed Mission will drive some human factors changes on how the Orion will be used and will be reassessed so as to best contribute to missions success. Recognizing what the human factors and health functional needs are early in the design process and how to integrate them will improve this and future generations of space vehicles to achieve mission success and continue to minimize risks.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-31016 , SpaceOps 2014 International Conference on Space Operations; May 05, 2014 - May 09, 2014; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-13
    Description: One of the duties of the MER Managers is getting the consoles to review and sign Electronic Flight Notes (EFN) and Mission Action Requests (Chit) before they are due. Chits and EFNs and are accessible through the Mission Control Center - Houston (MCC-H) Gateway. Chits are the official means of documenting questions and answers, technical direction, real-time changes to Flight Rules (FR) and procedures, request for analysis, etc. between various consoles concerning on-orbit operations. EFNs are documents used by the Flight Control Team (FCT) to communicate precise details between console positions and manage real time changes to FR and Systems Operation Data File (SODF) procedures. On GMT 2013/345 the External Active Thermal Control System (EATCS) on the Columbus (COL) Moderate Temperature Loop (MTL) Interface Heat Exchanger (IFHX) shut down due to low temperatures. Over the next couple of days, the core temperature of COL MT IFHX dropped due to the failure of the Flow Control Valve (FCV). After the temperature drop was discovered, heaters were turned on to bring the temperatures back to nominal. After the incident occurred, a possible freeze threat was discovered that could have ruptured the heat exchanger. The COL MT IFHX rupturing would be considered a catastrophic failure and potentially result in a loss of the vehicle and/or the lives of the International Space Station (ISS) crew members
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-30832 , Intern Poster Presentation; Apr 22, 2014; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: 2014 AGU Fall Meeting; Dec 15, 2014 - Dec 19, 2014; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: AIAA Space 2014; Aug 05, 2014 - Aug 07, 2014; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-13
    Description: The Mars Ascent Vehicle (MAV) is a crucial component in any sample return campaign. In this paper we present a universal model for a two-stage MAV along with the analytic equations and simple parametric relationships necessary to quickly estimate MAV mass and performance. Ascent trajectories can be modeled as two-burn transfers from the surface with appropriate loss estimations for finite burns, steering, and drag. Minimizing lift-off mass is achieved by balancing optimized staging and an optimized path-to-orbit. This model allows designers to quickly find optimized solutions and to see the effects of design choices.
    Keywords: Spacecraft Design, Testing and Performance
    Type: AIAA Space 2014; Aug 05, 2014 - Aug 07, 2014; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-13
    Description: The Jet Propulsion Laboratory has developed the Iris CubeSat compatible deep space transponder for INSPIRE, the first CubeSat to deep space. Iris is 0.4 U, 0.4 kg, consumes 12.8 W, and interoperates with NASA's Deep Space Network (DSN) on X-Band frequencies (7.2 GHz uplink, 8.4 GHz downlink) for command, telemetry, and navigation. This talk discusses the Iris for INSPIRE, it's features and requirements; future developments and improvements underway; deep space and proximity operations applications for Iris; high rate earth orbit variants; and ground requirements, such as are implemented in the DSN, for deep space operations.
    Keywords: Spacecraft Design, Testing and Performance
    Type: SSC14-IX-3 , AIAA/USU Conference on Small Satellites; Aug 04, 2014 - Aug 07, 2014; Logan, UT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-13
    Description: The NASA Dawn spacecraft mission is studying conditions and processes of the solar system's earliest epoch by investigating two protoplanets remaining intact since their formations, Ceres and Vesta. Launch was in 2007. Ion propulsion is used to fly to and enter orbit around Vesta, depart Vesta and fly to Ceres, and enter orbit around Ceres. A conventional blowdown hydrazine reaction control system (RCS) is used to provide external torques for attitude control. Reaction wheel assemblies were intended to provide attitude control in most cases. However, the spacecraft experienced one, then two apparent failures of reaction wheels. Also, similar thrusters experienced degradation in a long life application on another spacecraft. Those factors led to RCS being operated in ways completely different than anticipated prior to launch. Numerous mitigations and developments needed to be implemented. The Vesta mission was fully successful. Even with the compromises necessary due to those anomalies, the Ceres mission is also projected to be feasible.
