ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-07-31
    Description: The 16S rRNA gene (16S rDNA) codes for RNA that plays a fundamental role during translation in the ribosome and is used extensively as a marker gene to establish relationships among bacteria. However, the complementary non-coding 16S rDNA (nc16S rDNA) has been ignored. An idea emerged in the course of analyzing bacterial 16S rDNA sequences in search for nucleotide composition and substitution patterns: Does the nc16S rDNA code? If so, what does it code for? More importantly: Does 16S rDNA evolution reflect its own evolution or the evolution of its counterpart nc16S rDNA? The objective of this minireview is to discuss these thoughts. nc strands often encode small RNAs (sRNAs), ancient components of gene regulation. nc16S rDNA sequences from different bacterial groups were used to search for possible matches in the Bacterial Small Regulatory RNA Database. Intriguingly, the sequence of one published sRNA obtained from Legionella pneumophila (GenBank: AE017354.1) showed high non-random similarity with nc16S rDNA corresponding in part to the V5 region especially from Legionella and relatives. While the target(s) of this sRNA is unclear at the moment, its mere existence might open up a new chapter in the use of the 16S rDNA to study relationships among bacteria.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-08-05
    Description: Thermotolerance of the fungus Fomes sp. EUM1 was evaluated in solid state fermentation (SSF). This thermotolerant strain improved both hyphal invasiveness (38%) and length (17%) in adverse thermal conditions exceeding 30°C and to a maximum of 40°C. In contrast, hyphal branching decreased by 46% at 45°C. The production of cellulases over corn stover increased 1.6-fold in 30°C culture conditions, xylanases increased 2.8-fold at 40°C, while laccase production improved 2.7-fold at 35°C. Maximum production of lignocellulolytic enzymes was obtained at elevated temperatures in shorter fermentation times (8–6 days), although the proteases appeared as a thermal stress response associated with a drop in lignocellulolytic activities. Novel and multiple isoenzymes of xylanase (four bands) and cellulase (six bands) were secreted in the range of 20–150 kDa during growth in adverse temperature conditions. However, only a single laccase isoenzyme (46 kDa) was detected. This is the first report describing the advantages of a thermotolerant white-rot fungus in SSF. These results have important implications for large-scale SSF, where effects of metabolic heat are detrimental to growth and enzyme production, which are severely affected by the formation of high temperature gradients.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-06-23
    Description: The rhizobacterium Serratia plymuthica 4Rx13 emits the novel and unique volatile sodorifen (C 16 H 26 ), which has a polymethylated bicyclic structure. Transcriptome analysis revealed that gene SOD_c20750 (annotated as terpene cyclase) is involved in the biosynthesis of sodorifen. Here we show that this gene is located in a small cluster of four genes ( SOD_c20750 – SOD_c20780 ), and the analysis of the knockout mutants demonstrated that SOD_c20760 (annotated as methyltransferase) and SOD_c20780 (annotated as isopentenyl pyrophosphate (IPP) isomerase) are needed for the biosynthesis of sodorifen, while a sodorifen-negative phenotype was not achieved with the SOD_c20770 (annotated as deoxy-xylulose-5-phosphate (DOXP) synthase) mutant. Altogether, the function of this new gene cluster was assigned to the biosynthesis of this structurally unusual volatile compound sodorifen.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-06-23
    Description: Among staphylococci Staphylococcus saprophyticus is the only species that is typically uropathogenic and an important cause of urinary tract infections in young women. The amino acid D-serine occurs in relatively high concentrations in human urine and has a bacteriostatic or toxic effect on many bacteria. In uropathogenic Escherichia coli and S. saprophyticus , the amino acid regulates the expression of virulence factors and can be used as a nutrient. The ability of uropathogens to respond to or to metabolize D-serine has been suggested as a factor that enables colonization of the urinary tract. Until now nothing is known about D-serine transport in S.   saprophyticus . We generated mutants of putative transporter genes in S.   saprophyticus 7108 that show homology to the D-serine transporter cyc A of E. coli and tested them in a D-serine depletion assay to analyze the D-serine uptake rate of the cells. The mutant of SPP1070 showed a strong decrease in D-serine uptake. Therefore, SSP1070 was identified as a major D-serine transporter in S. saprophyticus 7108 and was named D-serine transporter A (DstA). D-serine caused a prolonged lag phase of S. saprophyticus in a chemically defined medium. This negative effect was dependent on the presence of DstA.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-05-12
    Description: Genes encoding fluoride transporters have been identified in bacterial and archaeal species. The genome sequence of the cariogenic  Streptococcus mutans  bacteria suggests the presence of a putative fluoride transporter, which is referred to as a chloride channel permease. Two homologues of this gene (GenBank locus tags SMU_1290c and SMU_1289c) reside in tandem in the genome of  S. mutans . The aim of this study was to determine whether the chloride channel permeases contribute to fluoride resistance. We constructed SMU_1290c- and SMU_1289c-knockout  S. mutans  UA159 strains. We also constructed a double-knockout strain lacking both genes. SMU_1290c or SMU_1289c was transformed into a fluoride transporter- disrupted  Escherichia coli strain. All bacterial strains were cultured under appropriate conditions with or without sodium fluoride, and fluoride resistance was evaluated. All three gene-knockout  S. mutans  strains showed lower resistance to sodium fluoride than did the wild-type strain. No significant changes in resistance to other sodium halides were recognized between the wild-type and double-knockout strains. Both SMU_1290c and SMU_1289c transformation rescued fluoride transporter-disrupted  E. coli  cell from fluoride toxicity. We conclude that the chloride channel permeases contribute to fluoride resistance in  S. mutans .
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-05-12
    Description: Clostridium thermocellum and Thermoanaerobacterium saccharolyticum are bacteria under investigation for production of biofuels from plant biomass. Thermoanaerobacterium saccharolyticum has been engineered to produce ethanol at high yield (〉90% of theoretical) and titer (〉70 g/l). Efforts to engineer C. thermocellum have not, to date, been as successful, and efforts are underway to transfer the ethanol production pathway from T. saccharolyticum to C. thermocellum . One potential challenge in transferring metabolic pathways is the possibility of incompatible levels of nicotinamide cofactors. These cofactors (NAD + , NADH, NADP + and NADPH) and their oxidation state are important in the context of microbial redox metabolism. In this study we directly measured the concentrations and reduced oxidized ratios of these cofactors in a number of strains of C. thermocellum and T. saccharolyticum by using acid/base extraction and enzymatic assays. We found that cofactor ratios are maintained in a fairly narrow range, regardless of the metabolic network modifications considered. We have found that the ratios are similar in both organisms, which is a relevant observation in the context of transferring the T. saccharolyticum ethanol production pathway to C. thermocellum .
