ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Saccharomyces cerevisiae  (444)
  • Springer  (444)
  • American Meteorological Society
  • 1995-1999  (201)
  • 1990-1994  (243)
Collection
Keywords
Publisher
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular life sciences 52 (1996), S. 1033-1041 
    ISSN: 1420-9071
    Keywords: Ubiquitin ; yeast ; Saccharomyces cerevisiae ; Dictyostelium discoideum ; cytoskeleton ; mutants ; endocytosis ; actin ; myosin ; calmodulin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Endocytosis is a general term that is used to describe the internalization of external and plasma membrane molecules into the cell interior. In fact, several different mechanisms exist for the internalization step of this process. In this review we emphasize the work on the actin-dependent pathways, in particular in the yeastSaccharomyces cerevisiae, because several components of the molecular machinery are identified. In this yeast, the analysis of endocytosis in various mutants reveals a requirement for actin, calmodulin, a type I myosin, as well as a number of other proteins that affect actin dynamics. Some of these proteins have homology to proteins in animal cells that are believed to be involved in endocytosis. In addition, the demonstration that ubiquitination of some cell surface molecules is required for their efficient internalization is described. We compare the actin, myosin and ubiquitin requirements for endocytosis with recent results found studying these processes usingDictyostelium discoideum and animal cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Cellular and molecular life sciences 52 (1996), S. 1130-1135 
    ISSN: 1420-9071
    Keywords: Saccharomyces cerevisiae ; mitochondria ; mRNA-specific translational activation ; synthetic genes ; gene regulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract Mitochondrial gene expression in yeast,Saccharomyces cerevisiae, depends on translational activation of individual mRNAs by distinct proteins encoded in the nucleus. These nuclearly coded mRNA-specific translational activators are bound to the inner membrane and function to mediate the interaction between mRNAs and mitochondrial ribosomes. This complex system, found to date only in organelles, appears to be an adaptation for targeting the synthesis of mitochondrially coded integral membrane proteins to the membrane. In addition, mRNA-specific translational activation is a rate-limiting step used to modulate expression of at least one mitochondrial gene in response to environmental conditions. Direct study of mitochondrial gene regulation and the targeting of mitochondrially coded proteins in vivo will now be possible using synthetic genes inserted into mtDNA that encode soluble reporter/passenger proteins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 116 (1990), S. 93-105 
    ISSN: 1432-1424
    Keywords: clathrin ; genetics ; Saccharomyces cerevisiae ; exocytosis ; endocytosis ; prohormone maturation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular evolution 38 (1994), S. 363-368 
    ISSN: 1432-1432
    Keywords: Saccharomyces cerevisiae ; 2-μm circle ; DNA sequencing ; Horizontal transmission ; Site-specific recombination ; Selfish DNA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We compared the nucleotide substitution pattern over the entire genome of two unique variants of the 6,300-bp selfish DNA (2 μm) plasmid in Saccharomyces cerevisiae. The DNA sequence of the left-unique region is identical among 2-μm variants, while the right-unique region shows substantial divergence. This chimeric pattern cannot be explained by neutral or Darwinian selection models. We propose that horizontal transmission of the 2-μm plasmid coupled with a directed, polarized gene conversion maintains the DNA sequence of the left-unique region, whereas the right-unique region is subject to random drift and Darwinian selection.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1432
    Keywords: Thiolase ; Peroxisome evolution ; Bootstrap analysis ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The thiolase family is a widespread group of proteins present in prokaryotes and three cellular compartments of eukaryotes. This fact makes this family interesting in order to study the evolutionary process of eukaryotes. Using the sequence of peroxisomal thiolase from Saccharomyces cerevisiae recently obtained by us and the other known thiolase sequences, a phylogenetic analysis has been carried out. It shows that all these proteins derived from a primitive enzyme, present in the common ancestor of eubacteria and eukaryotes, which evolved into different specialized thiolases confined to various cell compartments. The evolutionary tree obtained is compatible with the endosymbiotic theory for the origin of peroxisomes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0789
    Keywords: Antifungal activity ; Saccharomyces cerevisiae ; Phytopathogenic fungi ; Heterocyclic non-protein amino acid ; Pisum sativum ; Constitutive plant defence
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary β-(Isoxazolin-5-on-2-yl)-alanine (βIA), a heterocyclic non-protein amino acid from root extracts and root exudates of pea seedlings, acts as a potent growth inhibitor of several eukaryotic organisms, including yeasts, phytopathogenic fungi, unicellular green algae, and higher plants. The antibiotic effect on baker's yeast was reversed by l-methionine, l-cysteine, and l-homocysteine. Phytopathogenic fungi such as Botrytis cinerea, Pythium ultimum, and Rhizoctonia solani grown on agar containing βIA were inhibited in the growth of mycelia or in the production of sclerotia. In contrast, no significant inhibition of either Gram-positive or Gram-negative bacteria was observed. Rhizobium leguminosarum, the compatible microsymbiont of Pisum spp., and Rhizobium meliloti were able to tolerate up to 2.9 mM βIA (500 ppm) without any effect on the growth rate. Bradyrhizobium japonicum even gave a positive chemotactic response to βIA. The ecological significance of βIA as a preformed plant protectant during the seedling stage of Pisum spp. and other βIA-containing legumes is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-072X
    Keywords: Regulatory mutants ; Meiotic mapping ; Transcriptional regulation ; MAL genes ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The MAL1 locus of Saccharomyces cerevisiae comprises three genes necessary for maltose utilization: a regulatory (MALR), a maltose transport (MALT) and a maltase gene (MALS). A fine structure genetic map of the MAL1R gene was constructed and the order of mutations was confirmed by plasmid-mediated chromosomal recombination. The mutations cluster non-randomly within the 5′ half of the gene, where the putative DNA binding domain of the encoded protein is located. Only mutations mal1 R-22 and MAL1R-72 map in the 3′ terminal half of the gene; these mutations cause a different pattern of transcriptional regulation of plasmid-borne MAL6T genes. Experiments supporting a direct involvement of the MALR-encoded protein in carbon catabolite repression of MAL gene expression are reported.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 156 (1991), S. 38-42 
    ISSN: 1432-072X
    Keywords: Water stress ; Saccharomyces cerevisiae ; Glycerol ; Yeast water relations ; Osmoregulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract When exponentially growing Saccharomyces cerevisiae was transferred from a normal high water activity growth medium (aw 0.997) to a medium containing 8% NaCl low water activity growth medium (aw 0.955), glycerol accumulation during the first eight hours of the adaptation was both retarded and greatly diminished in magnitude. Investigation of the underlying reasons for the slow onset of glycerol accumulation revealed that not only was overall glycerol production reduced by salt transfer, but also the rates of ethanol production and glucose consumption were reduced. Measurement of glycolytic intermediates revealed an accumulation of glucose-6-phosphate, fructose-6-phosphate, fructose 1,6 bisphosphate and phosphoenolpyruvate in S. cerevisiae 3 to 4 h after transfer to salt, suggesting that one or more glycolytic enzymes were inhibited. Potassium ions accumulated in S. cerevisiae after salt transfer and reached a maximum about 6 h after transfer, whereas the sodium ion content increased progressively during the adaptation period. The trehalose content also increased in adapting cells. It is suggested that inhibition of glycerol production during the initial period of adaptation could be due to either the inhibition of glycerol-3-phosphate dehydrogenase by increased cation content or the inhibitin of glycolysis, glycerol being produced glycolytically in S. cerevisiae. The increased accumulation of glycerol towards the end of the 8-h period suggests that the osmoregulatory response of S. cerevisiae involves complex sets of adjustments in which inhibition of glycerol-3-phosphate dehydrogenase must be relieved before glycerol functions as a major osmoregulator.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-072X
    Keywords: Key words Plasma membrane H+-ATPase ; Saccharomyces cerevisiae ; Low pH ; PMA1 gene expression ; PMA2 gene expression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Cells of Saccharomyces cerevisiae grown in media with an initial pH of 2.5–6.0, acidified with a strong acid (HCl), exhibited the highest plasma membrane H+-ATPase-specific activity at an initial pH of 6.0. At a lower pH (above pH 2.5) ATPase activity (62–83% of the maximum level) still allowed optimal growth. At pH 2.5, ATPase activity was about 30% of the maximum value and growth was impaired. Quantitative immunoassays showed that the content of ATPase protein in the plasma membrane was similar across the entire pH range tested, although slightly lower at pH 2.5. The decrease of plasma membrane ATPase activity in cells grown at low pH was partially accounted for by its in vitro stability, which decreased sharply at pH below 5.5, although the reduction of activity was far below the values expected from in vitro measurements. Yeast growth under acid stress changed the pattern of gene expression observed at optimal pH. The level of mRNA from the essential plasma-membrane-ATPase-encoding gene PMA1 was reduced by 50% in cells grown at pH 2.5 as compared with cells grown at the optimal pH 5.0, although the content of ATPase in the plasma membrane was only modestly reduced. As observed in response to other kinds of stress, the PMA2 promoter at the optimal pH was up to eightfold more efficient in cells grown at pH 2.5, although it remained several hundred times less efficient than that of the PMA1 gene.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-072X
    Keywords: Key words Plasma membrane H+-ATPase ; Saccharomyces cerevisiae ; Copper stress ; PMA1 ; PMA2 ; Gene expression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Cells of Saccharomyces cerevisiae exibited a more active plasma membrane H+-ATPase during growth in media supplemented with CuSO4 concentrations equal to or below 1 mM than did cells cultivated in the absence of copper stress. Maximal specific activities were found with 0.5 mM CuSO4. ATPase activity declined when cells were grown with higher concentrations up to 1.5 mM (the maximal concentration that allowed growth), probably due to severe disorganization of plasma membrane. Cu2+-induced maximal activation was reflected in an increase of V max (approximately threefold) and in the slight decrease of the K m for MgATP (from 0.93 ± 0.13 to 0.65 ± 0.16 mM). The expression of the gene encoding the essential plasma membrane ATPase (PMA1) was reduced with a dose-dependent pattern in cells grown with inhibitory concentrations of copper, while the weakly expressed PMA2 gene promoter was moderately more efficient in cells cultivated under mild copper stress (1.5-fold maximal activation). ATPase was activated by copper despite the slightly lower content of ATPase protein in the plasma membrane of Cu2+-grown cells and the powerful inhibitory effect of Cu2+ in vitro.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    ISSN: 1432-072X
    Keywords: Key words Plasma membrane H+-ATPase ; PMA1 ; ATPase ; PMA2 ATPase ; Saccharomyces cerevisiae ; Copper stress ; Copper tolerance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The major yeast plasma membrane H+-ATPase is encoded by the essential PMA 1 gene. The PMA 2 gene encodes an H+-ATPase that is functionally interchangeable with the one encoded by PMA 1 , but it is expressed at a much lower level than the PMA 1 gene and it is not essential. Using genetically manipulated strains of Saccharomyces cerevisiae that exclusively synthesize PMA1 ATPase or PMA2 ATPase under control of the PMA1 promoter, we found that yeast cultivation under mild copper stress leads to a similar activation of PMA2 and PMA1 isoforms. At high inhibitory copper concentrations (close to the maximum that allowed growth), ATPase activity was reduced from maximal levels; this decrease in activity was less important for PMA2 ATPase than for PMA1 ATPase. The higher tolerance to high copper stress of the artificial strain synthesizing PMA2 ATPase exclusively, as compared to that synthesizing solely PMA1 ATPase, correlated both with the lower sensitivity of PMA2 ATPase to the deleterious effects of copper in vivo and with its higher apparent affinity for MgATP, and suggests that plasma membrane H+-ATPase activity plays a role in yeast tolerance to copper.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    ISSN: 1432-072X
    Keywords: cAMP ; Cat mutants ; Glucose repression ; Glucose-induced ; Intracellular pH ; Ras ; Saccharomyces cerevisiae ; Signal transduction ; Trehalase ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Addition of glucose to derepressed cells of the yeast Saccharomyces cerevisiae induces a transient, specific cAMP signal. Intracellular acidification in these cells, as caused by addition of protonophores like 2,4-dinitrophenol (DNP) causes a large, lasting increase in the cAMP level. The effect of glucose and DNP was investigated in glucose-repressed wild type cells and in cells of two mutants which are deficient in derepression of glucose-repressible proteins, cat1 and cat3. Addition of glucose to cells of the cat3 mutant caused a transient increase in the cAMP level whereas cells of the cat1 mutant and in most cases also repressed wild type cells did not respond to glucose addition with a cAMP increase. The glucose-induced cAMP increase in cat3 cells and the cAMP increase occasionally present in repressed wild type cells however could be prevented completely by addition of a very low level of glucose in advance. In derepressed wild type cells this does not prevent the specific glucose-induced cAMP signal at all. These results indicate that repressed cells do not show a true glucose-induced cAMP signal. When DNP was added to glucose-repressed wild type cells or to cells of the cat1 and cat3 mutants no cAMP increase was observed. Addition of a very low level of glucose before the DNP restored the cAMP increase which points to lack of ATP as the cause for the absence of the DNP effect. These data show that intracellular acidification is able to enhance the cAMP level in repressed cells. The glucose-induced artefactual increase occasionally observed in repressed cells is probably caused by the fact that their low intracellular pH is only restored after the ATP level has increased to such an extent that it is no longer limiting for cAMP synthesis. It is unclear why the artefactual increases are not always observed. Measurement of glucose- and DNP-induced activation of trehalase confirmed the physiological validity of the changes observed in the cAMP level. Our results are consistent with the idea that the glucose-induced signaling pathway contains a glucose-repressible protein and that the protein is located before the point where intracellular acidification triggers activation of the pathway.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 154 (1990), S. 267-273 