    Keywords: Spacecraft Design, Testing and Performance
    Type: AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-13
    Description: A modular Random Access Frame (RAF) system is proposed as an alternative to the International Standard Payload Rack (ISPR) for internal module layout and outfitting in a Deep Space Habitat (DSH). The ISPR approach was designed to allow for efficient interchangeability of payload and experiments for the International Space Station (ISS) when frequent resupply missions were available (particularly the now-retired Space Shuttle). Though the standard interface approach to the ISPR system allowed integration of subsystems and hardware from a variety of sources and manufacturers, the heavy rack and standoff approach may not be appropriate when resupply or swap-out capabilities are not available, such as on deep space, long-duration missions. The lightweight RAF concept can allow a more dense packing of stowage and equipment, and may be easily broken down for repurposing or reuse. Several example layouts and workstations are presented.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ICES-2014-038 , AIAA International Conference on Environmental Systems; Jul 13, 2014 - Jul 17, 2014; Tucson, AZ; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: M15-4193 , Marshall Technology Exposition; Oct 27, 2014; Huntsville, AL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-13
    Description: INNOVATION: BEAM is a pathway project demonstrating the design, fabrication, test, certification, integration, operation, onorbit performance, and disposal of the first ever manrated space inflatable structure. The groundwork laid through the BEAM project will support developing and launching a larger inflatable space structure with even greater mass per volume (M/V) advantages need for longer space missions. OVERVIEW: Inflatable structures have been shown to have much lower mass per volume ratios (M/V) when compared with conventional space structures. BEAM is an expandable structure, launched in a packed state, and then expanded once on orbit. It is a temporary experimental module to be used for gathering structural, thermal, and radiation data while on orbit. BEAM will be launched on Space X8, be extracted from the dragon trunk, and will attach to ISS at Node 3 Aft. BEAM performance will be monitored over a twoyear period and then BEAM will be jettison using the SSRMS.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-32373 , NASA JSC Tech & Tell Poster Session With ''EIS-Cream!''; Nov 18, 2014; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-30756 , NATO STO Working Group; Apr 03, 2014 - Apr 04, 2014; Colorado Springs, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-13
    Description: There is a heightened interest within NASA for the design, development, and flight implementation of mixed actuator hybrid attitude control systems for science spacecraft that have less than three functional reaction wheel actuators. This interest is driven by a number of recent reaction wheels failures on aging, but still scientifically productive, NASA spacecraft. This paper describes the highlights of the first NASA Cross-Center Hybrid Control Workshop that was held in Greenbelt, Maryland in April of 2013 under the sponsorship of the NASA Engineering and Safety Center (NESC). A brief historical summary of NASA's past experiences with spacecraft mixed actuator hybrid attitude control approaches, some of which were implemented on-orbit, will be provided. This paper will also convey some of the lessons learned and best practices captured at that workshop. Some relevant recent and current hybrid control activities will be described with an emphasis on work in support of a repurposed Kepler spacecraft. Specific technical areas for future considerations regarding spacecraft hybrid control will also be identified.
    Keywords: Spacecraft Design, Testing and Performance
    Type: AAS 14-101 , GSFC-E-DAA-TN13071 , Annual American Astronautical Society (AAS) Guidance & Control Conference; Jan 31, 2014 - Feb 05, 2014; Breckenridge, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-30597 , All Con; Mar 13, 2014 - Mar 16, 2014; Addison, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: M14-3704 , 2014 IEEE International Conference on Prognostics Health Management; Jun 22, 2014 - Jun 25, 2014; Spokane, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-13
    Description: The state-of-the-art in vehicle design decouples flight feasible trajectory generation from the optimization process of an entry spacecraft shape. The disadvantage to this decoupled process is seen when a particular aeroshell does not meet in-flight requirements when integrated into Guidance, Navigation, and Control simulations. It is postulated that the integration of a guidance algorithm into the design process will provide a real-time, rapid trajectory generation technique to enhance the robustness of vehicle design solutions. The potential benefit of this integration is a reduction in design cycles (possible cost savings) and increased accuracy in the aerothermal environment (possible mass savings). This work examines two aspects: 1) the performance of a reference tracking guidance algorithm for five different geometries with the same reference trajectory and 2) the potential of mass savings from improved aerothermal predictions. An Apollo Derived Guidance (ADG) algorithm is used in this study. The baseline geometry and five test case geometries were flown using the same baseline trajectory. The guided trajectory results are compared to separate trajectories determined in a vehicle optimization study conducted for NASA's Mars Entry, Descent, and Landing System Analysis. This study revealed several aspects regarding the potential gains and required developments for integrating a guidance algorithm into the vehicle optimization environment. First, the generation of flight feasible trajectories is only as good as the robustness of the guidance algorithm. The set of dispersed geometries modelled aerodynamic dispersions that ranged from +/-1% to +/-17% and a single extreme case was modelled where the aerodynamics were approximately 80% less than the baseline geometry. The ADG, as expected, was able to guide the vehicle into the aeroshell separation box at the target location for dispersions up to 17%, but failed for the 80% dispersion cases. Finally, the results revealed that including flight feasible trajectories for a set of dispersed geometries has the potential to save mass up to 430 kg.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN11598 , AIAA Science and Technology Forum and Exposition (SciTech2014); Jan 13, 2014 - Jan 17, 2014; National Harbor, Maryland; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-13