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-03-09
    Description: Cadmium is a widespread environmental pollutant and poses some potential risks to human health. However, the signaling events controlling cadmium toxicity are not fully understood. In this study, we examined the effect of cadmium chloride on cell viability and the intracellular nitric oxide (NO) level in yeast cells. The results showed that exposure of yeast cells to cadmium (0–100 μM) could induce cell killing with significantly increased intracellular NO levels. Morphological analysis of the nuclei with 4 ' ,6-diamidino-2-phenylindole staining and DNA strand breaks analysis showed that cadmium at 50 μM can induce cell apoptosis in yeast cells. Treatment of yeast cells with cadmium (50 μM) and the nitric oxide scavenger c-PTIO [2-(4-carboxyphenyl)-4,4,5,5-teramethylimidazoline-1-oxyl-3-oxide; 0.2 mM] showed that c-PTIO attenuated the cadmium-induced cell killing. Our findings indicated that cadmium-induced yeast cell killing is mediated by a directly increased intracellular NO level.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-04-08
    Description: Effective uptake of fermentable substrates is a fundamentally important aspect of any fermentation process. The solventogenic bacterium Clostridium beijerinckii is noted for its ability to ferment a wide range of carbohydrates, yet few of its sugar transport systems have been characterized. In common with other anaerobes, C. beijerinckii shows a marked dependence on the PEP-dependent phosphotransferase system (PTS) for sugar accumulation. In this study, the gene cbe0751 encoding the sugar-specific domains of a phosphotransferase belonging to the glucose family was cloned into an Escherichia coli strain lacking the ability to take up and phosphorylate glucose. Transformants gained ability to ferment glucose, and also mannose, and further analysis of a selected transformant demonstrated that it could take up and phosphorylate glucose, confirming that cbe0751 encodes a glucose PTS which also recognizes mannose as a substrate. RT-PCR analysis showed that cbe0751 was expressed in cultures grown on both substrates, but also to varying extents during growth on some other carbon sources. Although analogue inhibition studies suggested that Cbe0751 is not the only glucose PTS in C. beijerinckii , this system should nevertheless be regarded as a potential target for metabolic engineering to generate a strain showing improved sugar fermentation properties.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2016-06-30
    Description: Heavy metals are dense chemicals with dual biological role as micronutrients and intoxicants. A few hypersaline environmental systems are naturally enriched with heavy metals, while most metal-contaminated sites are a consequence of human activities. Numerous halotolerant and moderately halophilic Bacteria possess metal tolerance, whereas a few archaeal counterparts share similar features. The main mechanisms underlying heavy metal resistance in halophilic Bacteria and Archaea include extracellular metal sequestration by biopolymers, metal efflux mediated by specific transporters and enzymatic detoxification. Biotransformation of metals by halophiles has implications both for trace metal turnover in natural saline ecosystems and for development of novel bioremediation strategies.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-06-30
    Description: We screened for a gene that inhibits streptomycin production in Streptomyces griseus when it is introduced on a high-copy-number plasmid pIJ702, and obtained a plasmid pKM545. The introduction of pKM545 abolished streptomycin production on all media tested including YMP-sugar and Nutrient broth. S1 protection analysis demonstrated that the introduction of this plasmid downregulated the transcriptional activity of the promoter preceding strR , the pathway-specific transcriptional regulator for streptomycin biosynthesis. The 2.8-kb Bam HI fragment cloned onto pKM545 contained two coding sequences SGR_5442 and 5443. These coding sequences and the two downstream ones (SGR_5444 and 5445) constituted a possible operon structure designated to be rspABCD (regulation of streptomycin production). RspB and RspC exhibited a marked similarity with an ATP-binding domain and a membrane-associating domain of an ABC-2 type transporter, respectively, suggesting that the Rsp proteins comprise a membrane exporter. The gene cluster consisting of the rsp operon and the upstream divergent small coding sequence (SGR_5441) was widely distributed to Streptomyces genome. An rspB mutant of S. griseus produced 3-fold streptomycin of the parental strain in YMP liquid medium. The evidence implies that the Rsp translocator is involved in the export of a substance that specifies the expression level of streptomycin biosynthesis genes in S. griseus .
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2016-07-02
    Description: We previously demonstrated that in Streptomyces coelicolor two-component system AfsQ1/Q2 activates the production of the yellow-colored coelimycin P2 (also named as yCPK) on glutamate-supplemented minimal medium, and the response regulator AfsQ1 could specifically bind to the intergenic region between two structural genes, cpkA and cpkD . Here, a more in-depth investigation was performed to elucidate the mechanism underlying the role of AfsQ1/Q2 in regulating coelimycin P2 biosynthesis. Deletion of afsQ1/Q2 resulted in markedly decreased expression of the whole coelimycin P2 biosynthetic gene cluster. Electrophoretic mobility shift assays revealed that AfsQ1 bound only to the target site identified previously, but not to any other promoters in the gene cluster. Mutations of AfsQ1-binding motif only resulted in drastically reduced transcription of the cpkA/B/C operon (encoding three type I polyketide synthases) and intriguingly, led to enhanced expression of some coelimcyin P2 genes, particularly accA1 and scF . These results suggested the direct role of AfsQ1/Q2 in regulating coelimycin production, which is directly mediated by the structural genes, but not the cluster-situated regulatory genes, and also implied that other unknown mechanisms may be involved in AfsQ1/Q2-mediated regulation of coelimycin P2 biosynthesis.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2016-07-02
    Description: Sulfate-reducing bacteria (SRBs) gain their energy by coupling the oxidation of organic substrate to the reduction of sulfate to sulfide. Several SRBs are able to use alternative terminal electron acceptors to sulfate such as nitrate. Nitrate-reducing SRBs have been isolated from a diverse range of environments. In order to be able to understand the significance of nitrate reduction in SRBs, we need to examine the ecology and physiology of the nitrate-reducing SRB isolates.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2016-08-18
    Description: The ADP-ribosylating enzymes are encoded in many pathogenic bacteria in order to affect essential functions of the host. In this study, we show that Neisseria gonorrhoeae possess a locus that corresponds to the ADP-ribosyltransferase NarE, a previously characterized enzyme in N. meningitidis . The 291 bp coding sequence of gonococcal narE shares 100% identity with part of the coding sequence of the meningococcal narE gene due to a frameshift previously described, thus leading to a 49-amino-acid deletion at the N-terminus of gonococcal NarE protein. However, we found a promoter region and a GTG start codon, which allowed expression of the protein as demonstrated by RT-PCR and western blot analyses. Using a gonococcal NarE–6xHis fusion protein, we demonstrated that the gonococcal enzyme underwent auto-ADP-ribosylation but to a lower extent than meningococcal NarE. We also observed that gonoccocal NarE exhibited ADP-ribosyltransferase activity using agmatine and cell-free host proteins as ADP-ribose acceptors, but its activity was inhibited by human β-defensins. Taken together, our results showed that NarE of Neisseria gonorrhoeae is a functional enzyme that possesses key features of bacterial ADP-ribosylating enzymes.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2016-08-18
    Description: The effect of fructose 1,6-bisphosphate (Fru 1,6-P 2 ) on the regulatory enzymes of pentose phosphate pathway of Escherichia coli was examined. Fru 1,6-P 2 inhibited E. coli transaldolase (EC 2.2.1.2) competitively against fructose 6-phosphate and uncompetitively against erythrose 4-phosphate, whereas Fru 1,6-P 2 did not affect glucose 6-phosphate dehydrogenase (EC 1.1.1.49) and 6-phosphogluconate dehydrogenase (EC 1.1.1.44). Kinetic results can be explained by assuming that transaldolase has two kinds of binding sites for Fru 1,6-P 2 : a competitive binding site for fructose 6-phosphate and a second binding site on the enzyme-erythrose 4-phosphate complex. Fru 1,6-P 2 increased resulting from the stimulation of glycolysis, can inhibit transaldolase and further participates in the elevation of the concentration of ribose 5-phosphate that can be preferentially utilized for anabolic reaction in exponential phase of E. coli .