    ISSN: 1432-072X
    Keywords: Yeast ; Saccharomyces cerevisiae ; (R)-2,3-Butanediol dehydrogenase ; Stereospecificity ; Gas chromatographic analysis of enantiomers
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A NAD-dependent (R)-2,3-butanediol dehydrogenase (EC 1.1.1.4), selectively catalyzing the oxidation at the (R)-center of 2,3-butanediol irrespective of the absolute configuration of the other carbinol center, was isolated from cell extracts of the yeast Saccharomyces cerevisiae. Purification was achieved by means of streptomycin sulfate treatment, Sephadex G-25 filtration, DEAE-Sepharose CL-6B chromatography, affinity chromatography on Matrex Gel Blue A and Superose 6 prep grade chromatography leading to a 70-fold enrichment of the specific activity with 44% yield. Analysis of chiral products was carried out by gas chromatographic methods via pre-chromatographic derivatization and resolution of corresponding diasteromeric derivatives. The enzyme was capable to reduce irreversibly diacetyl (2,3-butanediol) to (R)-acetoin (3-hydroxy-2-butanone) and in a subsequent reaction reversibly to (R,R)-2,3-butanediol using NADH as coenzyme. 1-Hydroxy-2-ketones and C5-acyloins were also accepted as substrates, whereas the enzyme was inactive towards the reduction of acetone and dihydroxyacetone. The relative molecular mass (M r) of the enzyme was estimated as 140 000 by means of gel filtration. On SDS-polyacrylamide gel the protein decomposed into 4 (identical) subunits of M r 35 000. Optimum pH was 6.7 for the reduction of acetoin to 2,3-butanediol and 7.2 for the reverse reaction.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 162 (1994), S. 211-214 
    ISSN: 1432-072X
    Keywords: Key words     Killer toxin ; Saccharomyces cerevisiae ; Toxin binding ; Cell wall receptor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract      A recently described new method for determination of killer toxin activity was used for kinetic measurements of K1 toxin binding. The cells of the killer sensitive strain Saccharomyces cerevisiae S6 were shown to carry two classes of toxin binding sites differing widely in their half-saturation constants and maximum binding rates. The low-affinity and high-velocity binding component (K T1 = 2.6 × 109 L.U./ml, V max1 = 0.19 s– 1) probably reflects diffusion-limited binding to cell wall receptors; the high-affinity and low-velocity component (K T2 = 3.2 × 107 L.U./ml, V max2 = 0.03 s– 1) presumably indicates the binding of the toxin to plasma membrane receptors. Adsorption of most of the killer toxin K1 to the surface of sensitive cells occured within 1 min and was virtually complete within 5 min. The amount of toxin that saturated practically all cell receptors was about 600 lethal units (L.U.) per cell of S. cerevisiae S6.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    ISSN: 1432-072X
    Keywords: Saccharomyces cerevisiae ; Acetyl-CoA ; l-Lysine N6 ; acetytransferase ; Lysine catabolism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The carbon catabolism of l-lysine starts in Saccharomyces cerevisiae with acetylation by an acetyl-CoA: l-lysine N6-acetyltransferase. The enzyme is strongly induced in cells grown on l-lysine as sole carbon source and has been purified about 530-fold. Its activity was specific for acetyl-CoA and, in addition to l-lysine, 5-hydroxylysine and thialysine act as acetyl acceptor. The following apparent Michaelis constants were determined: acetyl-CoA 0.8 mM, l-lysine 5.8 mM, dl-5-hydroxylysine 2.8 mM, l-thialysine 100 mM. The enzyme had a maximum activity at pH 8.5 and 37°C. Its molecular mass, estimated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis, was 52 kDa. Since the native molecular mass, determined by gel filtration, was 48 kDa, the enzyme is a monomer.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    ISSN: 1432-072X
    Keywords: Saccharomyces cerevisiae ; Catalase A ; Catalase T ; β-Oxidation ; Microbodies ; H2O2-Metabolism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The parental strain (A+T+) of Saccharomyces cerevisiae and mutants, deficient in catalase T (A+T−), catalase A (A−T+) or both catalases (A−T−), grew on ethanol and oleic acid with comparable doubling times. Specific activities of catalase were low in glucose- and ethanol-grown cells. In the two oleic acid-grown A+-strains (A+T+ and A+T−) high catalase activities were found; catalase activity invariably remained low in the A−T+ strain and was never detected in the A−T− strain. The levels of β-oxidation enzymes in oleic acid-grown cells of the parental and all mutant strains were not significantly different. However, cytochrome C peroxidase activity had increased 8-fold in oleic acid grown A− strains (A−T+ and A−T−) compared to parental strain cells. The degree of peroxisomal proliferation was comparable among the different strains. Catalase A was shown to be located in peroxisomes. Catalase T is most probably cytosolic in nature and/or present in the periplasmic space.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 153 (1990), S. 384-391 
    ISSN: 1432-072X
    Keywords: Saccharomyces cerevisiae ; Ethanol ; Acetic acid ; Cytoplasmic pH ; 31P-NMR ; 13C-NMR
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Cell suspensions of a respiratory deficient mutant of Saccharomyces cerevisiae were monitored by in vivo 31P and 13C Nuclear Magnetic Resonance in order to evaluate the effect of ethanol in intracellular pH and metabolism. In the absence of an added energy source, ethanol caused acidification of the cytoplasm, as indicated by the shift to higher field of the resonance assigned to the cytoplasmic orthophosphate. Under the experimental conditions used this acidification was not a consequence of an increase in the passive influx of H+. With cells energized with glucose, a lower value for the cytoplasmic pH was also observed, when ethanol was added. Furthermore, lower levels of phosphomonoesters were detected in the presence of ethanol, indicating that an early event in glycolysis is an important target of the ethanol action. Acetic acid was identified as responsible for the acidification of the cytoplasm, in experiments where [13C]ethanol was added and formation of labeled acetic acid was detected. The intracellular and the extracellular concentrations of acetic acid were respectively, 30 mM and 2 mM when 0.5% (120 mM) [13C]ethanol was added.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    ISSN: 1432-072X
    Keywords: Phytochelatin ; Metallothionein ; Heavy metal detoxification ; Saccharomyces cerevisiae ; Neurospora crassa
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In fungi, cellular resistance to heavy metal cytotoxicity is mediated either by binding of metal ions to proteins of the metallothionein type or by chelation to phytochelatin-peptides of the general formula (γ-Glu-Cys)n-Gly. Hitherto, only one fungus, Candida glabrata has been shown to contain both metal inactivating systems. Here we show by unambiguous FAB-MS analysis that both a metallothionein-free mutant of Saccharomyces cerevisiae as well as a wildtype strain synthesize phytochelatin (PC2) upon exposure to 250 μM Cd2+ ions. The presence of Zn and/or Cu ions in the nutrient broth also induces PC2 synthesis in this organism. By 109Cd exchange and subsequent monobromobimane fluorescence HPLC, it could be shown that the presence of Cd2+ in the growth medium also induces phytochelatin synthesis in Neurospora crassa, which contains metallothioneins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    ISSN: 1432-072X
    Keywords: Key words Isocitrate lyase ; n-Alkane-utilizable yeast ; Candida tropicalis ; Saccharomyces cerevisiae ; Promoters
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The upstream region of the isocitrate lyase gene (UPR-ICL, 1530bp) of an n-alkane-utilizable yeast, Candida tropicalis, induced gene expression in another yeast, Saccharomyces cerevisiae, when the yeasts were grown on acetate. Surprisingly, UPR-ICL displayed the same regulatory function in the bacterium Escherichia coli when grown on acetate. We determined the interesting nucleotide sequence of UPR-ICL. The deletion analysis of UPR-ICL in both cells revealed the presence of two distinct promoters: one was localized at –394 to –379 and regulated gene expression in S. cerevisiae; the other was located near the initiation codon and regulated gene expression in E. coli. The two promoter sequences were similar, but not identical to regulatory elements that have been previously reported in S. cerevisiae and E. coli, respectively. Accordingly, the possibility of novel regulatory mechanisms could not be excluded. This is an interesting example of the presence of distinct cis-acting regulatory elements responsible for the induction of gene expression in one gene by acetate in both S. cerevisiae and E. coli. Preservation of such promoters through evolution is also discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    ISSN: 1432-072X
    Keywords: Isocitrate lyase ; n-Alkane-utilizable yeast ; Candida tropicalis ; Saccharomyces cerevisiae ; Promoters
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The upstream region of the isocitrate lyase gene (UPR-ICL, 1530bp) of an n-alkane-utilizable yeast, Candida tropicalis, induced gene expression in another yeast, Saccharomyces cerevisiae, when the yeasts were grown on acetate. Surprisingly, UPR-ICL displayed the same regulatory function in the bacterium Escherichia coli when grown on acetate. We determined the interesting nucleotide sequence of UPR-ICL. The deletion analysis of UPR-ICL in both cells revealed the presence of two distinct promoters: one was localized at-394 to-379 and regulated gene expression in S. cerevisiae; the other was tocated near the initiation codon and regulated gene expression in E. coli. The two promoter sequences were similar, but not identical to regulatory elements that have been previously reported in S. cerevisiae and E. coli, respectively. Accordingly, the possibility of novel regulatory mechanisms could not be excluded. This is an interesting example of the presence of distinct cis-acting regulatory elements responsible for the induction of gene expression in one gene by acetate in both S. cerevisiae and E. coli. Preservation of such promoters through evolution is also discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    ISSN: 1432-072X
    Keywords: Candida tropicalis ; Saccharomyces cerevisiae ; Peroxisomes ; Isocitrate lyase ; GAL7 promoter ; High level expression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The genomic DNA of peroxisomal isocitrate lyase (ICL) isolated from an n-alkane-assimilating yeast, Candida tropicalis, was truncated to utilize the original open reading frame under the control of the GAL7 promoter and was expressed in Saccharomyces cerevisiae. The recombinant ICL was synthesized as a functionally active enzyme with a specific activity similar to the enzyme purified from C. tropicalis, and was accounted for approximately 30% of the total extractable proteins in the yeast cells. This recombinant enzyme was easily purified to homogeneity. N-Terminal amino acid sequence, molecular masses of native form and subunit, amino acid composition, peptide maps, and kinetic parameters of the recombinant ICL were essentially the same as those of ICL purified from C. tropicalis. From these facts, S. cerevisiae was suggested to be an excellent microorganism to highly express the genes encoding peroxisomal proteins of C. tropicalis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 158 (1992), S. 115-126 
    ISSN: 1432-072X
    Keywords: Saccharomyces cerevisiae ; Yeast cells ; Yeast protoplasts ; Cell wall ; Congo red ; (1 » 3)-β-d-glucan microfibrils ; Cytokinesis ; Reversion of walled protoplasts to cells
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Congo red was applied to growing yeast cells and regenerating protoplasts in order to study its effects on wall biogenesis and cell morphogenesis. In the presence of the dye, the whole yeast cells grew and divided to form chains of connected cells showing aberrant wall structures on both sides of the septum. The wall-less protoplasts in solid medium with the dye exhibited an abnormal increase in volume, regeneration of aberrant cell walls and inability to carry out cytokinesis or protoplast reversion to cells. In liquid medium, the protoplasts synthesized glucan nets composed mainly of thin fibrils orientated at random, whereas normally, in the absence of dye, the nets consist of rather thick fibrils, 10 to 20 nm in width, assembled into broad ribbons. These fibrils are known to consist of triple 6/1 helical strands of (1 » 3)-β-d-glucan aggregated laterally in crystalline packing. The thin fibrils (c. 4 to 8 nm wide) can contain only a few triple helical strands (c. 1.6 nm wide) and are supposed to be prevented from further aggregation and crystallization by complexing with Congo red on their surfaces. Some loose triple 6/1 helical strands (native elementary fibrils) are also discernible. They represent the first native (1 » 3)-β-d-glucan elementary fibrils depicted by electron microscopy. The effects of Congo red on growth and the wall structure in normal cells and regenerating protoplasts in solid medium can be explained by the presence of a complex which the dye forms with (helical) chain parts of the glucan network and which results in a loss of rigidity by a blocked lateral interaction between the helices.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 162 (1994), S. 211-214 
    ISSN: 1432-072X
    Keywords: Killer toxin ; Saccharomyces cerevisiae ; Toxin binding ; Cell wall receptor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A recently described new method for determination of killer toxin activity was used for kinetic measurenments of K1 toxin binding. The cells of the killer sensitive strain Saccharomyces cerevisiae S6 were shown to carry two classes of toxin binding sites differing widely in their half-saturation constants and maximum binding rates. The low-affinity and high-velocity binding component (K T1=2.6x109 L.U./ml, V max1=0.19 s-1) probably reflects diffusion-limited binding to cell wall receptors; the high-affinity and low-velocity component (K T2=3.2x107 L.U./ml, V max2=0.03 s-1) presumably indicates the binding of the toxin to plasma membrane receptors. Adsorption of most of the killer toxin K1 to the surface of sensitive cells occured within 1 min and was virtually complete within 5 min. The amount of toxin that saturated practically all cell receptors was about 600 lethal units (L.U.) per cell of S. cerevisiae S6.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    ISSN: 1432-072X