    Description: Thermal blankets are used extensively on spacecraft to provide passive thermal control of spacecraft hardware from thermal extremes encountered in space. Toughened thermal blankets have been developed that greatly improve protection from hypervelocity micrometeoroid and orbital debris (MMOD) impacts. These blankets can be outfitted if so desired with a reliable means to determine the location, depth and extent of MMOD impact damage by incorporating an impact sensitive piezoelectric film. Improved MMOD protection of thermal blankets was obtained by adding selective materials at various locations within the thermal blanket. As given in Figure 1, three types of materials were added to the thermal blanket to enhance its MMOD performance: (1) disrupter layers, near the outside of the blanket to improve breakup of the projectile, (2) standoff layers, in the middle of the blanket to provide an area or gap that the broken-up projectile can expand, and (3) stopper layers, near the back of the blanket where the projectile debris is captured and stopped. The best suited materials for these different layers vary. Density and thickness is important for the disrupter layer (higher densities generally result in better projectile breakup), whereas a highstrength to weight ratio is useful for the stopper layer, to improve the slowing and capture of debris particles.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-31184 , Hypervelocity Impact Symposium (HVIS); Apr 27, 2015 - Apr 30, 2015; Boulder, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-13
    Description: The Global Microwave Imager (GMI) instrument must spin at a constant rate of 32 rpm continuously for the 3 year mission life. Therefore, GMI must be very precisely balanced about the spin axis and CG to maintain stable scan pointing and to minimize disturbances imparted to the spacecraft and attitude control on-orbit. The GMI instrument is part of the core Global Precipitation Measurement (GPM) spacecraft and is used to make calibrated radiometric measurements at multiple microwave frequencies and polarizations. The GPM mission is an international effort managed by the National Aeronautics and Space Administration (NASA) to improve climate, weather, and hydro-meteorological predictions through more accurate and frequent precipitation measurements. Ball Aerospace and Technologies Corporation (BATC) was selected by NASA Goddard Space Flight Center to design, build, and test the GMI instrument. The GMI design has to meet a challenging set of spin balance requirements and had to be brought into simultaneous static and dynamic spin balance after the entire instrument was already assembled and before environmental tests began. The focus of this contribution is on the analytical and test activities undertaken to meet the challenging spin balance requirements of the GMI instrument. The novel process of measuring the residual static and dynamic imbalances with a very high level of accuracy and precision is presented together with the prediction of the optimal balance masses and their locations.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NF1676L-17356 , Aerospace Mechanisms Symposium; May 14, 2014 - May 16, 2014; Baltimore, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-13
    Description: The Komplast materials experiment was designed by the Khrunichev Space Center, together with other Russian scientific institutes, and has been carried out by Mission Control Moscow since 1998. The purpose is to study the effect of the low earth orbit (LEO) environment on exposed samples of various spacecraft materials. The Komplast experiment began with the launch of the first International Space Station (ISS) module on November 20, 1998. Two of eight experiment panels were retrieved during Russian extravehicular activity in February 2011 after 12 years of LEO exposure, and were subsequently returned to Earth by Space Shuttle "Discovery" on the STS-133/ULF-5 mission. The retrieved panels contained an experiment to detect micrometeoroid and orbital debris (MMOD) impacts, radiation sensors, a temperature sensor, several pieces of electrical cable, both carbon composite and adhesive-bonded samples, and many samples made from elastomeric and fluoroplastic materials. Our investigation is complete and a summary of the results obtained from this uniquely long-duration exposure experiment will be presented.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-29311 , Society for the Advancement of Materials and Process Engineering (SAMPE) Tech 2014; Jun 02, 2014 - Jun 05, 2014; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: M15-4227 , Tennessee Valley Corridor Leadership Council; Nov 06, 2014; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-13
    Description: The Asteroid Robotic Redirect Mission (ARRM) has been the topic of many mission design studies since 2011. The reference ARRM spacecraft uses a powerful solar electric propulsion (SEP) system and a bag device to capture a small asteroid from an Earth-like orbit and redirect it to a distant retrograde orbit (DRO) around the moon. The ARRM Option B spacecraft uses the same propulsion system and multi-Degree of Freedom (DoF) manipulators device to retrieve a very large sample (thousands of kilograms) from a 100+ meter diameter farther-away Near Earth Asteroid (NEA). This study will demonstrate that the ARRM Option B spacecraft design can also be used to return samples from Mars and its moons - either by acquiring a large rock from the surface of Phobos or Deimos, and or by rendezvousing with a sample-return spacecraft launched from the surface of Mars.