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2016-07-03
    Description: The Hdr (heterodisulfide reductase)-like enzyme is predicted, from gene transcript profiling experiments previously published, to be essential in oxidative sulfur metabolism in a number of bacteria and archaea. Nevertheless, no biochemical and physicochemical data are available so far about this enzyme. Genes coding for it were identified in Aquifex aeolicus , a Gram-negative, hyperthermophilic, chemolithoautotrophic and microaerophilic bacterium that uses inorganic sulfur compounds as electron donor to grow. We provide biochemical evidence that this Hdr-like enzyme is present in this sulfur-oxidizing prokaryote (cultivated with thiosulfate or elemental sulfur). We demonstrate, by immunolocalization and cell fractionation, that Hdr-like enzyme is associated, presumably monotopically, with the membrane fraction. We show by co-immunoprecipitation assay or partial purification, that the Hdr proteins form a stable complex composed of at least five subunits, HdrA, HdrB1, HdrB2, HdrC1 and HdrC2, present in two forms of high molecular mass on native gel (~240 and 450 kDa). These studies allow us to propose a revised model for dissimilatory sulfur oxidation pathways in A. aeolicus , with Hdr predicted to generate sulfite.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2016-08-11
    Description: Geobacter sulfurreducens is an anaerobic soil bacterium that is involved in biogeochemical cycles of elements such as Fe and Mn. Although significant progress has been made in the understanding of the electron transfer processes in G. sulfurreducens , little is known about the regulatory mechanisms involved in their control. To expand the study of gene regulation in G. sulfurreducens , we carried out a genome-wide identification of transcription start sites (TSS) by 5'RACE and by deep RNA sequencing of primary mRNAs in two growth conditions. TSSs were identified along G. sulfurreducens genome and over 50% of them were located in the upstream region of the associated gene, and in some cases we detected genes with more than one TSS. Our global mapping of TSSs contributes with valuable information, which is needed for the study of transcript structure and transcription regulation signals and can ultimately contribute to the understanding of transcription initiation phenomena in G. sulfurreducens .
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2016-08-27
    Description: DnpA, a putative de- N -acetylase of the PIG-L superfamily, is required for antibiotic tolerance in Pseudomonas aeruginosa . Exactly how dnpA (gene locus PA5002) directs the formation of antibiotic-tolerant persister cells is currently unknown. Previous research provided evidence for a role in surface-associated process(es), possibly in lipopolysaccharide biosynthesis. In silico sequence analysis of DnpA predicts a single transmembrane domain and N in /C out orientation of DnpA. In contrast, we here show that DnpA is an integral inner membrane protein containing two transmembrane domains, with the major C-terminal part located at the cytoplasmic face. Correct insertion into the inner membrane is necessary for DnpA to promote fluoroquinolone tolerance. The membrane localization of DnpA further supports its role in cell envelope-associated process(es). In addition to shedding light on the biological role of DnpA, this study highlights the risks of overreliance on the predictive value of bioinformatics tools and the importance of rigorous experimental validation of in silico predictions.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2016-06-08
    Description: Cell wall impermeability and active efflux of drugs are among the primary reasons for drug resistance in mycobacteria. Efflux pumps are tripartite membrane localized transport proteins that expel drug molecules outside the cells. Several of such efflux pumps are annotated in mycobacteria, but few have been characterized, like MSMEG_2991, a putative efflux pump permease of Mycobacterium smegmatis . To substantiate this, we overexpressed MSMEG_2991 protein in Escherichia coli 2443. Expression of MSMEG_2991 elevated the resistance towards structurally unrelated groups of antibiotics. An active antibiotic efflux pump nature of MSMEG_2991 was revealed by assessing the acquisition of ciprofloxacin in the absence and presence of the efflux pump inhibitor, carbonyl cyanide m-chlorophenyl hydrazone, indicating the involvement of proton-motive force (pmf) during the efflux activity. MSMEG_2991 expression elevated biofilm formation in E. coli by 4-fold, keeping parity to some of the earlier reported efflux pumps. In silico analysis suggested the presence of 12 transmembrane helices in MSMEG_2991 resembling EmrD efflux pump of E. coli . Based on in vivo and in silico analyses, MSMEG_2991 may be designated as a pmf-mediated multidrug efflux pump protein that expels diverse groups of antibiotics and might as well be involved in the biofilm enhancement.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2016-06-08
    Description: Bacterial small RNAs (sRNAs) play essential roles in the post-transcriptional control of gene expression. To improve their detection by conventional microarrays, we designed a custom microarray containing a group of probes targeting known and some putative Escherichia coli sRNAs. To assess its potential in detection of sRNAs, RNA profiling experiments were performed with total RNA extracted from E. coli MG1655 cells exponentially grown in rich (Luria–Bertani) and minimal (M9/glucose) media. We found that many sRNAs could yield reasonably strong and statistically significant signals corresponding to nearly all sRNAs annotated in the EcoCyc database. Besides differential expression of two sRNAs (GcvB and RydB), expression of other sRNAs was less affected by the composition of the growth media. Other examples of the differentially expressed sRNAs were revealed by comparing gene expression of the wild-type strain and its isogenic mutant lacking functional poly(A) polymerase I ( pcnB ). Further, northern blot analysis was employed to validate these data and to assess the existence of new putative sRNAs. Our results suggest that the use of custom microarrays with improved capacities for detection of sRNAs can offer an attractive opportunity for efficient gene expression profiling of sRNAs and their target mRNAs at the whole transcriptome level.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2016-06-08
    Description: Escherichia coli DedA/Tvp38 family proteins YghB and YqjA are putative membrane transporters with 62% amino acid identity and overlapping functions. An E. coli strain (BC202) with nonpolar yghB and yqjA mutations displays cell-division defects and temperature sensitivity and is sensitive to antibiotics and alkaline pH. In this study, we performed site-directed mutagenesis on conserved, charged amino acids of YqjA and YghB. We discovered two conserved predicted membrane-embedded arginines (R130 and R136) that are critical for function in both proteins as defined by their ability to complement BC202 phenotypes, when expressed from a plasmid. Lysine can substitute for arginine at position R130 indicating a charge dependence at this position, but could not substitute at R136. In light of the established role that arginine plays in the translocation mechanism of numerous membrane transporters, we hypothesize that these amino acids play a role in the transport mechanism of these DedA/Tvp38 family proteins.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2016-06-02
    Description: Candida albicans is a dimorphic yeast commonly found on human mucosal membranes that switches from yeast to hyphal morphology in response to environmental factors. The change to hyphal growth requires histone H3 modifications by the yeast-specific histone acetyltransferase Rtt109. In addition to its role in morphogenesis, Rtt109-dependent acetylation of histone H3 lysine residues 9 and 56 has regulatory functions during DNA replication and repair. Boric acid (BA) is a broad-spectrum agent that specifically inhibits C. albicans hyphal growth, locking the fungus in its harmless commensal yeast state. The present study characterizes the effect of BA on C. albicans histone acetylation in respect to specificity, time-course and significance. We demonstrate that sublethal concentrations of BA reduce H3K9/H3K56 acetylation, both on a basal level and in response to genotoxic stress. Acetylation at other selected histone sites were not affected by BA. qRT-PCR expression analysis of the DNA repair gene Rad51 indicated no elevated level of genotoxic stress during BA exposure. A forward-mutation analysis demonstrated the BA does not increase spontaneous or induced mutations . The findings suggest that DNA repair remains effective even when histone H3 acetylation decreases and dispels the notion that BA treatment impairs genome integrity in yeast.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2016-06-02
    Description: The impact of gene mutations on the growth of the cells can be studied using pure cultures. However, the importance of certain proteins and pathways can be also examined via co-culturing wild type and its mutant derivative. Here, the relative fitness of a mutant strain that lacks the global nitrogen regulator, CodY, was examined in Bacillus cereus , a food poisoning Gram-positive bacterium. Fitness measurements revealed that the codY strain was outcompeted when cocultured with the wild-type ATCC 14579 under various rich laboratory medium, and also when inoculated in certain beverages. In nutrient-poor minimal medium, the codY mutant had comparable fitness to the wild-type strain. Interestingly, the relative fitness of the codY strain was antagonistic when it was cultivated in apple or orange juices due to unknown properties of these beverages, highlighting the importance of chemical composition of the test medium during the bacterial fitness measurements.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2016-06-04
    Description: Out of 8000 candidates from a genetic screening for Pseudomonas putida KT2442 mutants showing defects in biofilm formation, 40 independent mutants with diminished levels of biofilm were analyzed. Most of these mutants carried insertions in genes of the lap cluster, whose products are responsible for synthesis, export and degradation of the adhesin LapA. All mutants in this class were strongly defective in biofilm formation. Mutants in the flagellar regulatory genes fleQ and flhF showed similar defects to that of the lap mutants . On the contrary, transposon insertions in the flagellar structural genes fliP and flgG , that also impair flagellar motility, had a modest defect in biofilm formation. A mutation in gacS , encoding the sensor element of the GacS/GacA two-component system, also had a moderate effect on biofilm formation. Additional insertions targeted genes involved in cell envelope function: PP3222, encoding the permease element of an ABC-type transporter and tolB , encoding the periplasmic component of the Tol-OprL system required for outer membrane stability. Our results underscore the central role of LapA, suggest cross-regulation between motility and adhesion functions and provide insights on the role of cell envelope trafficking and maintenance for biofilm development in P. putida .