    Keywords: Saccharomyces cerevisiae ; Pyruvate decarboxylase ; Pyruvate kinase ; Signalling ; Glycolysis mutants
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Pyruvate decarboxylase, PDCase, activity in wild-type yeast cells growing on ethanol is quite low but increases up to tenfold upon addition of glucose, less with galactose and only slightly with glycerol. PDCase levels in glycolysis mutant strains growing on ethanol or acetate were higher than in the wild-type strain. These levels correlated with the sum of the concentrations of three-carbon glycolytic metabolites. The highest accumulation was observed in a fructose bisphosphate aldolase deletion mutant concomintant with the highest PDCase activity wild-type level. On the other hand, the PDCase levels in the different mutants again correlated with the sum of the concentrations of the three-carbon glycolytic metabolites. This was interpreted to mean that full induction of PDCase activity requires the accumulation of hexose-and triosephosphates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    ISSN: 1432-072X
    Keywords: Rylux BSU ; Fluorescent brightener ; Cell walls ; Chitin synthase ; Glucan synthase ; Yeast ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Rylux BSU, a new fluorescent brightener from the family of 4,4′-diaminostilbene-2,2′disulfonic acid derivatives, inhibited growth and cytokinesis of the yeast Saccharomyces cerevisiae. In the presence of 0.1–1 mg/ml Rylux BSU the cells grew in clumps, had irregular shape and were larger than controls. They formed apparently normal primary septa but their secondary septa and lateral cell walls, especially those in older cells, were abnormally thick with large deposits of amorphous wall material in the periplasmic spaces all over the cell surface. Chitin content in the cell walls of cells grown in the presence of Rylux BSU was increased 2 to 5 times in comparison to that of the controls and glucan content was reduced by up to 30%. In the in vitro assays with particulate membrane fractions, Rylux BSU acted as a non-competitive inhibitor of β-1,3-glucan synthase with inhibitory constant K i=1.75 mg/ml whereas the chitin synthase was inhibited to a much lesser extent. From the difference of the effects of Rylux BSU on the synthesis of chitin in vivo and in vitro it is concluded that the brightener interacts with chitin synthase only indirectly, possibly by influencing the properties of integral plasma membrane.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    ISSN: 1432-0983
    Keywords: Calmodulin ; Calmodulin-dependent protein kinase II ; Heat shock response ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We show here that yeast mutants lacking calmodulin-dependent protein kinase II fail to fully acquire induced thermotolerance. A similar result was also obtained with mutants depending solely on either the N-terminal half or the C-terminal half of calmodulin. These findings indicate that both calmodulin-dependent protein kinase II and calmodulin are required for induced thermotolerance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; pso4-1 mutant Sporulation ; DNA repair ; Meiotic recombination Induced mutagenesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have evaluated the effect of the Saccharomyces cerevisiae pso4-1 mutation in sporulation and DNA repair during meiosis. We have found that pso4-1 cells were arrested in an early step of meiosis, before premeiotic DNA synthesis, and hence did not produce spores. These results suggest that the PSO4 gene may act at the start point of the cell cycle, as do some SPO and CDC genes. The pso4-1 mutant cells are specifically sensitive to 8-MOP- and 3-CPs-photoinduced lesions, and are found to be severely affected in meiotic recombination as well as impaired in the mutagenic response, as previously described for mitosis. This means that the PSO4 gene is important for the repair 8-MOP-photoinduced lesions, mainly double-strand breaks, and the processing of these lesions into recombinogenic intermediates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Chromosome copy numbers ; Ploidy probes ; Industrial yeasts
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Methods have been devised for analyzing chromosome copy numbers in S. cerevisiae strains that may be polyploid or aneuploid, as is apparent in the case of many industrial strains. The initial step involved transformation of a strain with an integrative “ploidy probe” transplacement fragment that enable the copy number of the targeted chromosomal locus to be determined via genomic Southern blotting and quantitative probe hybridization. Dual probe co-hybridization to Southern genomic DNA blots was used to extend such locus copy number determinations to other loci within the same chromosome, thereby screening for internal consistency along the length of the chromosome. This approach was also used to extend the analysis to other chromosomes in the genome. The method was established and verified with euploid series laboratory strains and then used to examine chromosome copy numbers in three industrial strains. One brewing strain apparently contained three copies of the chromosomes tested, whilst another brewing and a baking strain showed evidence of aneuploidy.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 27 (1995), S. 306-308 
    ISSN: 1432-0983
    Keywords: Gene deletion ; Open reading frame ; Saccharomyces cerevisiae ; Polymerase chain reaction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The classical disruption method for yeast genes is by using in vitro deletion of the gene of interest, or of a part of it, with restriction enzymes. We are now routinely using a strategy that takes advantage of polymerase chain reactions (PCRs) which amplify large pieces of DNA. Since this approach results in a complete, precise deletion of the open reading frame, which is replaced by a unique restriction site, the ligated PCR can be used for the insertion of different markers of for two-step gene disruptions without an inserted marker. As we have now used this strategy for the deletion of more than ten genes we have in this report included some hints based on our experience.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    ISSN: 1432-0983
    Keywords: Multidrug resistance ; Candida albicans ; Saccharomyces cerevisiae ; ABC transporters
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract By functional complementation of a PDR5 null mutant of Saccharomyces cervisiae, we have cloned and sequenced the multidrug-resistance gene CDR1 of Candida albicans. Transformation by CDR1 of a PDR5-disrupted host hypersensitive to cycloheximide and chloramphenicol resulted in resistance to cycloheximide, chloramphenicol and other drugs, such as the antifungal miconazole, with collateral hypersensitivity to oligomycin, nystatin and 2,4 dinitrophenol. Our results also demonstrate the presence of several PDR5 complementing genes in C. albicans, displaying multidrug-resistance patterns different from PDR5 and CDR1. The nucleotide sequence of CDR1 revealed that, like PDR5, it encodes a putative membrane pump belonging to the ABC (ATP-binding cassette) superfamily. CDR1 encodes a 1501-residue protein of 169.9 kDa whose predicted structural organization is characterized by two homologous halves, each comprising a hydrophobic region with a set of six transmembrane stretches, preceded by a hydrophilic nucleotide binding fold.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; URS ; FBP1 Transcription
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have constructed a plasmid, pOV10, which facilitates the introduction of putative upstream activating sequences (UAS) or upstream repressing sequences (URS) from yeast genes into plasmids containing CYC1-lacZ fusions. We have observed that the insertion of yeast sequences from 155 to 195 bp between the UAS and the TATA box of a CYC1-lacZ fusion gene can block β-galactosidase expression. It is suggested that this block is related to the formation of nucleosomes on the DNA.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Mitochondrial synthesis ; Nuclear control ; F1Fo-ATPase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Respiratory-competent nuclear mutants have been isolated which presented a cryosensitive phenotype on a non-fermentative carbon source, due to a dysfunctioning of the mitochondrial F1-Fo ATP synthase which results from a relative defect in subunits 6 and 8 of the Fo sector. Both proteins are mtDNA-encoded, but the defect is due to the simultaneous presence of a mutation in two unlinked nuclear genes (NCA2 and NCA3, for Nuclear Control of ATPase) promoting a modification of the expression of the ATP8-ATP6 co-transcript (formerly denoted AAP1-OLI2). This co-transcript matures at a unique site to give two co-transcripts of 5.2 and 4.6 kb in length: in the mutant, the 5.2-kb co-transcript was greatly lowered. NCA3 was isolated from a wild-type yeast genomic library by genetic complementation. The level of the 5.2-kb transcript, like the synthesis of subunits 6 and 8, was partly restored in the transformed strain. A 1011-nucleotide ORF was identified that encodes an hydrophilic protein of 35417 Da. Disruption of chromosomal DNA within the reading frame promoted a dramatic decrease of the 5.2-kb mRNA but did not abolish the respiratory competence of a wild-type strain. NCA3 is located on chromosome IV and produces a single 1780-b transcript.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Omnipotent suppression ; Nonsense suppression ; SUP45
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Using a plasmid-based termination-read-through assay, the sal4-2 conditional-lethal (temperature-sensitive) allele of the SUP45 (SAL4) gene was shown to enhance the efficiency of the weak ochre suppressor tRNA SUQ5 some 10-fold at 30°C. Additionally, this allele increased the suppressor efficiency of SRM2-2, a weak tRNAGln ochre suppressor, indicating that the allosuppressor phenotype is not SUQ5-specific. A sup + sal4-2 strain also showed a temperature-dependent omnipotent suppressor phenotype, enhancing readthrough of all three termination codons. Combining the sal4-2 allele with an efficient tRNA nonsense suppressor (SUP4) increased the temperature-sensitivity of that strain, indicating that enhanced nonsense suppressor levels contribute to the conditional-lethality conferred by the sal4-2 allele. However, UGA suppression levels in a sup + sal4-2 strain following a shift to the non-permissive temperature reached a maximum significantly below that exhibited by a non-temperature sensitive SUP4 suppressor strain. Enhanced nonsense suppression may not therefore be the primary cause of the conditional-lethality of this allele. These data indicate a role for Sup45p in translation termination, and possibly in an additional, as yet unidentified, cellular process.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 27 (1995), S. 427-434 
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Oxidative stress ; Osmotic stress
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Although oxidative stress is involved in many human diseases, little is known of its molecular basis in eukaryotes. In a genetic approach, S. cerevisiae was used to identify elements involved in oxidative stress. By using hydrogen peroxide as an agent for oxidative stress, 34 mutants were identified. All mutants were recessive and fell into 16 complementation groups (pos1 to pos16 for peroxide sensitivity). They corresponded to single mutations as shown by a 2:2 segregation pattern. Enzymes reportedly involved in oxidative stress, such as glucose-6-phosphate dehydrogenase, glutathione reductase, superoxide dismutase, as well as glutathione concentrations, were investigated in wild-type and mutant-cells. One complementation group lacked glucose-6-phosphate dehydrogenase and was shown to be allelic to the glucose-6-phosphate dehydrogenase structural gene ZWF1/MET19. In other mutants all enzymes supposedly involved in oxidative-stress resistance were still present. However, several mutants showed strongly elevated levels of glutathione reductase, gluconate-6-phosphate dehydrogenase and glucose-6-phosphate dehydrogenase. One complementation group, pos9, was highly sensitive to oxidative stress and revealed the same growth phenotype as the previously described yap1/par1 mutant coding for the yeast homologue of mammalian transcriptional activator protein, c-Jun, of the proto-oncogenic AP-1 complex. However, unlike par1 mutants, which showed diminished activities of oxidative-stress enzymes and glutathion level, the pos9 mutants did not reveal any such changes. In contrast to other recombinants between pos mutations and par1, the sensitivity did not further increase in par1 pos9 recombinants, which may indicate that both mutations belong to the same regulating circuit. Interestingly, ten complementation groups were, in parallel, sensitive to osmotic stress, and one mutant allele revealed increased heat sensitivity. Our results indicate that a surprisingly large number of genes seem to be involved in oxidative-stress resistance and a possible overlap exists between osmotic stress and other stress reactions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    ISSN: 1432-0983
    Keywords: Antimutator ; DDR48 ; Saccharomyces cerevisiae ; Spontaneous mutation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The antimutator phenotype, reportedly conferred by disruption of the Saccharomyces cerevisiae DDR48 gene, was suggested to affect only a specific spontaneous mutational pathway. We attempted to identify the types of mutation that are DDR48-dependent by determining the specificity of the ddr48 antimutator. However, disruption of DDR48 did not decrease the rates of spontaneous forward mutation in a plasmid-borne copy of the yeast SUP4-o gene, the reversion or suppression of the lys2–1 allele, or forward mutation at the CAN1 locus. Interestingly, the latter gene had been reported previously to be subject to the antimutator effect. DNA sequence analysis of spontaneous SUP4-o mutations arising in DDR48 and ddr48 backgrounds provided no evidence for a reduction in the rates of individual mutational classes. Thus, we were unable to verify that disruption of DDR48 causes an antimutator phenotype.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 27 (1995), S. 509-516 
    ISSN: 1432-0983