    Keywords: Spacecraft Design, Testing and Performance
    Type: GSFC-E-DAA-TN16517 , AIAA/AAS Astrodynamics Specialist Conference; Aug 04, 2014 - Aug 07, 2014; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-13
    Description: Radiation Hardness Assurance (RHA) is the process of ensuring space system performance in the presence of a space radiation environment. Herein, we present an updated NASA methodology for RHA focusing on content, deliverables and timeframes.
    Keywords: Spacecraft Design, Testing and Performance
    Type: GSFC-E-DAA-TN16289 , GSFC-E-DAA-TN14988 , NASA Electronic Parts and Packaging (NEPP) Electronics Technology Workshop (ETW); Jun 17, 2014 - Jun 19, 2014; Greenbelt, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: M14-3879 , The Space Anomalies and Failures Workshop Act II; Jul 24, 2014 - Jul 25, 2014; Chantilly, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-13
    Description: Internal charging is not generally considered a threat in low Earth orbit due to the relatively short exposure times and low flux of electrons with energies of a few MeV encountered in typical orbits. There are configurations, however, where insulators and ungrounded conductors used on the outside of a spacecraft hull may charge when exposed to much lower energy electrons of some 100's keV in a process that is better characterized as internal charging than surface charging. We investigate the conditions required for this internal charging process to occur in low Earth orbit using a one-dimensional charging model and evaluate the environments for which the process may be a threat to spacecraft.
    Keywords: Spacecraft Design, Testing and Performance
    Type: M14-3756 , Spacecraft Charging and Technology Conference; Jun 23, 2014 - Jun 27, 2014; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-13
    Description: Multi-Mission Earth Entry Vehicles (MMEEVs) are blunt-body vehicles designed with the purpose of transporting payloads from space to the surface of the Earth. To achieve high reliability and minimum weight, MMEEVs avoid using limited-reliability systems, such as parachutes, retro-rockets, and reaction control systems and rely on the natural aerodynamic stability of the vehicle throughout the Entry, Descent, and Landing phases of flight. Testing in NASA Langley's 20-FT Vertical Spin Tunnel (20-FT VST), dynamically-scaled MMEEV models was conducted to improve subsonic aerodynamic models and validate stability criteria for this class of vehicle. This report documents the resulting data from VST testing for an array of 60-deg sphere-cone MMEEVs. Model configurations included were 1.2 meter, and 1.8 meter designs. The addition of a backshell extender, which provided a 150% increase in backshell diameter for the 1.2 meter design, provided a third test configuration. Center of Gravity limits were established for all MMEEV configurations. An application of System Identification (SID) techniques was performed to determine the aerodynamic coefficients in order to provide databases for subsequent 6-degree-of-freedom simulations.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NF1676L-19083 , International Planetary Probe Workshop; Jun 16, 2014 - Jun 20, 2014; Pasadena, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-12
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-32374
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-12
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: M14-4055
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-12
    Description: Synchronized Position Hold, Engage, Reorient, Experimental Satellites (SPHERES) are bowling-ball sized satellites that provide a test bed for development and research into multi-body formation flying, multi-spacecraft control algorithms, and free-flying physical and material science investigations. Up to three self-contained free-flying satellites can fly within the cabin of the International Space Station (ISS), performing flight formations, testing of control algorithms or as a platform for investigations requiring this unique free-flying test environment. Each satellite is a self-contained unit with power, propulsion, computers, navigation equipment, and provides physical and electrical connections (via standardized expansion ports) for Principal Investigator (PI) provided hardware and sensors.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA FS-2013-08-02-ARC , ARC-E-DAA-TN10763
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-12
    Description: NASA's Resource Prospector (RP) is a multi-center and multi-institution collaborative project to investigate the polar regions of the Moon in search of volatiles. The mission is rated Class D and is approximately 10 days. The RP vehicle comprises three elements: the Lander, the Rover, and the Payload. The Payload is housed on the Rover and the Rover is on top of the Lander. The focus of this paper is on the Lander element for the RP vehicle. The design of the Lander was requirements driven and focused on a low-cost approach. To arrive at the final configuration, several trade studies were conducted. Of those trade studies, there were six primary trade studies that were instrumental in determining the final design. This paper will discuss each of these trades in further detail and show how these trades led to the final architecture of the RP Lander.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-32043