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2016-06-04
    Description: Horizontal gene transfer plays a significant role in bacterial evolution and has major clinical importance. Thus, it is vital to understand the mechanisms and kinetics of genetic transformations. Natural transformation is the driving mechanism for horizontal gene transfer in diverse genera of bacteria. Our study introduces a simple and rapid method for the investigation of natural transformation. This highly sensitive system allows the detection of a transformation event directly from a bacterial population without any separation step or selection of cells. The system is based on the bacterial luciferase operon from Photorhabdus luminescens . The studied molecular tools consist of the functional modules luxCDE and luxAB , which involve a replicative plasmid and an integrative gene cassette. A well-established host for bacterial genetic investigations, Acinetobacter baylyi ADP1, is used as the model bacterium. We show that natural transformation followed by homologous recombination or plasmid recircularization can be readily detected in both actively growing and static biofilm-like cultures, including very rare transformation events. The system allows the detection of natural transformation within 1 h of introducing sample DNA into the culture. The introduced method provides a convenient means to study the kinetics of natural transformation under variable conditions and perturbations.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2016-06-04
    Description: The legume–rhizobial interaction results in the formation of symbiotic nodules in which rhizobia fix nitrogen. During the process of symbiosis, reactive oxygen species (ROS) are generated. Thus, the response of rhizobia to ROS is important for successful nodulation and nitrogen fixation. In this study, we investigated how Azorhizobium caulinodans , a rhizobium that forms both root and stem nodules on its host plant, regulates ROS resistance. We found that in-frame deletions of a gene encoding the putative catalase-peroxidase katG or a gene encoding a LysR-family regulatory protein, oxyR , exhibited increased sensitivity to H 2 O 2 . We then showed that OxyR positively regulated katG expression in an H 2 O 2 -independent fashion. Furthermore, we found that deletion of katG or oxyR led to significant reduction in the number of stem nodules and decrease of nitrogen fixation capacities in symbiosis. Our results revealed that KatG and OxyR are not only critical for antioxidant defense in vitro , but also important for nodule formation and nitrogen fixation during interaction with plant hosts.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2016-06-17
    Description: Peptidoglycan (also known as murein) is an important envelope component of bacteria, and its turnover usually takes place at considerable levels during normal growth. Amino sugars and murein tripeptide resulting from murein degradation are used for resynthesis of peptidoglycan or as self-generated nutrients or energy sources for cell growth. PgrR (regulator of peptide glycan recycling; formerly YcjZ) was recently identified as a repressor of several genes participating in uptake and degradation of murein tripeptide. In this study, we identified the ycjG gene involved in murein tripeptide degradation as a new direct target of PgrR. The expression of PgrR-regulated genes including ycjY , mppA , mpaA and ycjG was repressed in the presence of a good nitrogen source, but their expression increased under poor nitrogen conditions. Under nitrogen starvation, the pgrR mutant cells exhibited faster growth than wild-type cells, implying that derepression of genes under the control of PgrR may help cells overcome nitrogen limitation. Therefore, these results suggest that nitrogen starvation induces derepression of PgrR-controlled genes involved in uptake and degradation of murein tripeptide, and this may stimulate the utilization of murein tripeptide as a nitrogen source.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2016-02-20
    Description: The central metabolite acetyl phosphate (acP) has long been proposed to influence transcription regulation by directly transferring its phosphoryl group to a number of response regulators in many bacterial species. Here, we provide in vitro evidence for this proposition and demonstrate, using an in vitro transcription system, that acP-dependent phosphorylation of aspartate 51 of CpxR induces transcription of one of its regulon members in E. coli , cpxP . We also used this in vitro transcription system to extend our previously reported in vivo data that hypothesized that acetylation of RNA polymerase (RNAP) influences acP-dependent cpxP transcription, using glutamine as a genetic mimic for acetylated arginine 291 of the carboxy-terminal domain of RNAP α subunit. The data we present here lend strong support to the hypothesis that acP has a direct effect on transcription regulation in E. coli via phosphorylation of CpxR, and that RNAP acetylation can modulate this response.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2016-03-02
    Description: Chaperones are a diverse class of ubiquitous proteins that assist other cellular proteins in folding correctly and maintaining their native structure. Many different chaperones cooperate to constitute the ‘proteostasis’ machinery in the cells. It has been proposed earlier that archaeal organisms could be ideal model systems for deciphering the basic functioning of the ‘protein folding machinery’ in higher eukaryotes. Several chaperone families have been characterized in archaea over the years but mostly one protein at a time, making it difficult to decipher the composition and mechanistics of the protein folding system as a whole. In order to deal with these lacunae, we have developed a database of all archaeal chaperone proteins, CrAgDb ( C haperone r epertoire in A rchaeal g enomes). The data have been presented in a systematic way with intuitive browse and search facilities for easy retrieval of information. Access to these curated datasets should expedite large-scale analysis of archaeal chaperone networks and significantly advance our understanding of operation and regulation of the protein folding machinery in archaea. Researchers could then translate this knowledge to comprehend the more complex protein folding pathways in eukaryotic systems. The database is freely available at http://14.139.227.92/mkumar/cragdb/ .
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2016-02-07
    Description: In bacteria, cysteine can be synthesized from serine by two steps involving an L-serine O-acetyltransferase (SAT) and a cysteine synthase (CysK). While CysK is found in the publicly available annotated genome from Lactobacillus casei ATCC 334, a gene encoding SAT ( cysE ) is missing. In this study, we found that various strains of L. casei grew in a chemically defined medium containing sulfide as the sole sulfur source, indicating the presence of a serine O-acetyltransferase. The gene lying upstream of cysK is predicted to encode a homoserine trans-succinylase ( metA ). To study the function of this gene, it was cloned from L. casei FAM18110. The purified, recombinant protein did not acylate L-homoserine in vitro . Instead, it catalyzed the formation of O-acetyl serine from L-serine and acetyl-CoA. Furthermore, the plasmid expressing the L. casei gene complemented an Escherichia coli cysE mutant strain but not an E. coli metA mutant. This clearly demonstrated that the gene annotated as metA in fact encodes the SAT function and should be annotated as cysE .
