ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-08-28
    Description: We analyze simultaneous, or near-simultaneous, coregistered, digital, photometric images of solar photospheric intensity and line-of-sight magnetic field. Images were made with the Lockheed tunable filter instrument at the Swedish Solar Observatory, La Palma, with the video spectra-spectroheliograph system at the San Fernando Observatory and with the new NASA spectromagnetograph at the National Solar Observatory at Kitt Peak. We study the disk center contrasts of small magnetic elements. While active region faculae are dark at disk center quiet Sun network features are bright. The populations of magnetic field elements that make up these two kinds of features are quite different. Different contrast center-limb functions must be used when estimating their irradiance or luminosity contributions. The disk center contrasts of active region faculae are colar dependent and indicate a depth effect related to the H(-) opacity of the facular atmopshere. This results is important for calibration of monochromatic observations of faculae to bolometric irradiance fluctuations. We emphasize the value of cooperative observations among installations whose differing strengths are complementary.
    Keywords: SOLAR PHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; A11; p. 18,911-18,918
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-28
    Description: Interplanetary scintillation measurements of the disturbance factor, g, from October 1991 to October 1992 are used to construct synoptic Carrington maps. These maps, which show the structure of the quiet solar wind, are compared with X-ray Carrington maps from the Yohkoh Soft X-ray Telescope (SXT) instrument. For the period studied the global structure outlined by (weakly) enhanced g-values apparent in the interplanetary scintillation (IPS) maps tend to match the active regions (as shown in the X-ray maps) significantly better than the heliospheric current sheet. Contrary to traditional opinion, which views active regions as magnetically closed structures that do not have any significant impact on the solar wind flow, our results suggest that density fluctuations in the solar wind are significantly enhanced over active regions. These results support the suggestion by Uchida et al. (1992), based on Yohkoh observations of expanding active regions, that active regions play a role in feeding mass into the quiet solar wind.
    Keywords: SOLAR PHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 22; 5; p. 643-646
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-28
    Description: We have analyzed the geomagnetic transmission of solar energetic Fe ions at approximately 200-600 MeV per nucleon during the great solar energetic particle (SEP) events of 1989 September-October. By comparing fluences from the Chicago charged-particle telescope on IMP-8 in interplanetary space and from NRL's Heavy Ions in Space (HIIS) experiment aboard the Long Duration Exposure Facility (LDEF) in low-Earth orbit, we obtain a mean ionic charge (Q(sub 3)) = 14.2 +/- 1.4. This result is significantly lower than (Q) observed at approximately 1 MeV per nucleon in impulsive, He-3 rich SEP events, indicating that neither acceleration at the flare site nor flare-heated plasma significantly contributes to the high-energy Fe ions we observe. But it agrees well with the (Q) observed in gradual SEP events at approximately 1 MeV per nucleon, in which ions are accelerated by shocks driven by fast coronal mass ejections, and hence shows that particles are accelerated to very high energies in this way. We also note apparent differences between solar wind and SEP charge state distributions, which may favor a coronal (rather than solar wind) seed population or may suggest additional ionization in the ambient shock-region plasma.
    Keywords: SOLAR PHYSICS
    Type: Astrophysical Journal, Part 2 - Letters (ISSN 0004-637X); 444; 2; p. L109-L113
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-28
    Description: It was pointed out in an earlier paper that the continuing emergence of Omega-loops at localized sites on the surface of the Sun indicates a continuing updraft at those sites. The updraft evidently extends all the way from the base of the convective zone to somewhat near (approximately 10(exp 9)cm) the surface. We pointed out that such updrafts enhance the convective heat transport to the surface, accounting for a major part of the increased solar brightness or irradiance during times of solar activity. The problem is to work out, as much as possible, the dynamical nature of the extended updrafts, initiated as the wakes of successive rising Omega-loops and driven therafter by the convective forces. The question is, does the updraft take on a long-lived columnar form of its own, or does it never devlop beyond a sequence of rising wakes, resembling beads on a string? The dynamics of a columnar updraft is complicated by both the large Reynolds number and the strong stratication of the atmosphere, and by a total lack of direct observational information. Extended slender updrafts are not a spontaneous occurrence in numerical simulations of thermal convection in a stratified atmosphere, although slender concentrated downdrafts commonly occur. This paper examines several aspects of a columnar updrft in a convective atmosphere under various idealized circumstances to investigate to what extent that state can be maintained against the diminishing vorticity and expansion in the updraft. It appears that the successive passage of Omega-loops from the bottom to the top of the convective zone is an essential feature of the continuing existence of the updraft.
    Keywords: SOLAR PHYSICS
    Type: The Astrophysical Journal, Part 1 (ISSN 0004-637X); 442; 1; p. 405-421
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-28
    Description: This work describes the evolution of a model solar corona in response to motions of the footpoints of its magnetic field. The mathematics involved is semianalytic, with the only numerical solution being that of an ordinary differential equation. This approach, while lacking the flexibility and physical details of full MHD simulations, allows for very rapid computation along with complete and rigorous exploration of the model's implications. We find that the model coronal field bulges upward, at first slowly and then more dramatically, in response to footpoint displacements. The energy in the field rises monotonically from that of the initial potential state, and the field configuration and energy appraoch asymptotically that of a fully open field. Concurrently, electric currents develop and concentrate into a current sheet as the limiting case of the open field is approached. Examination of the equations shows rigorously that in the asymptotic limit of the fully open field, the current layer becomes a true ideal MHD singularity.
