ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Hydrology: Regional Studies 11 (2017): 219-233, doi:10.1016/j.ejrh.2016.08.003.
    Description: Hydrogeologic controls on seasonal land/sea exchange are investigated in Malibu, California, USA. An assessment of regional groundwater/surface water exchange and associated biogeochemical transport in an intermittently open, coastal lagoon in California is developed using naturally occurring U/Th-series tracers. Nearshore lagoons that are seasonally disconnected from the coastal ocean occupy about 10% of coastal areas worldwide. Lagoon systems often are poorly flushed and thus sensitive to nutrient over-enrichment that can lead to eutrophication, oxygen depletion, and/or pervasive algal blooms. This sensitivity is exacerbated in lagoons that are intermittently closed to surface water exchange with the sea and occur in populous coastal areas. Such estuarine systems are disconnected from the sea during most of the year by wave-built barriers, but during the rainy season these berms can breach, enabling direct water exchange. Using naturally-occurring 222Rn as groundwater tracer, we estimate that groundwater discharge to Malibu Lagoon during open berm conditions was one order of magnitude higher (21 ± 17 cm/day) than during closed berm conditions (1.8 ± 1.4 cm/day). The SGD (submarine groundwater discharge) into nearshore coastal waters at the SurferRider and Colony Malibu was 4.2 cm/day on average. The exported total dissolved nitrogen (TDN) through the berm during closed berm was 1.6 × 10−3 mol/day, whereas during open berm (exported by the Creek) was 3.5 × 103 mol/day. Although these evaluations are specific to the collection campaigns the 2009 and 2010 hydro years, these two distinct hydrologic scenarios play an important role in the seasonality and geochemical impact of land/sea exchange, and highlight the sensitivity of such systems to future impacts such as sea level rise and increasing coastal populations.
    Description: This work was co-funded by the City of Malibu and the U.S. Geological Survey.
    Keywords: Regional groundwater flow ; Submarine groundwater discharge ; Radon ; Hydrologic time series
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Earth and Planetary Science Letters 462 (2017): 180-188, doi:10.1016/j.epsl.2016.12.039.
    Description: Water flow beneath the Greenland Ice Sheet (GrIS) has been shown to include slow-inefficient (distributed) and fast-efficient (channelized) drainage systems, in response to meltwater delivery to the bed via both moulins and surface lake drainage. This partitioning between channelized and distributed drainage systems is difficult to quantify yet it plays an important role in bulk meltwater chemistry and glacial velocity, and thus subglacial erosion. Radon-222, which is continuously produced via the decay of 226Ra, accumulates in meltwater that has interacted with rock and sediment. Hence, elevated concentrations of 222Rn should be indicative of meltwater that has flowed through a distributed drainage system network. In the spring and summer of 2011 and 2012, we made hourly 222Rn measurements in the proglacial river of a large outlet glacier of the GrIS (Leverett Glacier, SW Greenland). Radon-222 activities were highest in the early melt season (10–15 dpm L−1), decreasing by a factor of 2–5 (3–5 dpm L−1) following the onset of widespread surface melt. Using a 222Rn mass balance model, we estimate that, on average, greater than 90% of the river 222Rn was sourced from distributed system meltwater. The distributed system 222Rn flux varied on diurnal, weekly, and seasonal time scales with highest fluxes generally occurring on the falling limb of the hydrograph and during expansion of the channelized drainage system. Using laboratory based estimates of distributed system 222Rn, the distributed system water flux generally ranged between 1–5% of the total proglacial river discharge for both seasons. This study provides a promising new method for hydrograph separation in glacial watersheds and for estimating the timing and magnitude of distributed system fluxes expelled at ice sheet margins.
    Description: U.S. National Science Foundation Arctic Natural Sciences Program (ANS-1256669); Woods Hole Oceanographic Institution Arctic Research Initiative, Ocean Ventures Fund, and Ocean Climate Change Institute; United Kingdom Natural Environment Research Council studentship (NE/152830X/1); the Carnegie Trust, Edinburgh University Development Trust.
    Keywords: Radon ; Greenland ; Glacier ; Proglacial river ; Meltwater
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Hydrology: Regional Studies 11 (2017): 147-165, doi:10.1016/j.ejrh.2015.12.056.
    Description: The study region encompasses the nearshore, coastal waters off west Maui, Hawaii. Here abundant groundwater—that carries with it a strong land-based fingerprint—discharges into the coastal waters and over a coral reef. Coastal groundwater discharge is a ubiquitous hydrologic feature that has been shown to impact nearshore ecosystems and material budgets. A unique combined geochemical tracer and oceanographic time-series study addressed rates and oceanic forcings of submarine groundwater discharge at a submarine spring site off west Maui, Hawaii. Estimates of submarine groundwater discharge were derived for a primary vent site and surrounding coastal waters off west Maui, Hawaii using an excess 222Rn (t1/2 = 3.8 d) mass balance model. Such estimates were complemented with a novel thoron (220Rn, t1/2 = 56 s) groundwater discharge tracer application, as well as oceanographic time series and thermal infrared imagery analyses. In combination, this suite of techniques provides new insight into the connectivity of the coastal aquifer with the near-shore ocean and examines the physical drivers of submarine groundwater discharge. Lastly, submarine groundwater discharge derived constituent concentrations were tabulated and compared to surrounding seawater concentrations. Such work has implications for the management of coastal aquifers and downstream nearshore ecosystems that respond to sustained constituent loadings via this submarine route.
    Description: This research was primarily funded by the USGS Coastal and Marine Geology Program (CMGP). CRG acknowledges support from the National Oceanic and Atmospheric Administration, Project R/SB-12, which is sponsored by the University of Hawaii Sea Grant College Program, SOEST, under Institutional Grant No. NA14OAR4170071 from NOAA Office of Sea Grant, Department of Commerce.
    Keywords: Regional groundwater flow ; Submarine groundwater discharge ; Radon ; Thoron ; Thermal infrared ; Oceanographic time series ; Salinity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...