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2016-05-25
    Description: We purified a chitinase from pilei extractions of Coprinopsis cinerea fruiting bodies by ammonium sulfate precipitation and CM Sepharose cation exchange chromatography. MALDI-TOF/TOF MS analysis characterized this purified chitinase as a putative class V chitinase, ChiB1. ChiB1 hydrolyzed colloidal chitin and chitosan, whereas it did not hydrolyze chitin powder. ChiB1 cleaved only pNP-(GlcNAc) 2 , rather than pNP-GlcNAc or pNP-(Glc-NAc) 3 , to release nitrophenol. ChiB1 preferably and progressively released (GlcNAc)2 from (GlcNAc)6 and digested (GlcNAc)6 to two molecules of (GlcNAc)3 in a small proportion, but did not split (GlcNAc) 2 , so it is an exochitinase. ChiB1 has an optimum temperature range of 35°C to 40°C and an optimum pH of 5.0. ChiB1 exhibited Km and Vmax values of 2.63 mg ml –1 and 2.31 μmol min –1  mg protein –1 for colloidal chitin, respectively. The ChiB1 gene, along with another putative endochitinase (class III chitinase gene), was expressed dominantly among eight predicted chitinase genes in the genome, and its expression level increased with the maturation of fruiting bodies. ChiB1 incubation released a large amount of soluble β-glucan fractions from alkali-insoluble cell wall fractions of C. cinerea fruiting bodies, thereby it may promote the degradation of cell walls in synergy with the β-1,3-glucanases during pileus autolysis.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2016-03-24
    Description: Acidithiobacillus ferrivorans is an acidophile implicated in low-temperature biomining for the recovery of metals from sulfide minerals. Acidithiobacillus ferrivorans obtains its energy from the oxidation of inorganic sulfur compounds, and genes encoding several alternative pathways have been identified. Next-generation sequencing of At. ferrivorans RNA transcripts identified the genes coding for metabolic and electron transport proteins for energy conservation from tetrathionate as electron donor. RNA transcripts suggested that tetrathionate was hydrolyzed by the tetH1 gene product to form thiosulfate, elemental sulfur and sulfate. Despite two of the genes being truncated, RNA transcripts for the SoxXYZAB complex had higher levels than for thiosulfate quinone oxidoreductase ( doxDA genes). However, a lack of heme-binding sites in soxX suggested that DoxDA was responsible for thiosulfate metabolism. Higher RNA transcript counts also suggested that elemental sulfur was metabolized by heterodisulfide reductase ( hdr genes) rather than sulfur oxygenase reductase ( sor ). The sulfite produced as a product of heterodisulfide reductase was suggested to be oxidized by a pathway involving the sat gene product or abiotically react with elemental sulfur to form thiosulfate. Finally, several electron transport complexes were involved in energy conservation. This study has elucidated the previously unknown At. ferrivorans tetrathionate metabolic pathway that is important in biomining.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2016-04-24
    Description: TRP1 is a frequently used auxotrophic marker for genetic modifications and selections in trp – budding yeast strains, including the commonly used wild-type strain W303a. However, we found that introduction of the TRP1 gene into a trp – strain significantly affected vegetative growth at low and high temperatures. Therefore, caution should be needed when working in a trp – background strain and using the TRP1 marker to study stress response phenotypes, particularly when analyzing temperature sensitivities.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2016-03-18
    Description: The factors driving the dominance of the Calvin–Benson–Bassham cycle (CBB) or reductive citric acid cycle (rCAC) in autotrophic microorganisms in different habitats are debated. Based on costs for synthesizing a few metabolic intermediates, it has been suggested that the CBB poses a disadvantage due to higher metabolic cost. The purpose of this study was to extend this estimate of cost from metabolite synthesis to biomass synthesis. For 12 gammaproteobacteria (CBB) and five epsilonproteobacteria (rCAC), the amount of ATP to synthesize a gram of biomass from CO 2 was calculated from genome sequences via metabolic maps. The eleven central carbon metabolites needed to synthesize biomass were all less expensive to synthesize via the rCAC (66%–89% of the ATP needed to synthesize them via CBB). Differences in cell compositions did result in differing demands for metabolites among the organisms, but the differences in cost to synthesize biomass were small among organisms that used a particular pathway (e.g. rCAC), compared to the difference between pathways (rCAC versus CBB). The rCAC autotrophs averaged 0.195 moles ATP per g biomass, while their CBB counterparts averaged 0.238. This is the first in silico estimate of the relative expense of both pathways to generate biomass.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2016-03-05
    Description: Bacteria carry a number of genes that cause cell growth arrest or cell lysis upon expression. Notably, defective prophages retain many lysis proteins. Here, we identified a novel lytic gene, ydfD , on the Qin prophage segment of the Escherichia coli genome. YdfD lyses 99.9% of cells within 2 h of its induction. The co-expression of the upstream gene, dicB , encoding a cell division inhibitor, as well as sulA , encoding another cell division inhibitor, abolished YdfD-induced cell lysis. These results imply that YdfD-induced lysis is a cell division-dependent event. We further found that by deleting the hydrophobic 22-residue N-terminal domain, the resulting 42-residue C-terminal domain was still toxic to cause cell lysis. We propose that YdfD, associated with the cytoplasmic membrane, inhibits an essential cellular process(s).
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2016-05-08
    Description: Many bacteria are capable of accumulating intracellular granules of polyhydroxyalkanoates (PHA). In this work, we developed confocal microscopy analysis of bacterial cells to study changes in the diameters of cells as well as PHA granules during growth and PHA accumulation in the bacterium Cupriavidus necator H16 (formerly Ralstonia eutropha ). The cell envelope was stained by DiD ® fluorescent probe and PHA granules by Nile Red. Signals from both probes were separated based on their spectral and fluorescence life-time properties. During growth and PHA accumulation, bacterial cells increased their length but the width of the cells remained constant. The volume fraction of PHA granules in cells increased during PHA accumulation, nevertheless, its value did not exceed 40 vol. % regardless of the PHA weight content. It seems that bacterial cultures lengthen the cells in order to control the PHA volume portion. However, since similar changes in cell length were also observed in a PHA non-accumulating mutant, it seems that there is no direct control mechanism, which regulates the prolongation of the cells with respect to PHA granules volume. It is more likely that PHA biosynthesis and the length of cells are influenced by the same external stimuli such as nutrient limitation.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2016-05-20
    Description: Three putative regulatory genes, namely ttmRI, ttmRII and ttmRIII , which are present in the tetramycin ( ttm ) biosynthetic gene cluster, were found in Streptomyces ahygroscopicus . Disruption of ttmRI, ttmRII or ttmRIII reduced tetramycin production, and their complementation restored production to varying degrees. Gene expression analysis of the wild-type (WT) and mutant strains through reverse transcriptase–polymerase chain reaction (RT-PCR) of the ttm gene cluster showed that the expression levels of most of the biosynthetic genes were reduced in ttmRI , ttmRII and ttmRIII . Electrophoretic mobility shift assays demonstrated that TtmRI, TtmRII and TtmRIII bound the promoters of several genes in the ttm gene cluster. This study found that these three proteins are a group of positive regulators that activate the transcription of the ttm gene cluster in S. ahygroscopicus . In addition, ttmRII had a reduced degree of grey pigmentation. Thus, TtmRII has a pleiotropic regulatory function in the tetramycin biosynthetic pathway and in development.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2016-05-20
    Description: Sulfide:quinone oxidoreductase (SQR) is the primary sulfide-oxidizing enzyme found in all three domains of life. Of the six phylogenetically distinct types of SQR, four have representatives that have been biochemically characterized. The genome of Chlorobaculum tepidum encodes three SQR homologs. One of these, encoded by CT1087, is a type VI SQR that has been previously shown to be required for growth at high sulfide concentrations and to be expressed in sulfide-dependent manner. Therefore, CT1087 was hypothesized to be a high sulfide adapted SQR. CT1087 was expressed in Escherichia coli with an N-terminal His-tag (CT1087NHis 6 ) and purified by Ni-NTA chromatography. CT1087NHis 6 was active and contained FAD as a strongly bound cofactor. The measured kinetic parameters for CT1087NHis 6 indicate a low affinity for sulfide and a high enzymatic turnover rate consistent with the hypothesis for its function inferred from genetic and expression data. These are the first kinetic data for a type VI SQR and have implications for structure-function analyses of all SQR's.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2016-04-08
    Description: Chloroflexus aggregans is an unbranched multicellular filamentous bacterium having the ability of gliding motility. The filament moves straightforward at a constant rate, ~3 μm sec –1 on solid surface and occasionally reverses the moving direction. In this study, we successfully detected movements of glass beads on the cell-surface along long axis of the filament indicating that the cell-surface movement was the direct force for gliding. Microscopic analyses found that the cell-surface movements were confined to a cell of the filament, and each cell independently moved and reversed the direction. To understand how the cellular movements determine the moving direction of the filament, we proposed a discrete-time stochastic model; sum of the directions of the cellular movements determines the moving direction of the filament only when the filament pauses, and after moving, the filament keeps the same directional movement until all the cells pause and/or move in the opposite direction. Monte Carlo simulation of this model showed that reversal frequency of longer filaments was relatively fixed to be low, but the frequency of shorter filaments varied widely. This simulation result appropriately explained the experimental observations. This study proposed the relevant mechanism adequately describing the motility of the multicellular filament in C. aggregans .