    Keywords: Yeast ; Maltose fermentation ; MAL63 ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Mal63p is a transcriptional activator for maltose fermentation in Saccharomyces cerevisiae. We have purified it to homogeneity from a yeast strain in which the MAL63 gene is under the control of the GAL1–GAL10 promoter. Purification included fractionation of a whole-cell extract by ion-exchange chromatography, chromatography using both non-specific DNA-affinity (calf thymus), and sequence-specific DNA-affinity chromatography. Mal63p activity was assayed by its binding to a fragment of the MAL61–MAL62 promoter, using both filter-binding and electrophoretic-mobility shift assays. DNase-I footprinting identified a new binding site (site 3) between the two previously known sites (sites 1 and 2). Mal63p is a dimer, and methylation-protection experiments identify the recognition motif as: c/a GC N9 c/a GC/g.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    ISSN: 1432-0983
    Keywords: 2-deoxyglucose ; 2-deoxyglucose-6P phosphatase ; Catabolite repression ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract 2-deoxyglucose (2-DOG), a non-metabolize analogue of glucose, is taken up by yeast using the same transporter(s) as glucose and is phosphorylated by hexokinases producing 2-deoxyglucose-6-P. We found that in DOG R yeasts, 2-DOG was not able to trigger glucose repression, even at concentrations of 0.5%. This result suggests that the specific 2-DOG-6P phosphatase, the enzyme responsible for the DOG R phenotype, may be involved in inhibiting the process of catabolite repression mediated by 2-DOG
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Kluyveromyces lactis ; Transcriptional regulation ; Catabolite repression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Promoter regions of the KlQCR7, KlQCR8 and KlCYC1 genes, coding for subunits of the bc 1-complex and cytochrome c respectively, in the shortterm Crabtree-negative yeast Kluyveromyces lactis differ markedly in sequence from their Saccharomyces cerevisiae counterparts. They have, however, conserved very similar configurations of binding-site motifs for various transcription factors known to be involved in global and carbon-source regulation in S. cerevisiae. To investigate the carbon source-dependent expression of these genes in K. lactis, we have carried out medium-shift experiments and determined transcript levels during the shifts. In sharp contrast to the situation in S. cerevisiae, the level of expression in K. lactis is not affected when glucose is added to a non-fermentable carbon-source medium. However, the genes are not constitutively expressed, but become significantly induced when the cells are shifted from glucose to a nonfermentable carbon source. Finally, induction of transcriptional activation does not occur in media containing both glucose and non-femmentable carbon sources.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    ISSN: 1432-0983
    Keywords: Autonomously replicating sequence ; Auxotrophy ; Schizosaccharomyces pombe ; Saccharomyces cerevisiae ; Cloning vector ; Selectable marker ; HIS/his ; LYS/lys
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Three new S. pombe plasmids are described. Plasmids pSP3 and pSP4 are two Schizosaccharomyces pombe ars1 multicopy vectors with the Saccharomyces cerevisiae HIS3 or LYS2 genes as selectable markers. They complement the S. pombe his5-303 or lys1-131 mutations, respectively. Plasmid pSPars1 is a vector carrying the S. pombe ars1 and a unique NdeI site which allows the introduction of any selectable marker therefore bringing a unified vector backbone for the construction of new S. pombe/S. cerevisiae/E. coli shuttle vectors. These plasmids permit classical molecular genetic techniques to be performed directly.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    ISSN: 1432-0983
    Keywords: Aspergillus kawachii ; β-xylanase ; Expression ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract First-strand cDNA was prepared from mRNA isolated from Aspergillus kawachii IFO4308 and the β-xylanase gene (xynC) amplified by using the polymerase chain reaction (PCR) technique. This gene was inserted between the yeast phosphoglycerate kinase (PGK1) gene promoter (PGK1 p) and terminator (PGK1 T) sequences. The PGK1 P-xynC-PGK1 T construct (designated XYN3) was cloned into a multicopy episomal plasmid and the XYN3 gene was expressed in Saccharomyces cerevisiae. Functional β-xylanase (Xyn3) was produced and secreted by the recombinant yeast. Xyn3 was stable between 30 and 50°C, and the optimum temperature and pH were shown to be at 60°C and lower than pH3, respectively. An autoselective fur1::LEU2 XYN3 recombinant strain was developed that allowed β-xylanase production at a level of 300 nkat/ml in a non-selective complex medium.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; HEM13 regulation ; Heme and oxygen ; CYP1, ROX1, SSN6, TUP1
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The Saccharomyces cerevisiae HEM13 gene codes for coproporphyrinogen oxidase (CPO), an oxygen-requiring enzyme catalysing the sixth step of heme biosynthesis. Its transcription is increased 40–50-fold in response to oxygen- or heme-deficiency. We have analyzed CPO activity and HEM13 mRNA levels in a set of isogenic strains carrying single or double deletions of the CYP1 (HAP1), ROX1, SSN6, or TUPI genes. The cells were grown in the presence or absence of oxygen and under heme-deficiency (hem1Δ background). Both Rox1p and Cyp1p partially repressed HEM13 in aerobic heme-sufficient cells, probably in an independent manner. In the absence of heme, Cyp1p activated HEM13 and strongly repressed ROX1, allowing de-repression of HEM13. Cyp1p had no effect on HEM13 expression in anaerobic cells. Deletions of SSN6 or TUP1 dramatically de-repressed HEM13 in aerobic cells. A series of deletions in the HEM13 promoter identified at least four regulatory regions that are required for HEM13 regulation. Two regions, containing motifs similar to the Rox1p consensus sequences, act as repression sites under aerobic growth. The two other sites act as activation sequences required for full induction under oxygen- or heme-deficiency. Taken together, these results suggest that induction of HEM13 occurs in part through relief of repression exerted by Rox1p and Cyp1p, and in part by activation mediated partly by Cyp1p under heme-deficiency and by unknown factors under oxygen-deficiency.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    ISSN: 1432-0983
    Keywords: α-Amylase ; Lipomyces kononenkoae ; LKA1 ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A highly active α-amylase (76 250 Da) secreted by the raw starch-degrading yeast Lipomyces kononenkoae strain IGC4052B was purified and characterized. Using high performance liquid chromatography (HPLC), end-product analysis indicated that the L. kononenkoae α-amylase acted by endo-hydrolysis on glucose polymers containing α-1,4 and α-1,6 bonds, producing mainly maltose, maltotriose and maltotetraose. The following NH2-terminal amino acids were determined for the purified enzyme: Asp-Cys-Thr-Thr-Val-Thr-Val-Leu-Ser-Ser-Pro-Glu-Ser-Val-Thr-Gly. The L. kononenkoae α-amylase-encoding gene (LKA1), previously cloned as a cDNA fragment, was expressed in Saccharomyces cerevisiae under the control of the PGK1 promoter. The native signal sequence efficiently directed the secretion of the glycosylated protein in S. cerevisiae. De-glycosylation of the enzyme indicated that post-translational glycosylation is different in S. cerevisiae from that in L. kononenkoae. Zymogram analysis indicated that glycosylation of the protein in S. cerevisiae had a negative effect on enzyme activity. Southern-blot analysis revealed that there is only a single LKA1 gene present in the genome of L. kononenkoae.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    ISSN: 1432-0983
    Keywords: Glycolysis ; Transcriptional activation ; Saccharomyces cerevisiae ; Chromatin structure ; Glucose induction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    ISSN: 1432-0983
    Keywords: Heat-shock response ; Multidrug resistance ; AP-1 homolog ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have examined whether the stress-induced transcriptional activation ofYDR1/PDR5/STS1 is mediated by yAP-1 and yAP-2. Of the stresses examined, heat shock-induced, rapid and transient PDR5 expression became very low in ayap1 yap2 double-gene disruptant, indicating that the yAP proteins mediate the response. Similar results were obtained withSNQ2, a close homologue ofPDR5. A set of 5′-truncation derivatives of thePDR5 gene identified the region from −484 to −434 as being sufficient for the response. A sequence similar to the yAP-1 recognition element recently identified in the stress-responsive yeast genes was found in this region and in the 5′-flanking sequences ofSNQ2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 29 (1996), S. 227-233 
    ISSN: 1432-0983
    Keywords: Trichoderma reesei ; β-Glucosidase ; Cellulase ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract An intronless form of thebgl1 gene encoding an extracellularβ-glucosidase fromTrichoderma reesei was expressed in the yeast Saccharomyces cerevisiae under the control of the yeast GAL 1 promoter. Transformation of a yeast strain with this vector resulted in transformants that produce and secrete activeβ-glucosidase into the growth medium. Additionally, active recombinantβ-glucosidase protein was shown to be localized predominantly in the periplasmic space by using ap-nitrophenylβ-D-glycoside hydrolysis assay against fractionated yeast cells. The apparent size of the recombinant enzyme was 10–15 kDa larger than that of the native form. Treatment of the recombinantβ-glucosidase with endoglycosidase-H indicated the apparent increase in size was due to N-linked glycosylation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 29 (1996), S. 227-233 
    ISSN: 1432-0983
    Keywords: Key words  Trichoderma reesei ; β-Glucosidase ; Cellulase ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract   An intronless form of the bgl1 gene encoding an extracellular β-glucosidase from Trichoderma reesei was expressed in the yeast Saccharomyces cerevisiae under the control of the yeast GAL1 promoter. Transformation of a yeast strain with this vector resulted in transformants that produce and secrete active β-glucosidase into the growth medium. Additionally, active recombinant β-glucosidase protein was shown to be localized predominantly in the periplasmic space by using a p-nitrophenyl β-D-glycoside hydrolysis assay against fractionated yeast cells. The apparent size of the recombinant enzyme was 10–15 kDa larger than that of the native form. Treatment of the recombinant β-glucosidase with endoglycosidase-H indicated the apparent increase in size was due to N-linked glycosylation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    ISSN: 1432-0983
    Keywords: Biocontrol ; Secretion ; Chitinase ; Expression cloning ; Saccharomyces cerevisiae ; Trichoderma harzianum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A novel endochitinase agar-plate assay has been developed and used to identify 11 full-length cDNAs encoding endochitinase I (ENC I) from aTrichoderma harzianum cDNA library by expression in yeast. The 1473-bpchil cDNA encodes a 424-residue precursor protein including both a signal sequence and a propeptide. The deduced ENC I amino-acid sequence is homologous to other fungal and bacterial chitinases, and the enzyme cross-reacts with a polyclonal antiserum raised against chitinase A1 fromBacillus circulans. TheT. harzianum endochitinase I was secreted into the culture medium by the yeastSaccharomyces cerevisiae in a functionally active form. The purified recombinant enzyme had a molecular mass of 44 kDa, an isoelectric point of 6.3, a pH optimum of 7.0 and a temperature optimum of 20 °C.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    ISSN: 1432-0983
    Keywords: Key words Biocontrol ; Secretion ; Chitinase ; Expression cloning ; Saccharomyces cerevisiae ; Trichoderma harzianum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  A novel endochitinase agar-plate assay has been developed and used to identify 11 full-length cDNAs encoding endochitinase I (ENC I) from a Trichoderma harzianum cDNA library by expression in yeast. The 1473-bp chi1 cDNA encodes a 424-residue precursor protein including both a signal sequence and a propeptide. The deduced ENC I amino-acid sequence is homologous to other fungal and bacterial chitinases, and the enzyme cross-reacts with a polyclonal antiserum raised against chitinase A1 from Bacillus circulans. The T. harzianum endochitinase I was secreted into the culture medium by the yeast Saccharomyces cerevisiae in a functionally active form. The purified recombinant enzyme had a molecular mass of 44 kDa, an isoelectric point of 6.3, a pH optimum of 7.0 and a temperature optimum of 20 °C.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    ISSN: 1432-0983
    Keywords: Key words Omnipotent suppression ; Microtubules ; Respiratory deficiency ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  SUP35 and SUP45 genes determine the accuracy of translation at the stage of termination. We present indirect evidence indicating that these genes may also control some cellular process mediated by microtubules. A majority of sup35 and sup45 suppressor mutations confer supersensitivity to benomyl, the drug which de-polymerizes microtubules. In addition, data correlating phenotypic manifestations of sup45 suppressor mutations, involving sensitivity to benomyl, respiratory deficiency and a suppressor effect, are also presented.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    ISSN: 1432-0983
    Keywords: Key words Cytochrome b ; Mutants ; Mitochondria ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The nucleotide changes present in a group of five cytochrome b mit– mutants were analyzed at the sequence level. Two single-base changes were found: one (M10-152) generated a nonsense codon in the first exon while the other (M8-181) created a missense substitution in the second exon. The other mutants all have multiple (three) substitutions that either resulted in a missense mutation in a coding region (M17-162) or else changed nucleotides in the last intron of the gene, so blocking its excision (M6-200 and M8-53). The synthesis of mitochondrial polypeptides and the steady state concentration of the complex-III subunits were examined. The Rieske protein and the core-4 and core-5 subunits were much reduced in all mutants. Consequently the overall stability of complex III is very sensitive even to amino-acid substitutions in the cytochrome b protein. Mutant M8-53 provides direct evidence for the proposed role of the P9.1 stem in the core structure of the group-I type last intron of this gene.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    ISSN: 1432-0983