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-12
    Description: The impact of photons upon a spacecraft introduces small forces and moments. The magnitude and direction of the forces depend on the material properties of the spacecraft components being illuminated. Which components are being lit depends on the orientation of the craft with respect to the Sun as well as the gimbal angles for any significant moving external parts (solar arrays, typically). Some components may shield others from the Sun.To determine solar pressure in the presence overlapping components, a 3D model can be used to determine which components are illuminated. A view (image) of the model as seen from the Sun shows the only contributors to solar pressure. This image can be decomposed into pixels, each of which can be treated as a non-overlapping flat plate as far as solar pressure calculations are concerned. The sums of the pressures and moments on these plates approximate the solar pressure and moments on the entire vehicle.The image rasterization technique can also be used to compute other spacecraft attributes that are dependent on attitude and geometry, including solar array power generation capability and free molecular flow drag.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA/TM-2014-218318 , E-18917 , GRC-E-DAA-TN13963
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-12
    Description: TechEdSat-3p is the second generation in the TechEdSat-X series. The TechEdSat Series uses the CubeSat standards established by the California Polytechnic State University Cal Poly), San Luis Obispo. With typical blocks being constructed from 1-unit (1U 10x10x10 cm) increments, the TechEdSat-3p has a 3U volume with a 30 cm length. The project uniquely pairs advanced university students with NASA researchers in a rapid design-to-flight experience lasting 1-2 semesters.The TechEdSat Nano-Satellite Series provides a rapid platform for testing technologies for future NASA Earth and planetary missions, as well as providing students with an early exposure to flight hardware development and management.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN10764
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: The different advantageous embodiments provide for identifying gas leakage in a platform. A processor unit identifies a rate of the gas of the substance leaking from a container in a first compartment for a platform. The processor unit also identifies an amount of gas that has leaked from the container at a selected time based on the rate of the gas of the substance leaking from the container and a total time. The processor unit identifies an amount of the gas of the substance present in a number of compartments associated with the first compartment using the amount of gas leaked from the container in the first compartment and a pressure for each compartment in the number of compartments. The processor unit determines whether the amount of gas in at least one of the first compartment and the number of compartments is outside of a desired amount for the gas.
    Keywords: Spacecraft Design, Testing and Performance
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-08-26
    Description: The Cassini spacecraft has executed nearly 300 maneuvers since 1997, providing ample data for execution-error model updates. With maneuvers through 2017, opportunities remain to improve on the models and remove biases identified in maneuver executions. This manuscript focuses on how execution-error models can be used to judge maneuver performance, while providing a means for detecting performance degradation. Additionally, this paper describes Cassini's execution-error model updates in August 2012. An assessment of Cassini's maneuver performance through OTM-368 on January 5, 2014 is also presented.
    Keywords: Spacecraft Design, Testing and Performance
    Type: AAS 14-390 , AAS/AIAA Space Flight Mechanics Meeting; Jan 26, 2014 - Jan 30, 2014; Santa Fe, NM; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-19
    Description: In preparation for the upcoming experimental test flight for the Orion crew module, considerable interest was raised over the possibility of exposure to elevated levels of plasma activity and vehicle charging both externally on surfaces and internally on dielectrics during the flight test orbital operations. Initial analysis using NASCAP-2K indicated very high levels of exposure, and this generated additional interest in refining/defining the plasma and spacecraft models used in the analysis. This refinement was pursued, resulting in the use of specific AE8 and AP8 models, rather than SCATHA models, as well as consideration of flight trajectory, time duration, and other parameters possibly affecting the levels of exposure and the magnitude of charge deposition. Analysis using these refined models strongly indicated that, for flight test operations, no special surface coatings were necessary for the thermal protection system, but would definitely be required for future GEO, trans-lunar, and extra-lunar missions...
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-30792 , 2014 Spacecraft Charging Technology Conference (2014 SCTC); Jun 23, 2014 - Jun 27, 2014; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...