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2016-04-10
    Description: Members of the Gram-positive lactic acid bacteria (LAB) are well-known for their beneficial properties as starter cultures and probiotics. Many LAB species produce ribosomally synthesized proteinaceous antibiotics (bacteriocins). Weissella confusa MBF8-1 is a strain isolated from a fermented soybean product that not only produces useful exopolysaccharides but also exhibits bacteriocin activity, which we call weissellicin MBF. Here, we show that bacteriocin production by W. confusa MBF8-1 is specified by a large plasmid, pWcMBF8-1. Plasmid pWcMBF8-1 (GenBank accession number KR350502), which was identified from the W. confusa MBF8-1 draft genome sequence, is 17 643 bp in length with a G + C content of 34.8% and contains 25 open reading frames (ORFs). Six ORFs constitute the weissellicin MBF locus, encoding three putative double-glycine-motif peptides (Bac1, Bac2, Bac3), an ABC transporter complex (BacTE) and a putative immunity protein (BacI). Two ORFs encode plasmid partitioning and mobilization proteins, suggesting that pWcMBF8-1 is transferable to other hosts. To the best of our knowledge, plasmid pWcMBF8-1 not only represents the first large Weissella plasmid to be sequenced but also the first to be associated with bacteriocin production in W. confusa .
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2016-04-20
    Description: Small non-coding regulatory RNAs (sRNAs) are key players in post-transcriptional regulation of gene expression. Hundreds of sRNAs have been identified in Sinorhizobium meliloti , but their biological function remains unknown for most of them. In this study, we characterized the expression pattern of the gene encoding the 77-nt sRNA MmgR in S. meliloti strain 2011. A chromosomal transcriptional reporter fusion (P mmgR - gfp ) showed that the mmgR promoter is active along different stages of the interaction with alfalfa roots. In pure cultures, P mmgR - gfp activity paralleled the sRNA abundance indicating that mmgR expression is primarily controlled at the level of transcriptional initiation. P mmgR - gfp activity was higher during growth in rhizobial defined medium (RDM) than in TY medium. Furthermore, P mmgR - gfp was induced at 60 min after shifting growing cells from TY to RDM medium, i.e. shorter than the cell doubling time. In defined RDM medium containing NO 3 – , both P mmgR - gfp and MmgR level were repressed by the addition of tryptone or single amino acids, suggesting that mmgR expression depends on the cellular nitrogen (N) status. In silico analysis failed to detect conserved motifs upstream the promoter RNA polymerase binding site, but revealed a strongly conserved motif centered at –28 that may be linked to the observed regulatory pattern by the N source.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2016-04-20
    Description: A β-glycoside hydrolase was isolated from cell walls material in Coprinopsis cinerea elongating stipes. By analysis of SDS-PAGE, MALDI-TOF/TOF MS and substrate specificity, this enzyme was characterized as an extracellular β-glucosidase which is a trimer consisting of three homosubunits. β-Glucosidase did not degrade β-glucans with modified ends, whereas it hydrolyzed various β-glucans with free ends and related oligosaccharides with β-1,3-, β-1,4- or β-1,6-linkages. Although this β-glucosidase possesses glycosyltransferase activity on laminarioligosaccharides, it did not transfer glucose residues from laminaritriose to β-glucan in stipe cell walls to produce larger β-glucan molecules; instead, it caused a decrease in the molecular size of stipe wall β-glucan by removing glucose. Relatively, the molecular size of wall β-glucans in the elongating apical stipe was less than that found in the non-elongating basal stipes, and this β-glucosidase was more highly expressed in the elongating apical stipe than in non-elongating basal regions. Therefore, we propose that β-glucosidase functions by trimming or cutting the β-glucan side chains on the β-1,3-glucan backbone to prevent them from forming longer branches, keeping the wall plastic to promote diffuse wall growth.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2016-04-21
    Description: Streptococcus mutans harbours an intracellular, human DPP IV-analogous enzyme Xaa-Pro dipeptidyl-peptidase (EC 3.4.14.11). According to previous reports, an extracellular isozyme in S. gordonii and S. suis has been associated with virulence. Speculating that even an intracellular form may aid in virulence of S. mutans , we have tried to purify, characterize and evaluate enzyme inhibition by specific inhibitors. The native enzyme was partially purified by ion-exchange and gel filtration chromatography. Owing to low yield, the enzyme was overexpressed in Lactococcus lactis and purified by affinity chromatography. The recombinant enzyme (rSm-XPDAP) had a specific activity of 1070 U mg –1 , while the V max and K m were 7 μM min –1 and 89 ± 7 μM ( n = 3), respectively. The serine protease inhibitor phenylmethylsulphonyl fluoride and a DPP IV-specific inhibitor diprotin A proved to be active against rSm-XPDAP. As a novel approach, the evaluation of the effect of anti-human DPP IV (AHD) drugs on rSm-XPDAP activity found saxagliptin to be effective to some extent ( K i = 129 ± 16 μM), which may lead to the synthesis and development of a new class of antimicrobial agents.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2016-10-22
    Description: The hydrocarbonoclastic bacterium Acinetobacter venetianus RAG-1 has attracted substantial attention due to its powerful oil-degrading capabilities and its potential to play an important ecological role in the cleanup of alkanes. In this study, we compare the transcriptome of the strain RAG-1 grown in dodecane, the corresponding alkanol (dodecanol), and sodium acetate for the characterization of genes involved in dodecane uptake and utilization. Comparison of the transcriptional responses of RAG-1 grown on dodecane led to the identification of 1074 genes that were differentially expressed relative to sodium acetate. Of these, 622 genes were upregulated when grown in dodecane. The highly upregulated genes were involved in alkane catabolism, along with stress response. Our data suggest AlkMb to be primarily involved in dodecane oxidation. Transcriptional response of RAG-1 grown on dodecane relative to dodecanol also led to the identification of permease, outer membrane protein and thin fimbriae coding genes potentially involved in dodecane uptake. This study provides the first model for key genes involved in alkane uptake and metabolism in A. venetianus RAG-1.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2016-10-22
    Description: Dissimilatory sulfate reduction is the central microbial metabolism in global sulfur cycling. Understanding the importance of sulfate reduction to Earth's biogeochemical S cycle requires aggregating single-cell processes with geochemical signals. For sulfate reduction, these signals include the ratio of stable sulfur isotopes preserved in minerals, as well as the hydrogen isotope ratios and structures of microbial membrane lipids preserved in organic matter. In this study, we cultivated the model sulfate reducer, Desulfovibrio vulgaris DSM 644 T , to investigate how these parameters were perturbed by changes in expression of the protein DsrC. DsrC is critical to the final metabolic step in sulfate reduction to sulfide. S and H isotopic fractionation imposed by the wild type was compared to three mutants. Discrimination against 34 S in sulfate, as calculated from the residual reactant, did not discernibly differ among all strains. However, a closed-system sulfur isotope distillation model, based on accumulated sulfide, produced inconsistent results in one mutant strain IPFG09. Lipids produced by IPFG09 were also slightly enriched in 2 H. These results suggest that DsrC alone does not have a major impact on sulfate-S, though may influence sulfide-S and lipid-H isotopic compositions. While intriguing, a mechanistic explanation requires further study under continuous culture conditions.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2016-09-17