    Keywords: Key words D-ribulose-5-phosphate 3-epimerase ; D-ribose-5-phosphate ketol-isomerase ; Pentose-phosphate pathway ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have cloned and characterized the two remaining unknown genes of the non-oxidative part of the pentose-phosphate pathway of Saccharomyces cerevisiae encoding the enzymes D-ribulose-5-phosphate 3-epimerase (Rpe1p) and D-ribose-5-phosphate ketol-isomerase (Rki1p). Rpe1p has an unexpected high specific activity of 2148 mU × (mg protein)–1 in crude extracts. Deletion mutants of RPE1 show no enzyme activity and are unable to grow on D-xylulose. Unexpectedly, haploid rki1 deletion mutants are not viable. Functional expression of RKI1 was demonstrated following an increase of gene dosage in the haploid rki1 deletion mutant, which restored viability and specific D-ribose-5-phosphate ketol-isomerase activity. Both enzymes show high similarity to the deduced protein sequences of various open reading frames, expressed sequence tags or cDNAs from different organisms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    ISSN: 1432-0983
    Keywords: Key wordsβ-glucosidase ; Candida wickerhamii ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The yeast Candida wickerhamii exports a cell-associated β-glucosidase that is active against cellobiose and all soluble cellodextrins. Because of its unique ability to tolerate end-product inhibition by glucose, the bglB gene that encodes this enzyme was previously cloned and sequenced in this laboratory. Using several different promoters and constructs, bglB was expressed in the hosts Escherichia coli, Pichia pastoris, and Saccharomyces cerevisiae. Expression was initially performed in E. coli using either the lacZ or tac promoter. This resulted in intracellular expression of the BglB protein with the protein being rapidly fragmented. Secretion and glycosylation of active β-glucosidase was achieved with several different S. cerevisiae constructs utilizing either the adh1 or the gal1 promoter on 2-µ replicating plasmids. When either the invertase (Suc2) or the BglB secretion signal was used, BglB protein remained associated with the cell wall and appeared to be hyperglycosylated. Expression in P. pastoris was also examined to determine if higher activity and expression could be achieved in a yeast host that usually does not hyperglycosylate. Using the alcohol oxidase promoter in conjunction with either the pho1 or the α-factor secretion signal, the recombinant enzyme was successfully secreted and glycosylated in P. pastoris. However, levels of protein expression from the chromosomally integrated vector were insufficient to detect activity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 30 (1996), S. 461-468 
    ISSN: 1432-0983
    Keywords: Keywords DNA repair ; Methylation damage ; Epistasis analysis ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  The major genotoxicity of methyl methanesulfonate (MMS) is due to the production of a lethal 3-methyladenine (3MeA) lesion. An alkylation-specific base-excision repair pathway in yeast is initiated by a Mag1 3MeA DNA glycosylase that removes the damaged base, followed by an Apn1 apurinic/ apyrimidinic endonuclease that cleaves the DNA strand at the abasic site for subsequent repair. MMS is also regarded as a radiomimetic agent, since a number of DNA radiation-repair mutants are also sensitive to MMS. To understand how these radiation-repair genes are involved in DNA methylation repair, we performed an epistatic analysis by combining yeast mag1 and apn1 mutations with mutations involved in each of the RAD3, RAD6 and RAD52 groups. We found that cells carrying rad6, rad18, rad50 and rad52 single mutations are far more sensitive to killing by MMS than the mag1 mutant, that double mutants were much more sensitive than either of the corresponding single mutants, and that the effects of the double mutants were either additive or synergistic, suggesting that post-replication and recombination-repair pathways recognize either the same lesions as MAG1 and APN1, or else some differ- ent lesions produced by MMS treatment. Lesions handled by recombination and post replication repair are not simply 3MeA, since over-expression of the MAG1 gene does not offset the loss of these pathways. Based on the above analyses, we discuss possible mechanisms for the repair of methylation damage by various pathways.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    ISSN: 1432-0983
    Keywords: Key words Adenine biosynthesis ; ade8-18 ; ade2 mutations ; Red/white colony color assay ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In the yeast Saccharomyces cerevisiae the ade2, and/or the ade1, mutation in the adenine biosynthetic pathway leads to the accumulation of a cell-limited red pigment, while epistatic mutations in the same pathway, i.e. ade8, preclude this phenomenon, resulting in normal white colonies. The shift in color from red to white (or vice versa) with a combination of appropriate wild-type and mutant alleles of the adenine-pathway genes has been widely utilized as a non-selective phenotype to visualise and quantify the occurrence of various genetic events such as recombination, conversion and aneuploidy. It has provided an invaluable tool for the study of gene dosage and plasmid stability. In competition experiments between disrupted ade2, ade8-18 transformants carrying either a functional or non-functional episomal ADE8 gene, we verified that white ade8 ade2 cells show a remarkable selective advantage over red ade2 cells, with important implications on the use of this assay for the monitoring of genetic events. The accumulation of the red pigment in ade2 cells is likely to be the cause for impaired growth in these cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 31 (1997), S. 401-407 
    ISSN: 1432-0983
    Keywords: Key words Cytochrome oxidase ; Mitochondrial localization ; PET1402/OXA1 ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The yeast PET1402/OXA1 gene encoding a 44.8-kDa protein is required for mitochondrial biogenesis. Substitution of Leu240 to serine in the protein results in an accumulation of the precursor form of the mitochondrially encoded subunit 2 of cytochrome oxidase (Cox2) and temperature-sensitive respiration. This temperature sensitivity can be suppressed by a mutation in the cox2 gene changing Ala189 of the Cox2 protein to proline. In the cox2-ts1402 double mutant respiration is restored without removal of the Cox2 pre-sequence. The suppression suggests an interaction of the Pet1402 protein with the cytochrome oxidase complex. Antibodies raised against the predicted C-terminus and the tagged N-terminus of the Pet1402 protein reacted with a 37-kDa polypeptide. This protein, present in the mitochondrial fraction, is localized within the inner membrane. The difference in size can be explained by the removal of the predicted mitochondrial-targeting sequence from the Pet1402 protein. The mitochondrial localization of the protein points to a direct interaction with the cytochrome oxidase complex.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    ISSN: 1432-0983
    Keywords: Key words Transcriptional regulation ; Phospholipid biosynthesis ; Saccharomyces cerevisiae ; INO2
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Expression of structural genes of phospholipid biosynthesis in yeast is mediated by the inositol/choline-responsive element (ICRE). ICRE-dependent gene activation, requiring the regulatory genes INO2 and INO4, is repressed in the presence of the phospholipid precursors inositol and choline. INO2 and, to a less extent, INO4 are positively autoregulated by functional ICRE sequences in the respective upstream regions. However, an INO2 allele devoid of its ICRE functionally complemented an ino2 mutation and completely restored inositol/choline regulation of Ino2p-dependent reporter genes. Low-level expression of INO2 and INO4 genes, each under control of the heterologous MET25 promoter, did not alter the regulatory pattern of target genes. Thus, upstream regions of INO2 and INO4 are not crucial for transcriptional control of ICRE-dependent genes by inositol and choline. Interestingly, over-expression of INO2, but not of INO4, counteracted repression by phospholipid precursors. Possibly, a functional antagonism between INO2 and a negative regulator is the key event responsible for repression or de-repression.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    ISSN: 1432-0983
    Keywords: Key words Bleomycin hydrolase ; Saccharomyces cerevisiae ; Thiol proteases ; Protein amphitropism ; Processing of glycosyl-phosphatidylinositol (GPI) anchor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Bleomycin hydrolase, Blh1p, from yeast was co-purified with Gce1p, a cAMP-binding ectoprotein, anchored to the plasma membrane by a glycosyl-phosphatidylinositol (GPI) anchor. Blh1p is a hydrophilic thiol protease lacking transmembrane domains. We have used polyclonal antibodies to study the topology of the over-expressed protein in yeast and have found that it is amphitropic. Part of Blh1p is associated with plasma membranes, and most of the rest occurs in the cytosol. Both the growth conditions and calcium were found to have minor influences on the topology of Blh1p, in that glucose and the earth-alkali ion slightly enhanced recruitment to the membrane. We have examined the possibility that co-purification of Blh1p with Gce1p has a functional basis, and have observed that over-expression of BLH1 in yeast leads to an acceleration of the glucose-induced amphiphilic to hydrophilic conversion of Gce1p, wherein Blh1p could either directly catalyse the proteolytic removal of the polar headgroup of the GPI anchor subsequent to an initial lipolytic cleavage by a GPI-specific phospholipase C or indirectly modulate the reaction. The data show that a thiol protease is involved, but point to an indirect role of Blh1p in GPI processing. Proteases with similar or overlapping substrate specificity are likely to exist, since deletion of BLH1 neither entails a growth defect on any carbon source tested, nor the loss of proteolytic processing of the GPI anchor of Gce1p. Reduced proteolytic GPI processing is, however, observed in the blh1 mutant and the corresponding acceleration in the respective BLH1 multi-copy transformant.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    ISSN: 1432-0983
    Keywords: Key words RAD6 ; Ubiquitin-conjugating enzymes ; Saccharomyces cerevisiae ; Arabidopsis thaliana
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract AtUBC2 of Arabidopsis thaliana encodes a structural homolog of the RAD6 gene of Saccharomyces cerevisiae with approximately 65% identical amino acids. Like structural homologs from other organisms, AtUBC2 lacks the carboxyl-terminal extension of mostly acidic amino acids which is present in Rad6p. AtUBC2 was expressed in S. cerevisiae rad6 mutants. It was found to partially complement the UV sensitivity and reduced growth rate of rad6 mutants at elevated temperatures. AtUBC2 however, has no apparent influence on the degradation of N-end rule substrates in the heterologous host.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    ISSN: 1432-0983
    Keywords: Key wordsSaccharomyces bayanus ; Saccharomyces cerevisiae ; Translocation ; Speciation ; Duplicated gene ; RPL2
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract By a genomic comparison of two sibling yeasts, Saccharomyces bayanus and S. cerevisiae, we previously demonstrated that chromosomes II and IV of S. cerevisiae were rearranged into chromosomes 12 and 14 of S. bayanus or vice versa. In the present study we have delimited the translocation break sites in chromosomes II and IV by Southern hybridization using DNA fragments of S. cerevisiae cosmid clones as probes. The results suggest that the reciprocal translocation of chromosomes II and IV had occurred at duplicated RPL2 loci. Furthermore, the translocation sites in S. bayanus were confirmed by the cloning and sequence analysis of the regions flanking RPL2 loci. Several genes in the regions flanking the RPL2 loci were present in the order expected for a translocation at these loci between the two species. These results indicated that the reciprocal translocation between chromosomes II and IV was generated by homologous recombination at duplicated RPL2 loci on the two chromosomes. Therefore, we propose that duplicated genes or duplicated regions play an important role in altering genomic organization during the speciation of S. bayanus and S. cerevisiae.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    ISSN: 1432-0983
    Keywords: Key words Fructose-1 ; 6-bisphosphatase ; Catabolite repression ; Gluconeogenesis ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have investigated the effect of different carbon sources and of different mutations on the capacity of two elements, UAS1 and UAS2, from the promoter of the FBP1 gene to form specific DNA-protein complexes and to activate expression of a reporter gene. The complexes are observed with nuclear extracts from yeast derepressed on glycerol or ethanol. When hxk2 mutants are grown on glucose the nuclear extracts are able to complex UAS1 but not UAS2, while for wild-type cells grown on galactose only the complex with UAS2 is formed. In contrast, in vivo the operation of both UASs is high in ethanol, moderate to low in glycerol, and negligible in galactose; no expression is observed in glucose even in a hxk2 background. There is no effect of a MIG1 deletion, either in the formation of DNA-protein complexes or on the expression of reporter genes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    ISSN: 1432-0983
    Keywords: Key words Mitotic recombination ; DNA double-strand breaks ; Saccharomyces cerevisiae ; 8-Methoxypsoralen plus UVA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Mitotic recombination within the ARG4 gene of Saccharomyces cerevisiae was analysed after treatment of cells with the recombinogenic agent 8-methoxypsoralen (8-MOP) plus UVA. The appearance of DNA double-strand breaks (DSBs) in the ARG4 region during post-treatment incubation was also tested. The results obtained after 8-MOP plus UVA treatment indicate that in mitotic cells: (1) recombination at the ARG4 locus is increased 30 – 500 fold per survivor depending on the strains and the doses employed, (2) the increase of recombination results essentially from gene conversion events which involve the RV site located in the 5′ region of the ARG4 gene twice as often as the Bgl site at the 3′ end, (3) depending on 8-MOP/UVA dose, ectopic gene conversion is associated with reciprocal translocation, (4) DSBs occur preferentially in the ARG 5′ region during post-treatment incubation, as well as in other intergenic regions containing both promoters or/and terminators of transcription, and (5) changes in sequence content in the 5′ region of ARG4, which influences positions and frequencies of DSBs formed during repair, are correlated with a modification of the local chromatin structure.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    ISSN: 1432-0983