    Keywords: SOLAR PHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 443; 2; p. 810-817
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-28
    Description: This paper presents an extension of the nonlinear least squares fitting technique of Vinas and Scudder (1986) (VS), which finds the physical and geometrical properties of nondissipational magnetohydrodynamic (MHD) shocks. The new method incorporates plasma temperature observations in the form of normal momentum flux and energy density flux conservation as well as plasma density, velocity, and magnetic field data. The new technique is capable of using known standard deviations in the individual measurement points to properly weight the fitting procedure. The new fitting code is validated through the analysis of synthetic shocks with known physical and geometrical properties. Finally, it is compared to the original VS method and the preaveraged velocity coplanarity technique.
    Keywords: SOLAR PHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A8; p. 14,737-14,746
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-28
    Description: Changes in the heliospheric magnetic field during the recent declining phase in solar activity are reviewed and compared with observations during past sunspot cycles. The study is based principally on data obtained by IMP-8 and Ulysses. The field magnitude is found to have increased during the declining phase until it reached a maximum value of 11.5nT in approximately 1991.5, approximately two years after sunspot maximum. The field of the sun's south pole became negative after a reversal in early 1990. The sector structure disappeared at Ulysses in April 1993 when the latitude of the spacecraft was -30 deg revealing a low inclination of the heliospheric current sheet. A large outburst of solar activity in March 1991 caused four Coronal Mass Ejections (CMEs) and numerious shocks at the location of Ulysses. Following a delay of more than a year, a series of recurrent high speed streams and Corotating Interaction Regions commenced in July 1992 which were observed by IMP-8, Ulysses and Voyager 2. In all these respects, the behavior of the magnetic field mimics that seen in the two earlier sunspot cycles. The comprehensive data set suggests a correlation between the absolute value of B and sunspot number. The major solar cycle variations in the radial component (and magnitude) of the field have been successfully reproduced by a recent model consisting of a tilted solar dipole, whose strength and tilt undergo characteristic changes over the sunspot cycle, and the heliospheric current sheet. The large outbursts of activity in mid-1972, mid-1982 and the first quarter of 1991 may represent a characteristic last 'gasp' of solar activity before the sun evolves to a different state. The recurrent high speed streams in 1973, 1984 and 1992 accompany the developemnt of large asymetrical polar coronal holes and the growth in intensity of the polar cap fields. After they endure for about one year, the polar coronal holes recede and the high speed streams are replaced by weaker streams more characteristic of solar minimum.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 16; 9; p. (9)153-(9)163
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-28
    Description: We present the first results of solar active region observations with the recently completed five-element Owens Valley Solar Array. On 1991 October 24, maps of Active Region AR 6891 were obtained at 22 frequencies from 1.2-7.0 GHz to provide brightness temperature spectra at each point. This is the first time that both high spatial and frequency-resolution brightness temperature spectra have been available over such a broad radio-frequency range. We find that over most of the region the spectra fall into one of the two well-defined categories: thermal free-free or thermal gyroresonance. In these cases, we use the spectra to deduce the spatial variation of physical parameters-electron temperature, column emission measure (intergral n(sup 2)(sub e) dl), and the coronal magnetic field strength-in and around the active region. Over a limited area of the region, the spectra resemble neither of the simple types, and alternative interpretations are required. The possibilties include the presence of fine structure that is unresolved at low frequencies; the presence of a small number of nonthermal electrons; or the presence of overlying, cooler 10(exp 6) K material which at low frequencies absorbs the hot (3 x 10(exp 6) K) thermal emission generated below.
    Keywords: SOLAR PHYSICS
    Type: The Astrophysical Journal, Part 1 (ISSN 0004-637X); 420; 2; p. 903-912
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-28
    Description: The theoretical electron density sensitive emission-line ratio R = I(1718.56 a)/I(1486.51 A) in N IV is presented for a range of N(sub e)(approximately equals 10(exp 10) - 10(exp 12)/cu cm) applicable to higher density solar plasmas, such as active regions. A comparison of these calculations with the observed values of R of several solar features obtained with the Naval Research Laboratory's S082B spectrograph on board Skylab reveals general agreement between theory and observation at pointings just above the limb, where line blends with N IV 1718.56 A should be insignificant, which provides experimental support for the accuracy of the line ratio calculations.
    Keywords: SOLAR PHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 432; 2; p. 806-808
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-28
    Description: Sixteen years of Wilcox Solar Observatory (WSO) magnetogram data have been studied to determine the solar cycle variation and latitude dependence of the east-west inclination of photospheric magnetic field lines. East-west inclination is here defined as the angle between a field line and its local radial vector, as projected onto the plane of the latitude and line of sight. Inclination is determined by a least-squares fit of observed magnetic fields to a simple projection model, and is found to depend on polarity and to change with the solar cycle. Leading and following polarities are tipped towards each by about 9 deg and have an overall net tilt in the direction of rotation (to the west) of 0.6 deg. New cycles are seen to begin at high latitudes and to grow through the lower latitudes over approximately 5 years, providing evidence for an extended cycle length of 16-18 years.
    Keywords: SOLAR PHYSICS
    Type: Solar Physics (ISSN 0038-0938); 153; 2-Jan; p. 131-141
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...