    Description: Lacticin Q is an unmodified leaderless bacteriocin produced by Lactococcus lactis QU 5. It has been revealed that the production and self-immunity of lacticin Q are facilitated by a gene cluster lnqQBCDEF . The gene for a putative TetR-family transcriptional regulator, termed lnqR , was found nearby the lnqQBCDEF cluster, but its involvement in lacticin Q biosynthesis remained unknown. In this study, we created an LnqR-overexpressing QU 5 recombinant by using lactococcal constitutive promoter P 32 . The recombinant QU 5 showed enhanced production of and self-immunity to lacticin Q. RT-PCR analysis has revealed that an overexpression of LnqR increases the amounts of lnqQBCDEF transcripts, and these six genes are transcribed as an operon in a single transcriptional unit. Interestingly, LnqR expression and thus lacticin Q production by L. lactis QU 5 was found temperature dependent, while LnzR, an LnqR-homologue, in L. lactis QU 14 was expressed in a similar but not identical manner to LnqR, resulting in dissimilar bacteriocin productivities by these strains. This report demonstrates LnqR as the first TetR-family transcriptional regulator involved in LAB bacteriocin biosynthesis and that, as an exceptional case of TetR-family regulators, LnqR positively regulates the transcription of these biosynthetic genes.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2016-09-09
    Description: Cytosolic, globular droplets with an average diameter of 50 nm were observed in vitrified Thermoplasma acidophilum cells by means of cryo-electron tomography. These droplets were isolated by column chromatography and immunoprecipitation protein purification methods. Subsequent chemical and biochemical analyses identified lipid and protein components, respectively. Two major lipid components, comigrating menaquinones at the solvent front and the slower migrating Thermoplasma polar lipid U4, were detected by TLC experiments. The major protein component was identified as the 153 amino acid long Ta0547 vitellogenin-N domain protein. This domain has been found so far exclusively in large lipid transport proteins of vertebrates and non-vertebrates. Blast protein database homology searches with Ta0547 did not return any eukaryal hits; homologous sequences were found only in thermo-acidophilic archaeons. However, a profile-sequence domain search performed with the vitellogenin-N domain (PF01347) hmm-profile against the T. acidophilum proteome returned Ta0547 as hit. Electron microscopy appearance of isolated droplets resembled to lipoprotein particles. However, no (tetraether) lipid layer could be detected on the droplets surface, rather hydrophobic compounds of the electron dense lumen were surrounded by a denser discontinuous protein boundary. Based on described features, these particles qualify for a novel lipoprotein particle category, what we nominated Thermoplasma Quinone Droplet.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2016-09-17
    Description: Glyoxal (GO) belongs to the reactive electrophilic species generated in vivo in all organisms. In order to identify targets of GO and their response mechanisms, we attempted to screen for GO-sensitive mutants by random insertions of Tn phoA -132. The genes responsible for GO susceptibility were functionally classified as the following: (i) tRNA modification; trmE , gidA and truA , (ii) DNA repair; recA and recC , (iii) toxin–antitoxin; mqsA and (iv) redox metabolism; yqhD and caiC . In addition, an insertion in the crp gene, encoding the cAMP responsive transcription factor, exhibits a GO-resistant phenotype, which is consistent with the phenotype of adenylate cyclase ( cya ) mutant showing GO resistance. This suggests that global regulation involving cAMP is operated in a stress response to GO. To further characterize the CRP-regulated genes directly associated with GO resistance, we created double mutants deficient in both crp and one of the candidate genes including yqhD , gloA and sodB . The results indicate that these genes are negatively regulated by CRP as confirmed by real-time RT-PCR. We propose that tRNA as well as DNA are the targets of GO and that toxin/antitoxin, antioxidant and cAMP are involved in cellular response to GO.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2016-12-23
    Description: The culturability of Escherichia coli , Ralstonia eutropha and Bacillus subtilis after incubation in phosphate-buffered saline at either 5°C or 30°C was determined. The culturability of B. subtilis showed little dependence on temperature. The culturability of E. coli rapidly decreased at 30°C but remained almost constant at 5°C. In contrast, the culturability of R. eutropha decreased by three orders of magnitude at 5°C within 24 h but only moderately decreased (one order of magnitude) at 30°C. Remarkably, prolonged incubation of R. eutropha at 30°C resulted in a full recovery of colony forming units in contrast to only a partial recovery at 5°C. Ralstonia eutropha cells at 30°C remained culturable for 3 weeks while culturability at 5°C constantly decreased. The effect of temperature was significantly stronger in a polyhydroxybutyrate-negative mutant. Our data show that accumulated polyhydroxybutyrate has a cold-protective function and can prevent R. eutropha entering the viable but not culturable state.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2016-10-20
    Description: Corynebacterium glutamicum is able to metabolize different nitrogen and carbon sources. In standard minimal media, ammonium and urea typically serve as nitrogen source and glucose or sucrose as carbon and energy source; however, amino acids might also play a role as nitrogen, carbon and energy source. In this study, the function of the putative glutaminase GlsK was investigated. A glsK deletion strain showed impaired growth with L-glutamine as carbon and energy source, while growth was improved upon glsK overexpression. GlsK possesses a carboxy-terminal domain that seems to be restricted to Corynebacterium species . A truncated GlsK lacking this extension led to faster growth, indicating a regulatory function of this domain. In fact, GlsK activity is regulated in a pH-dependent manner depending on the carboxy-terminal extension, and is positively influenced by cAMP. Furthermore, the C-terminal extension seems to be important for oligomerization of GlsK.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2016-09-02
    Description: Sulfur is an essential element for growth and many physiological functions. As sulfur sources for Escherichia coli and related bacteria, specific transporters import various sulfur-containing compounds from the environment. In this study, we identified and characterized an alternative function of the cystine transporter YdjN in E. coli as a transporter of S -sulfocysteine, a sulfur-containing intermediate in the assimilatory cysteine biosynthesis that is used as a sulfur source for the growth of E. coli . We also demonstrated that the transport of S -sulfocysteine via YdjN depends on the transcriptional regulator CysB, a master regulator that controls most of the genes involved in sulfur assimilation and cysteine metabolism. We found that the use of S -sulfocysteine as a sulfur source depends on glutathione because mutations in glutathione biosynthetic genes abolish growth when S -sulfocysteine is used as a sole sulfur source, thereby supporting the previous findings that the conversion of S -sulfocysteine to cysteine is catalyzed by glutaredoxins. To the best of our knowledge, this is the first report of a functional S -sulfocysteine transporter across organisms, which strongly supports the hypothesis that S -sulfocysteine is not only a metabolic intermediate but also a physiologically significant substance in specific natural environments.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2016-12-16
    Description: Pseudomonas plecoglossicida is a facultative fish pathogen. Recent studies showed that P. plecoglossicida infection in fish was associated with temperature. The aim of this study was to compare the secretomes of P. plecoglossicida cultured in vitro at representative temperatures for pathogenic (20°C) and less pathogenic (30°C) phenotypes. Thirteen proteins in the culture supernatants of P. plecoglossicida showed significant difference in abundance at 20 vs. 30°C. Four proteins were strongly increased at 20°C, including two hemolysin co-regulated proteins (Hcp) that are part of the bacterial type VI secretion system (T6SS), flagellin and an unknown protein. Immunoblot analysis verified the induced secretion of Hcps at 20°C. Furthermore, the upregulation of Hcps at 20°C was confirmed at transcriptional level by RT-qPCR analysis, which also demonstrated the induction of expression of other T6SS-related genes at 20°C. Taken together, we demonstrate the presence of two functionally active T6SS proteins in fish pathogenic P. plecoglossicida strains, as evidenced by the secretion of the T6SS substrate Hcp, the production of which were found to be controlled by temperature. Our findings also support efforts to develop vaccines targeting secreted virulence factors as prophylactic strategies for diseases in fish caused by P. plecoglossicida .