    Keywords: Key wordsPSO5/RAD16 ; Saccharomyces cerevisiae ; Nucleotide excision repair ; Oxidative stress ; Ribonucleotide reductase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The expression of β-galactosidase from DNA damage-inducible RNR2-lacZ and RNR3-lacZ fusion constructs was compared in wild-type (WT) and pso5/rad16 mutant strains after treatment with five mutagens/oxidative stressors. While exposure to the mutagens UVC, 4NQO and H2O2 induced expression of the RNR2-lacZ and RNR3-lacZ fusion constructs in two WT strains, treatment with the two oxidative stressors tBOOH and paraquat did not. In the pso5-1 mutant induction of RNR2-lacZ was largely reduced after UVC and H2O2 while there was no significant induction of β-galactosidase expression after 4NQO treatment for this construct. For RNR3-lacZ there was strongly reduced expression of pso5-1 after UVC and 4NQO while H2O2 failed to induce expression of β-galactosidase. In the WT strains the ranking of the inducing power of the mutagens at 90% survival (as measured in the pso5-1 mutant) was 4NQO〉UVC〉H2O2. Though the WT strains were clearly more resistant that the pso5-1 mutant to the two oxidative stressors paraquat and tBOOH, these substances failed to significantly enhance expression of the RNR2-lacZ and RNR3-lacZ fusion constructs in both the WT and the pso5-1 mutant. Our data suggest that Pso5p/Rad16p has a function in the signal transducing pathway controlling DNA damage-inducible components of nucleotide excision repair.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 34 (1998), S. 138-145 
    ISSN: 1432-0983
    Keywords: Key words Cytochrome c oxidase ; Saccharomyces cerevisiae ; Complex assembly
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We report on the molecular and biochemical analysis of a set of 13 respiratory deficient mutants of Saccharomyces cerevisiae which are specifically altered in COX1, the gene encoding the subunit Cox1p of cytochrome c oxidase. DNA sequence analysis shows that three are due to frameshift mutations, two to nonsense mutations, and eight to missense mutations. All, except the missense mutant S157L, have impaired electron transfer and respiratory activity. Analysis of the mitochondrial translation products shows that when Cox1p is absent, Cox2p and Cox3p are still synthesized. In the missense mutants, the steady state levels in the mitochondrial membranes of the three mitochondrially encoded subunits Cox1p, Cox2p and Cox3p and the nuclear-encoded subunit Cox4p are reduced. In the frameshift and nonsense mutants, Cox1p is absent and Cox2p, Cox3p and Cox4p are considerably decreased or undetectable. A comparison of the steady state levels of Cox1p through Cox4p in the COX1, COX2, COX3 and COX4 mutants shows the interdependance of the accumulation of these four subunits in the mitochondrial membranes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 34 (1998), S. 269-279 
    ISSN: 1432-0983
    Keywords: Key words Double-strand breaks ; Heteroduplex DNA ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Spontaneous and double-strand break (DSB)-induced gene conversion in Saccharomyces cerevisiae was assayed using non-tandem chromosomal direct repeat crosses and plasmid × chromosome crosses. Each cross involved identical ura3 alleles marked with phenotypically silent restriction fragment length polymorphic (RFLP) mutations at approximately 100-bp intervals. DSBs introduced in vivo at HO sites in one allele stimulated recombination to Ura+ by more than two orders of magnitude. Spontaneous gene-conversion products were isolated from a related strain lacking a functional HO nuclease gene. The multiple markers did not appear to influence the frequency of direct repeat deletions for spontaneous or DSB-induced events. DSB-induced conversion reflected efficient mismatch repair of heteroduplex DNA. Conversion frequencies of equidistant markers on opposites sides of the DSB were similar in the direct repeat cross. In contrast, markers 5′ of the DSB (promoter-proximal) converted more often than 3′ markers in plasmid × chromosome crosses, a possible consequence of crossing-over associated with long conversion tracts. With direct repeats, bidirectional tracts (extending 5′ and 3′ of the DSB) occurred twice as often as in a plasmid × chromosome cross in which DSBs were introduced into the plasmid-borne allele. A key difference between the direct-repeat and plasmid×chromosome crosses is that the ends of a broken plasmid are linked, whereas the ends of a broken chromosome are unlinked. We tested whether linkage of ends influenced tract directionality using a second plasmid × chromosome cross in which DSBs were introduced into the chromosomal allele and found few bidirectional tracts. Thus, chromosome environment, but not linkage of ends, influences tract directionality. The similar tract spectra of the two plasmid × chromosome crosses suggest that similar mechanisms are involved whether recombination is initiated by DSBs in plasmid or chromosomal alleles.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    ISSN: 1432-0983
    Keywords: Key words Zinc-finger protein ; Nuclear localization ; Immuno electron microscopy ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In previous studies the AZF1 gene has been identified as a second high-copy number suppressor for a special mutant of the gene for the mitochondrial core enzyme of RNA polymerase. The first high-copy number suppressor of this mutant turned out to be the specificity factor MTF1 for mitochondrial transcription. Up to now, the influence of AZF1 on mitochondrial transcription, its precise localization in the cell and the regulation of its expression has not been determined. The putative protein contains a long stretch of poly-asparagine amino acids and a typical zinc-finger domain for DNA binding. These characteristic structural features were used to create the abbreviation AZF1 (Asparagine-rich Zinc Finger protein). An initial computer analysis of the sequence gave no conclusive results for the presence of a mitochondrial import sequence or a typical nuclear-targeting sequence. A recent more-detailed analysis identified a possible nuclear localization signal in the middle of the protein. Disruption of the gene shows no effect on plates with glucose-rich medium or glycerol. In this report a specific polyclonal antibody against Azf1p was prepared and used in cell-fractionation experiments and in electron-microscopic studies. Both of these clearly demonstrate that the AZF1 protein is localized exclusively in the nucleus of the yeast cell. Northern analysis for the expression of the AZF1 messenger RNA under different growth conditions was therefore performed to obtain new insights into the regulation of this gene. Together with the respective protein-expression analysis these data demonstrate that Azf1p is preferentially synthezised in higher amounts under non-fermentable growth conditions. Over-expression of Azf1p in the yeast cell does not influence the expression level of the mitochondrial transcription factor Mtf1p, indicating that the influence of Azf1p on the suppression of the special mitochondrial RNA polymerase mutant is an indirect one. Subcellular investigation of the deletion mutant by electron microscopy identifies specific ultrastructural cell-division defects in comparison to the wild-type.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 35 (1999), S. 77-81 
    ISSN: 1432-0983
    Keywords: Key words Adaptive mutations ; 6-N-hydroxylaminopurine ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The frequency of reversion in a histidine-requiring mutant of Saccharomyces cerevisiae increases about ten-fold in stationary cells during histidine starvation. Histidine starvation enhances a similar frequency of reversion in a tryptophan-requiring mutant. Starvation, therefore, enhances mutation frequencies in a non-adaptive manner. The base analogue 6-N-hydroxylaminopurine (HAP) added prior to plating on medium with limited histidine strongly increases reversion of the histidine mutant. HAP-induced reversion increases further in stationary starving cells with the same kinetics as that which increases spontaneous reversion. Adding HAP to the stationary starving cells does not produce any effect.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    ISSN: 1432-0983
    Keywords: Key words Heteroduplex repair ; Strand discrimina-tion ; Strand interruptions ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Site-directed mutagenesis was used to construct yeast centromere plasmids in which a strand nick or gap could be placed 5′ or 3′, on either strand, to a reporter gene (SUP4-o) carrying defined base mismatches. The plasmids were then transformed into yeast cells and the direction and efficiency of mismatch repair were assayed by scoring colouring of the transformant colonies. Strands that were nicked were consistently corrected more often than intact strands, but the effect was very small. However, placement of a small gap at the same positions as the nicks resulted in a marked increase in selection for the gapped strand and an enhanced efficiency of mismatch repair. Both the preference for the gapped strand and correction of the mismatch were offset by deletion of the mismatch repair gene PMS1. Together, the results suggest that strand interruptions can direct intracellular mismatch correction of plasmid-borne base mispairs in yeast.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    ISSN: 1432-0983
    Keywords: Key words Cysteine uptake ; Amino-acid permeases ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Uptake by Saccharomyces cerevisiae of the sulphur-containing amino acid L-cysteine was found to be non-saturable under various conditions, and uptake kinetics suggested the existence of two or more transport systems in addition to the general amino-acid permease, Gap1p. Overexpression studies identified BAP2, BAP3, AGP1 and GNP1 as genes encoding transporters of cysteine. Uptake studies with disruption mutants confirmed this, and identified two additional genes for transporters of cysteine, TAT1 and TAT2, both very homologous to BAP2, BAP3, AGP1 and GNP1. While Gap1p and Agp1p appear to be the main cysteine transporters on the non-repressing nitrogen source proline, Bap2p, Bap3p, Tat1p, Tat2p, Agp1p and Gnp1p are all important for cysteine uptake on ammonium-based medium. Furthermore, whereas Bap2p, Bap3p, Tat1p and Tat2p seem most important under amino acid-rich conditions, Agp1p contributes significantly when only ammonium is present, and Gnp1p only contributes under the latter condition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    ISSN: 1432-0983
    Keywords: Key words Psoralen sensitivity ; Cytochrome oxidase ; Saccharomyces cerevisiae ; Oxidative stress
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The yeast gene PSO7 was cloned from a genomic library by complementation of the pso7-1 mutant's sensitivity phenotype to 4-nitroquinoline-1-oxide (4NQO). Sequence analysis revealed that PSO7 is allelic to the 1.1-kb ORF of the yeast gene COX11 which is located on chromosome XVI and encodes a protein of 28-kDa localized in the inner mitochondrial membrane. Allelism of PSO7/COX11 was verified by non-complementation of 4NQO-sensitivity in diploids homo- and hetero-allelic for the pso7-1 and cox11::TRP1 mutant alleles. Sensitivity to 4NQO was the same in exponentially growing cells of the pso7-1 mutant and the cox11::TRP1 disruptant. Allelism of COX11 and PSO7 indicates that the pso7 mutant's sensitivity to photoactivated 3-carbethoxypsoralen and to 4NQO is not caused by defective DNA repair, but rather is due to an altered metabolism of the pro-mutagen 4NQO in the absence of cytochrome oxidase (Cox) in pso7-1/cox11::TRP1 mutants/disruptants. Lack of Cox might also lead to a higher reactivity of the active oxygen species produced by photoactivated 3-carbethoxypsoralen. The metabolic state of the cells is important for their sensitivity phenotype since the largest enhancement of sensitivity to 4NQO between wild-type (WT) and the pso7 mutant occurs in exponentially growing cells, while cells in stationary phase or growing cells in phosphate buffer have the same 4NQO resistance, irrespective of their WT/mutant status. Strains containing the pso7-1 or cox11::TRP1 mutant allele were also sensitive to the oxidative stress-generating agents H2O2 and paraquat. Mutant pso7-1, as well as disruptant cox11::TRP1, harboured mitochondria that in comparison to WT contained less than 5% and no detectable Cox activity, respectively.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 36 (1999), S. 256-261 
    ISSN: 1432-0983
    Keywords: Key wordsFLO8 ; Transcriptional regulation ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract It is thought that the FLO8 gene encodes a transcriptional activator of the dominant flocculation gene FLO1 in Saccharomycescerevisiae. To determine other genes which are regulated by FLO8, a detailed comparison of the transcripts from the FLO8 and Δflo8 strains was carried out. In addition to the FLO1 gene, it was found that transcription of the FLO11 and STA1 genes is positively regulated by FLO8. In flo8 strains, not only transcripts of the FLO11, STA1, and FLO1 genes but also invasive growth, extracellular glucoamylase production, and flocculation were undetected. From these results, it is suggested that FLO8 regulates these characteristics via the transcriptional regulation of the FLO11, STA1, and FLO1 genes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 19 (1991), S. 9-14 
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Mevalonate kinase ; Ergosterol
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The nucleotide sequence of the ERG12 gene, encoding mevalonate kinase, from Saccharomyces cerevisiae is presented. The longest open reading frame may code for a protein containing 443 amino acids with a deduced relative molecular mass of 48 500. The analysis of the nucleotide sequence reveals a complete identity with the yeast gene RAR1, isolated elsewhere by complementation of a rar1 mutation involved in the stability of plasmids with weak ARS. In addition, we show that mevalonate kinase is not a rate-limiting enzyme; however its sensitivity to FFP could be a key regulatory mechanism in the sterol pathway of yeast.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    ISSN: 1432-0983
    Keywords: Glycosylphosphatidylinositol anchored-protein ; Southern analysis ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The GGP1 gene encodes the only GPI-anchored glycoprotein (gp115) that has been purified todate in the budding yeast Saccharomyces cerevisiae. It is a single-copy gene whose deduced amino-acid sequence shares no significant homology to any other known protein. In this paper we report a Southern hybridization analysis of genomic DNA from different eukaryotic organisms to identify homologues of the GGP1 gene. We have analyzed DNA prepared from a unicellular green alga (Chlamydomonas eugametos), from two distantly related yeast species (Candida cylindracea and Schizosaccharomyces pombe), and from the common bean Phasoleus vulgaris. The moderate stringency of the experimental conditions and the high specificity of the probes used indicate that a single-copy of GGP1-related sequences exists in all these eukaryotic organisms. The chromosomal localization of the GGP1 gene in S. cerevisiae has also been determined.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    ISSN: 1432-0983
    Keywords: Trehalase ; Trehalose-6-P synthase ; cAMP mutants ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The rise in cAMP level that follows the addition of glucose or 2,4-dinitrophenol (DNP) to stationaryphase cells of Saccharomyces cerevisiae was accompanied by a marked activation of trehalase (3-fold increase) and a concomitant deactivation of trehalose-6 phosphate synthase (50% of the basal levels). In glucose-grown exponential cells, which are deficient in glucose-induced cAMP signalling, the addition of glucose also prompted a decrease in trehalose-6 phosphate synthase, but had no effect on trehalase activity. Mutants defective in the RAS-adenylate cyclase pathway (ras1 ras2 bcy1 strain), as well as mutants containing greatly reduced protein kinase activity either cAMP-dependent (tpk w1 BCY1 strains) or cAMP-independent (tpk1 w1 bcy1 strains), were unable to show glucose- or DNP-induced trehalase activation but still displayed a clear decrease in trehalose-6 phosphate synthase activity upon addition of these compounds. These data suggest that the activity of trehalose-6 phosphate synthase, as opposed to that of trehalase, is not controlled by the cAMP signalling pathway “in vivo”. Trehalose-6 phosphate synthase was competitively inhibited by glucose (Ki=15 mM) and resulted unaffected by ATP in assays performed “in vitro”.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 23 (1993), S. 414-422 
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Donation ; Gene conversion ; Double-strand break repair ; Heteroduplex DNA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have used transformation of yeast with lincarized plasmids to study the transfer of information to the unbroken chromosome during double-strand break repair. Using a strain which carried the wild-type HIS3 allele, and a linearized plasmid which carried a mutant his3 allele, we have obtained His- transformants. In these, double-strand break repair has resulted in precise transfer of genetic information from the plasmid to the chromosome. Such repair events, we suggest, are gene conversions which entail the formation of heteroduplex DNA on the (unbroken) chromosome. If this suggestion is correct, our results reflect the spatial distribution of such heteroduplex DNA. Transfer of information from the plasmid to the chromosome was obtained at a maximal frequency of 1.5% of the repair events, and showed a dependence with distance. Transformation to His- was also obtained with a 2-kbp insertion and with a deletion of 200 bp. The latter results suggest that gene conversion of large heterologies can occur via repair of a heteroduplex DNA intermediate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    ISSN: 1432-0983
    Keywords: Growth control ; Genetic mapping ; Molecular cloning ; Nucleo-mitochondrial interaction ; Saccharomyces cerevisiae ; Viability of petites
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The PEL1 gene of Saccharomyces cerevisiae is essential for the cell viability of mitochondrial petite mutants, for the ability to utilize glycerol and ethanol on synthetic medium, and for cell growth at higher temperatures. By tetrad analysis the gene was assigned to chromosome III, centromere proximal of LEU2. The PEL1 gene has been isolated and cloned by the complementation of a pel1 mutation. The molecular analysis of the chromosomal insert carrying PEL1 revealed that this gene corresponds to the YCL4W open reading frame on the complete DNA sequence of chromosome III. The putative Pel1 protein is characterized by a low molecular weight of approximately 17 kDa, a low codon adaptation index, and a high leucine content.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 124 (1993), S. 131-140 
    ISSN: 1573-4919
    Keywords: Schizosaccharomyces pombe ; Saccharomyces cerevisiae ; H+-ATPase ; intracellular pH ; carboxy-seminaphthorhodafluor-1
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract We examined cytoplasmic pH regulation inSchizosaccharomyces pombe andSaccharomyces cerevisiae using pH-sensitive fluorescent dyes. Of several different fluorescent compounds tested, carboxy-seminaphthorhodafluor-1 (C.SNARF-1) was the most effective. Leakage of C.SNARF-1 fromS. pombe was much slower than leakage fromC. cerevisiae. Using the pH-dependent fluorescence of C.SNARF-1 we showed that at an external pH of 7, mean resting internal pH was 7.0 forS. pombe and 6.6 forS. cerevisiae. We found that internal pH inS. pombe was maintained over a much narrower range in response to changes in external pH, especially at acidic pH. The addition of external glucose caused an intracellular alkalinization in both species, although the effect was much greater inS. cerevisiae than inS. pombe. The plasma membrane H+-ATPase inhibitor diethylstilbestrol reduced both the rate and extent of alkalinisation, with an IC50 of approximately 35 μM in both species. Amiloride also inhibited internal alkalinisation with IC50's of 745 μM forS. cerevisiae and 490 μM forS. pombe.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Electronic Resource
    Electronic Resource
    Springer
    World journal of microbiology and biotechnology 14 (1997), S. 243-246 
    ISSN: 1573-0972
    Keywords: Amino acid analogue ; Saccharomyces cerevisiae ; secondary products ; wine yeast ; winemaking
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Mutants resistant to the amino acid analogues dl-thiaisoleucine, dl-4-azaleucine, 5,5,5-trifluoro-dl-leucine and l-O-methylthreonine, were isolated from Saccharomyces cerevisiae wine yeast strains. The fermentative production of secondary metabolites by the mutants was tested in grape must. Higher alcohols, acetaldehyde and acetic acid concentration varied depending on strain and analogue. Most of the mutants produced increased amounts of amyl alcohol. A remarkable variability in the level of n-propanol, isobutanol, acetaldehyde and acetic acid was observed. In practical application, the use of mutants resistant to amino acid analogues can improve the quality of wines by reducing or increasing the presence of some secondary compounds.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    ISSN: 1573-0972
    Keywords: Ergosterol ; fatty acids ; phospholipids ; Saccharomyces cerevisiae ; Torulaspora delbrueckii ; wine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Saccharomyces cerevisiae and Torulaspora delbrueckii were grown under different O2 availabilities on grape must. Oxygen requirements for the two yeasts were different: under anaerobic conditions, S. cerevisiae produced a higher percentage of unsaturated fatty acids, and had a greater cell yield and fermentation activity than T. delbrueckii. Addition of ergosterol (25mg/l) and oleic acid (31mg/l) caused total recovery of cellular growth and the fermentation activity of S. cerevisiae in anaerobiosis, but not of T. delbrueckii. However a short period of aeration to a 48 h culture in anaerobiosis, led to total recovery of the cellular growth and fermentation activity in both yeasts. Likewise, the effect of a short aeration period on unsaturated fatty acid biosynthesis was similar for both species.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    ISSN: 1573-0972
    Keywords: Aroma ; compound ; Saccharomyces cerevisiae ; wine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Fourteen strains of the yeastSaccharomyces cerevisiae were isolated from three wineries in the Salnés wine region (N.W. Spain) at the three different periods of the natural fermentation. Each wild yeast was screened for production of acetaldehyde, ethyl acetate, isobutanol,n-propanol, amylic alcohol and other important enological compounds during laboratory scale fermentations of grape juice. After 25 days at 20°C, the analytical results evidenced variations in the production of acetaldehyde (from 13.1 to 24.3 mg/l), isobutanol (from 27.7 to 51.1 mg/l), amyl alcohols (from 111 to 183 mg/l) and ethyl acetate (from 19.3 to 43.7 mg/l). Although isolated from the same wine region, differences in the wine composition were observed depending on the particular yeast strain used for the vinification experiments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Electronic Resource
    Electronic Resource
    Springer
    World journal of microbiology and biotechnology 12 (1996), S. 25-27 
    ISSN: 1573-0972
    Keywords: Batch fermentation ; immobilization ; Saccharomyces cerevisiae ; secondary products ; wine yeast ; wine making
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Five, highly flocculeng strains of Saccharomyces cerevisiae, isolated from wine, were immobilized in calcium alginate beads to optimize primary must fermentation. Three cell-recycle batch fermentations (CRBF) of grape musts were performed with the biocatalyst and the results compared with those obtained with free cells. During the CRBF process, the entrapped strains showed some variability in the formation of secondary products of fermentation, particularly acetic acid and acetaldehyde. Recycling beads of immobilized flocculent cells is a good approach in the development and application of the CRBF system in the wine industry.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Electronic Resource
    Electronic Resource
    Springer
    World journal of microbiology and biotechnology 14 (1998), S. 595-597 
    ISSN: 1573-0972
    Keywords: Lipase ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Seven strains of Saccharomyces cerevisiae all produced lipase when grown in shake flask culture. The best strain, DSM 1848, produced 4.0U of lipase in the medium containing olive oil and yeast extract. Production of the lipase was growth-associated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Electronic Resource
    Electronic Resource
    Springer
    World journal of microbiology and biotechnology 14 (1998), S. 719-725 
    ISSN: 1573-0972
    Keywords: Coulter counter ; mechanical properties ; micromanipulation ; osmotic pressure ; Saccharomyces cerevisiae ; yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract A new micromanipulation technique which has previously been used to measure the mechanical properties of single animal cells has now been applied to yeast cells. In this study this technique was used to measure yeast cell strength and cell size across a 2l batch fermentation. Alternatively the cell size could also be determined using a Coulter counter while cell measurement was diluted with a conducting fluid (Isoton II). For the cell strength, it was found that the osmotic pressure of diluents did affect cell strength. However, it was also found that there was no significant effect of osmotic pressure of diluents on cell size whether a Coulter counter or micromanipulation was used for measurement. Micromanipulation has been shown to be a powerful technique for measuring the mechanical properties of yeast cells and it will be very useful for studying their behaviour in cell disruption equipment, e.g. high-pressure homogenizers.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    ISSN: 1573-0972
    Keywords: Flocculation ; linoleic acid hydroperoxide ; lipid hydroperoxide ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract A lipid hydroperoxide-resistant mutant was isolated from a strain ofSaccharomyces cerevisiae. The mutant was resistant to 1.5mm tert-butylhydroperoxide and 1.0mm linoleic acid hydroperoxide. It flocculated in a Ca2+-dependent manner and the resistance against lipid hydroperoxide was suppressed by mannose, which also inhibited flocculation. A positive relationship between the acquirement of, the flocculent phenotype and resistance against lipid hydroperoxide is suggested. A protein with a molecular weight of 33 kDa was found on the surface of the mutant cell.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Electronic Resource
    Electronic Resource
    Springer
    World journal of microbiology and biotechnology 9 (1993), S. 583-586 
    ISSN: 1573-0972
    Keywords: Cell-free extracts ; plasmids ; recombination ; Saccharomyces cerevisiae ; topo-isomerase mutants
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Cell-free extracts of the yeast Saccharomyces cerevisiae can be used to catalyse the recombination of bacterial plasmids in vitro. Recombination between homologous plasmids containing different mutations in the gene encoding tetracycline resistance is detectable by the appearance of tetracycline-resistance following transformation of the recombinant plasmid DNA into Escherichia coli DH5. This in vitro recombination system was used to determine the involvement of eukaryotic topo-isomerases in genetic recombination. Cell-free extracts prepared from a temperature-sensitive topo-isomerase II mutant (top2-1) of S. cerevisiae yielded tetracycline-resistant recombinants, when the recombination assays were performed at both a non-restrictive temperature (30°C) and the restrictive temperature (37°C). This result was obtained whether or not ATP was present in the recombination buffer. Extracts from a non-conditional topo-isomerase I mutant (top1-1) of S. cerevisiae yielded tetracycline-resistant recombinants, as did a temperature-sensitive double mutant (top2-1/top1-8) at the restrictive temperature. The results of this study indicate that neither topo-isomerase I nor topo-isomerase II was involved in the recombinational activity examined.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Electronic Resource
    Electronic Resource
    Springer
    World journal of microbiology and biotechnology 8 (1992), S. 42-44 
    ISSN: 1573-0972
    Keywords: Saccharomyces cerevisiae ; maltose induction ; catabolite repression ; chemostat ; α-glucosidase ; permease
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Glucose prevented maltose utilization in batch culture ofSaccharomyces cerevisiae whereas in a mixed carbohydrate-limited system, maltose and glucose were consumed simultaneously. The specific activity of α-glucosidase depended on the dilution rate as well as the proportion of maltose in the mixture. The chemostat provides a way of reaching the low residual concentrations of glucose in the broth that are necessary to release catabolite repression and permit maltose induction of α-glucosidase.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    ISSN: 1573-0972
    Keywords: Curing ; fermentative behaviour ; killer ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Fermentative behaviour and cell growth have been studied in grape juice inoculated either with two killerSaccharomyces cerevisiae wild strains or with their Acridine Orange-cured isogenic counterparts. The number of viable cells/ml at the beginning of the fermentation, as well as during exponential growth, were higher in grape juices inoculated with the cured strains. The CO2 production, fermentative rate and ethanol and acetic acid production were also higher in the cured strains, particularly during the stage of active fermentation. These differences, however, were minimal at the end of the fermentations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Electronic Resource
    Electronic Resource
    Springer
    World journal of microbiology and biotechnology 9 (1993), S. 70-72 
    ISSN: 1573-0972