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2017-01-13
    Description: Earlier, vitamin C was demonstrated to sterilize Mycobacterium tuberculosis culture via Fenton's reaction at high concentration. It alters the regulatory pathways associated with stress response and dormancy. Since (p)ppGpp is considered to be the master regulator of stress response and is responsible for bacterial survival under stress, we tested the effect of vitamin C on the formation of (p)ppGpp. In vivo estimation of (p)ppGpp showed a decrease in (p)ppGpp levels in vitamin C-treated M. smegmatis cells in comparison to the untreated cells. Furthermore, in vitro (p)ppGpp synthesis using Rel MSM enzyme was conducted in order to confirm the specificity of the inhibition in the presence of variable concentrations of vitamin C. We observed that vitamin C at high concentration can inhibit the synthesis of (p)ppGpp. We illustrated binding of vitamin C to Rel MSM by isothermal titration calorimetry. Enzyme kinetics was followed where K 0.5 was found to be increased with the concomitant reduction of V max value suggesting mixed inhibition. Both long-term survival and biofilm formation were inhibited by vitamin C. The experiments suggest that vitamin C has the potential to be developed as the inhibitor of (p)ppGpp synthesis and stress response, at least in the concentration range used here.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2017-01-19
    Description: Although nitric oxide (NO) is an important signaling molecule in bacteria and higher organisms, excessive intracellular NO is highly reactive and dangerous. Therefore, living cells need strict regulation systems for cellular NO homeostasis. Recently, we discovered that Streptomyces coelicolor A3(2) retains the nitrogen oxide cycle (NO 3 – -〉NO 2 – -〉NO-〉NO 3 – ) and nitrite removal system. The nitrogen oxide cycle regulates cellular NO levels, thereby controlling secondary metabolism initiation (red-pigmented antibiotic, RED production) and morphological differentiation. Nitrite induces gene expression in neighboring cells, suggesting another role for this cycle as a producer of transmittable intercellular communication molecules. Here, we demonstrated that ammonium-producing nitrite reductase (NirBD) is involved in regulating NO homeostasis in S. coelicolor A3(2). NirBD was constitutively produced in culture independently of GlnR, a known transcriptional factor. NirBD cleared the accumulated nitrite from the medium. Nir deletion mutants showed increased NO-dependent gene expression at later culture stages, whereas the wild-type M145 showed decreased expression, suggesting that high NO concentration was maintained in the mutant. Moreover, the nir deletion mutant produced more RED than that produced by the wild-type M145. These results suggest that NO 2 – removal by NirBD is important to regulate NO homeostasis and to complete NO signaling in S. coelicolor .
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2016-10-08
    Description: In a non-targeted analysis of thiol-containing compounds in the hyperthermophilic methanogen Methanocaldococcus jannaschii , we discovered three unexpected metabolites: 3-mercaptopropionic acid (MPA), 2-hydroxy-4-mercaptobutyric acid (HMBA) and 4-mercapto-2-oxobutyric acid (MOB). HMBA and MOB have never been reported as natural products, while MPA is highly prevalent in aquatic environments as a result of biotic and abiotic processing of sulfur-containing compounds. This report provides evidence that HMBA and MOB are part of a biosynthetic pathway to generate MPA in M. jannaschii . We show that HMBA can be biosynthesized from malate semialdehyde and hydrogen sulfide, likely using a mechanism similar to that proposed for coenzyme M, coenzyme B and homocysteine biosynthesis in methanogens, where an aldehyde is converted to a thiol. The L-sulfolactate dehydrogenase, derived from the MJ1425 gene, is shown to catalyze the NAD-dependent oxidation of HMBA to MOB. Finally, we demonstrate that HMBA can be used as a biosynthetic precursor to MPA in M. jannaschii cell extracts. This proposed pathway may contribute to the wide occurrence of MPA in marine environments and indicates that MPA must serve some important function in M. jannaschii .
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2016-10-08
    Description: Upon transition of Mycobacterium smegmatis into the dormant state, accumulation of a dark brown fluorescent pigment was observed. This pigment gave bright red fluorescence in both cells and the culture medium. Based on 1 H-NMR, MALDI and UV spectra, the fluorescent compounds, extracted from the culture medium as well as from the dormant cells, were concluded to be a mixture of free coproporphyrin III and uroporphyrin III and their corresponding methyl esters. A possible significance of porphyrin pigment accumulation in the dormant cells is discussed.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2016-10-08
    Description: Secreted proteins, those involved in cell wall biogenesis, are likely to play a role in communication in the symbiotic interaction between the fungal endophyte Epichloë festucae with perennial ryegrass ( Lolium perenne ), particularly given the close association between fungal hyphae and the plant cell wall. Our hypothesis was that secreted proteins are likely to be responsible for establishing and maintaining a normal symbiotic relationship. We analyzed an endophyte EST database for genes with predicted signal peptide sequences. Here, we report the identification and characterization of rhgA ; a gene involved in the regulation of hyphal growth in planta . In planta analysis of rhgA mutants showed that disruption of rhgA resulted in extensive unregulated hyphal growth. This phenotype was fully complemented by insertion of the rhgA gene and suggests that rhgA is important for maintaining normal hyphal growth during symbiosis.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2016-10-08
    Description: Thermotoga maritima cells are distinguished by a sheath-like structure called the toga that loosely encloses single or multiple cells. During growth, and particularly at late phases of population growth, the toga distends from the poles of many cells. Little is known about this phenomenon so this study presents basic information about this process. We first provide quantitative data demonstrating that cells showing toga distensions increase in number during growth and that the phenomenon is not due to acidification of their growth medium. Comparisons of the area enclosed by these distended togas to the area of the cytoplasm show that the toga continues to grow as the growth of the cytoplasm ceases. Measuring the expression of many genes involved in toga composition and biosynthesis showed a 5.2-, 7.9- and 3-fold increase in the expression of toga structural protein genes ompB (porin), ompA1 and ompA2 (alpha helical, transperiplasm anchors), respectively. Additionally, expression of the putative pyruvyl transferase gene ( csaB ) was upregulated 4.4-fold in stationary phase, while the beta barrel assembly factor gene ( bamA ) showed only a 1.2-fold increase in expression. These findings demonstrate that toga distension is an active process and one that needs further investigation so we can understand the selective forces that operate in high-temperature environments.
    Keywords: Physiology & Biochemistry
    Print ISSN: 0378-1097
    Electronic ISSN: 1574-6968
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...