    Keywords: Beer ; brewing ; non-head forming ale yeast ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract The physiological characteristics of two strains of brewery ale yeasts,Saccharomyces cerevisiae, with sedimentation abilities, were investigated to see if the strains were suitable for lager beer production. Compared with typical industrial ale strains ofS. cerevisiae and lager strains ofS. uvarum (nowS. cerevisiae), the investigated strains differ in fermentation dynamics, as well as in biological properties. The differences, however, particularly between the two strains and the lager brewing yeasts, were not significant.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Electronic Resource
    Electronic Resource
    Springer
    World journal of microbiology and biotechnology 9 (1993), S. 662-663 
    ISSN: 1573-0972
    Keywords: Biosynthesis ; invertase ; molasses ; Saccharomyces cerevisiae ; yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Biosynthesis of invertase by Saccharomyces cerevisiae 01K32 was inversely proportional to the concentration of sugarcane blackstrap molasses included in the medium. In a fermenter, an intracellular invertase activity of 440 U/g dry cells was obtained.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Electronic Resource
    Electronic Resource
    Springer
    World journal of microbiology and biotechnology 15 (1999), S. 561-564 
    ISSN: 1573-0972
    Keywords: α-Amylase ; fusion protein ; glucoamylase ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract A fusion gene containing the Bacillus subtilis α-amylase gene and Aspergillus awamori glucoamylase cDNA was expressed in Saccharomyces cerevisiae. The resulting bifunctional fusion protein having both α-amylase and glucoamylase activities secreted into the culture medium was purified to apparent homogeneity by affinity chromatography and gel filtration on Sephadex G-100. The enzyme had an apparent molecular mass of 150 kDa and showed an optimum pH and temperature of 6.0 and 60 °C, respectively. The main hydrolysis products from soluble starch were glucose and maltose.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Electronic Resource
    Electronic Resource
    Springer
    World journal of microbiology and biotechnology 15 (1999), S. 629-630 
    ISSN: 1573-0972
    Keywords: Ethanol ; multi-drug resistance ; Saccharomyces cerevisiae ; trichothecin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Trichothecin-resistant mutants were isolated from saké yeast. These mutants were subjected to saké brewing, and showed a higher ethanol productivity than did the parents. They showed multidrug resistance, and resistance to organic compounds. We considered that the higher ethanol productivity of the mutants was related to their resistance to organic compounds and to their ethanol tolerance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    ISSN: 1573-0972
    Keywords: Adenosine phosphates ; fermentation ; flor-veil-forming yeast ; nicotinamide adenine dinucleotides ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Significant changes in the intracellular concentrations of adenosine phosphates and nicotinamide adenine dinucleotides were observed during fermentation of grape must by three different strains ofSaccharomyces cerevisiae: S. cerevisiae var.cerevisiae, a typical fermentative yeast strain and two flor-veil-forming strains,S. cerevisiae var.bayanus andS. cerevisiae var.capensis. The intracellular concentration of ATP was always higher inS. cerevisiae var.cerevisiae than in the flor-veil-forming strains. NAD+ and NADP+ concentrations decreased at faster rates in the flor-veil-forming yeasts than in the other yeast but NADH concentration was the same in all yeasts for the first 10 days of fermentation. NADPH concentration was always lower inS. cerevisiae var.cerevisiae than in the other yeasts and this yeast also showed higher rates of growth and fermentation during the early stages of the fermentation and the presence of non-viable cells at the end of fermentation. In contrast, the flor-veil-forming strains maintained growth and fermentation capabilities for a relatively long time and viable cells were present throughout the entire fermentation process (31 days).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Electronic Resource
    Electronic Resource
    Springer
    World journal of microbiology and biotechnology 13 (1997), S. 711-712 
    ISSN: 1573-0972
    Keywords: Endopolygalacturonase ; pectic enzymes ; Saccharomyces cerevisiae ; yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract The laboratory strain of S. cerevisiae, IM1-8b, showed pectolytic activity in the presence of either glucose, fructose, or sucrose as the carbon source, but not with galactose. The enzyme activity was rapidly lost with shaking. The optimum pH and temperature for activity were 4.5 and 45°C, respectively. The enzyme was an endopolygalacturonase, since it preferentially hydrolysed pectate over pectin and decreased the viscosity of a 5% polygalacturonic solution by about 30% in 30min producing oligogalacturonic acid and digalacturonic acid as end-products.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Electronic Resource
    Electronic Resource
    Springer
    World journal of microbiology and biotechnology 14 (1997), S. 107-111 
    ISSN: 1573-0972
    Keywords: Glutaraldehyde ; immobilization ; monochloroacetic acid ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 184 (1998), S. 67-79 
    ISSN: 1573-4919
    Keywords: Saccharomyces cerevisiae ; spheroplast ; permeabilization ; mitochondria ; oxidative phosphorylation ; porin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract In this work, we first compared yeast mitochondrial oxidative metabolism at different levels of organization: whole cells (C), spheroplasts (S), permeabilized spheroplasts (PS) or isolated mitochondria (M). At present, S are more suitable for use than C for biochemical techniques such as fast extraction of metabolises and permeabilization. We show here that respiratory rates of S with various substrates are similar to C, which demonstrate that they are adapted to yeast bioenergetic studies. It appeared from ethanol metabolism ± NAD++ or NADH respiratory rates on PS that ethanol metabolism was largely cytosolic; moreover, the activity of NADH dehydrogenase was lesser in the case of PS than in S. By comparing PS and M, the biggest difference concerned the respiratory rates of pyruvate and pyruvate-malate, which were much lower for M. Thus mitochondria preparation caused an unidentified loss involved directly in pyruvate metabolism. When the respiratory rate was lowered as a consequence of a high kinetic control of oxidative activity upstream from the respiratory chain, a similar correlation between the increase in ATP/O and decrease in respiratory rate was observed. So, the intrinsic uncoupling of proton pumps is not a particularity of M. Secondly, we demonstrate the existence of a mechanism of retarded diffusion in yeast similar to that already observed in permeabilized mammalian cells for ADP. Such a mechanism also occurs in yeast for several respiratory substrates: the K0.5 for each substrate toward the respiration rate in PS always exceeds that for M. It is proposed that such a discrepancy is due to a restriction of metabolite movement across the outer mitochondrial membrane in permeabilized cells, i.e. regulation of the substrate permeability through porin channels. In the porin-deficient yeast mutant, the K0.5 for NADH is not significantly different in either M or PS and is comparable to that of the parent strain PS. This result confirms that this retarded diffusion is essentially due to the opening-closing of the porin channel.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 201 (1999), S. 17-24 
    ISSN: 1573-4919
    Keywords: Saccharomyces cerevisiae ; atomic force microscope ; bioscope ; organic synthesis ; molecular biology ; oxidative stress ; pore enlargement ; cell wall ; baker's yeast ; biotechnology
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract We imaged pores on the surface of the cell wall of three different industrial strains of Saccharomyces cerevisiae using atomic force microscopy. The pores could be enlarged using 10 mM diamide, an SH residue oxidant that attacks surface proteins. We found that two strains showed signs of oxidative damage via changes in density and diameter of the surface pores. We found that the German strain was resistant to diamide induced oxidative damage, even when the concentration of the oxidant was increased to 50 mM. The normal pore size found on the cell walls of American strains had diameters of about 200nm. Under conditions of oxidative stress the diameters changed to 400nm. This method may prove to be a useful rapid screening process (45-60 min) to determine which strains are oxidative resistant, as well as being able to screen for groups of yeast that are sensitive to oxidative stress. This rapid screening tool may have direct applications in molecular biology (transference of the genes to inside of living cells) and biotechnology (biotransformations reactions to produce chiral synthons in organic chemistry.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 202 (1999), S. 109-118 
    ISSN: 1573-4919
    Keywords: NF1 mutations ; IRA1 ; Saccharomyces cerevisiae ; RAS2 ; GAP activity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract The 2818 amino acids of neurofibromin, the product of the human NF1 gene, include a 230 amino acid Ras-GAP related domain (GRD). Functions which may be associated with the rest of the protein remain unknown. However, many NF1 mutations in neurofibromatosis 1 patients are found downstream of the GRD, suggesting that the C-terminal region of the protein is also functionally important. Since the C-terminal region of neurofibromin encompassing these mutations is homologous with the corresponding regions in the two Saccharomyces cerevisiae Ras-GAPs, Ira1p and Ira2p, we chose yeast as a model system for functional exploration of this region (Ira-C region). Three missense mutations that affect the Ira-C region of NF1 were used as a model for the mutagenesis of IRA1. The yeast phenotypes of heat shock sensitivity, iodine staining, sporulation efficiency, pseudohyphae formation, and GAP activity were scored. Even though none of the mutations directly affected the Ira1p-GRD, mutations at two of the three sites resulted in a decrease in the GAP activity present in ira1 cells. The third mutation appeared to disassociate the phenotypes of sporulation ability and GAP activity. This and other evidence suggest an effector function for Ira1p.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 13 (1994), S. 30-34 
    ISSN: 1476-5535
    Keywords: Phytate ; Saccharomyces cerevisiae ; Polyacrylamide gel ; Inositol phosphates
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary Saccharomyces cerevisiae in the form of baker's yeast, cells cultivated on a yeast extract-peptone-glucose medium, as well as cells immobilized in 18% (w/v) polyacrylamide gel showed the ability to hydrolyze 1.727 mM sodium phytate solution at 45°C, pH 4.6, in a stirred tank reactor. Seventy percent yield of dephosphorylation was observed after 2 h using a baker's yeast concentration of 5.8 g dry matter per 100 ml. Hydrolytic activity at 1.8–2.0 μM Pi min−1 was observed between 1st and 3rd h of the reaction in cells cultured 24 or 48 h. No inhibition by the substrate was found at sodium phytate concentrations of 0.587–1.727 mM. After 1.5 h of hydrolysis a single, well distinguished peak ofmyo-inositol-triphosphate was the main product found. By means of immobilization the stability of the biocatalyst was enhanced 3.3-fold and reached its half-life at 64 ninety-minute runs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 14 (1995), S. 461-466 
    ISSN: 1476-5535
    Keywords: Flocculation ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary A comparative study has been made of different laboratory and industrial wild-type strains ofSaccharomyces cerevisiae in relation to their flocculation behavior. All strains were inhibited by mannose and only one by maltose. In regard to the stability of these characters in the presence of proteases and high salt concentrations, a relevant degree of variation was found among the strains. This was to such an extent that it did not allow their inclusion in the Flol or NewFlo phenotypes. Genetic characterization of one wild-type strain revealed that the flocculation-governing gene was allelic toFLO1 found in genetic strains.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 14 (1995), S. 440-450 
    ISSN: 1476-5535
    Keywords: Yeasts ; Autolysis ; Saccharomyces cerevisiae ; Kloeckera apiculata ; Candida stellata
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary Cell suspensions ofSacharomyces cerevisiae, Kloeckera apiculata andCandida stellata were autolyzed in phosphate buffer, pH 4.5, for up to 10 days. Cell dry weights decreased by 25–35% after 10 days. Based on initial cell dry weight, the soluble autolysate consisted of: carbohydrate (principally polysaccharide) 3–7%; organic acids 3–6%; protein 12–13%; free amino acids 8–12%; nucleic acid products 3–5%; and lipids 1–12%. The main organic acids in autolysates were propionic, succinic and acetic and the main amino acids were phenylalanine, glutamic acid, leucine, alanine and arginine. Approximately 85–90% of cellular RNA and 25–40% of cellular DNA were degraded during autolysis. Both neutral lipid and phospholipid components were degraded, with neutral lipids but not phospholipids being found in autolysates. Scanning and transmission electron micrographs showed retention of cell wall structure and shape during autolysis, but there was extensive intracellular disorganization withinS. cerevisiae andC. stellata. There were differences in the autolytic behavior ofK. apiculata compared withS. cerevisiae andC. stellata.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 13 (1994), S. 269-272 
    ISSN: 1476-5535
    Keywords: Wine ; Yeasts ; Fatty acids ; Ethyl esters ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary The evolution of the cell and must contents of three short-chain fatty acids (C6, C8 and C10) and their ethyl esters during fermentations withSaccharomyces cerevisiae racescerevisiae, bayanus andcapensis were studied. The former is a fermentative yeast and the last two are ‘flor’ film yeasts. The acid concentrations in the musts increased throughout the alcoholic fermentations, and maximum cell concentrations of the fatty acids were reached after 48 h of fermentation. Maximum ester concentrations in the cells were attained after 48–72 h of fermentation. In the musts, ethyl octanoate and ethyl decanoate reached a peak also at this point, and ethyl hexanoate after 10 days. After 134 days,S. cerevisiae racecapensis formed a thick ‘flor’ film whileS. cerevisiae racebayanus developed a thin film andS. cerevisiae racecerevisiae formed no film. At this point, acid contents remained constant in the wines produced byS. cerevisiae racescerevisiae andbayanus, and decreased in those obtained with racecapensis. The ethyl ester contents tended to decrease with the exception of ethyl decanoate in the fermentations carried out byS. cerevisiae racescerevisiae andbayanus.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...