ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ocean dynamics  (22)
  • American Meteorological Society  (22)
  • 2010-2014  (22)
  • 1995-1999
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 2556-2574, doi:10.1175/2008JPO3666.1.
    Description: Vertical profiles of horizontal velocity obtained during the Mid-Ocean Dynamics Experiment (MODE) provided the first published estimates of the high vertical wavenumber structure of horizontal velocity. The data were interpreted as being representative of the background internal wave field, and thus, despite some evidence of excess downward energy propagation associated with coherent near-inertial features that was interpreted in terms of atmospheric generation, these data provided the basis for a revision to the Garrett and Munk spectral model. These data are reinterpreted through the lens of 30 years of research. Rather than representing the background wave field, atmospheric generation, or even near-inertial wave trapping, the coherent high wavenumber features are characteristic of internal wave capture in a mesoscale strain field. Wave capture represents a generalization of critical layer events for flows lacking the spatial symmetry inherent in a parallel shear flow or isolated vortex.
    Description: Salary support for this analysis was provided by Woods Hole Oceanographic Institution bridge support funds.
    Keywords: Eddies ; Ocean dynamics ; Internal waves ; Ocean variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 37 (2007): 1066–1076, doi:10.1175/JPO3032.1.
    Description: A 50-day time series of high-resolution temperature in the deepest layers of the Canada Basin in the Arctic Ocean indicates that the deep Canada Basin is a dynamically active environment, not the quiet, stable basin often assumed. Vertical motions at the near-inertial (tidal) frequency have amplitudes of 10– 20 m. These vertical displacements are surprisingly large considering the downward near-inertial internal wave energy flux typically observed in the Canada Basin. In addition to motion in the internal-wave frequency band, the measurements indicate distinctive subinertial temperature fluctuations, possibly due to intrusions of new water masses.
    Keywords: Arctic ; Ocean dynamics ; Ship observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 418–431, doi:10.1175/JPO-D-12-087.1.
    Description: The overflow of the dense water mass across the Greenland–Scotland Ridge (GSR) from the Nordic Seas drives the Atlantic meridional overturning circulation (AMOC). The Nordic Seas is a large basin with an enormous reservoir capacity. The volume of the dense water above the GSR sill depth in the Nordic Seas, according to previous estimates, is sufficient to supply decades of overflow transport. This large capacity buffers overflow’s responses to atmospheric variations and prevents an abrupt shutdown of the AMOC. In this study, the authors use a numerical and an analytical model to show that the effective reservoir capacity of the Nordic Seas is actually much smaller than what was estimated previously. Basin-scale oceanic circulation is nearly geostrophic and its streamlines are basically the same as the isobaths. The vast majority of the dense water is stored inside closed geostrophic contours in the deep basin and thus is not freely available to the overflow. The positive wind stress curl in the Nordic Seas forces a convergence of the dense water toward the deep basin and makes the interior water even more removed from the overflow-feeding boundary current. Eddies generated by the baroclinic instability help transport the interior water mass to the boundary current. But in absence of a robust renewal of deep water, the boundary current weakens rapidly and the eddy-generating mechanism becomes less effective. This study indicates that the Nordic Seas has a relatively small capacity as a dense water reservoir and thus the overflow transport is sensitive to climate changes.
    Description: This study has been supported by National Science Foundation (OCE0927017,ARC1107412).
    Description: 2013-08-01
    Keywords: Bottom currents ; Drainage flow ; Meridional overturning circulation ; Ocean dynamics ; Potential vorticity ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 283–300, doi:10.1175/JPO-D-11-0240.1.
    Description: Motivated by the recent interest in ocean energetics, the widespread use of horizontal eddy viscosity in models, and the promise of high horizontal resolution data from the planned wide-swath satellite altimeter, this paper explores the impacts of horizontal eddy viscosity and horizontal grid resolution on geostrophic turbulence, with a particular focus on spectral kinetic energy fluxes Π(K) computed in the isotropic wavenumber (K) domain. The paper utilizes idealized two-layer quasigeostrophic (QG) models, realistic high-resolution ocean general circulation models, and present-generation gridded satellite altimeter data. Adding horizontal eddy viscosity to the QG model results in a forward cascade at smaller scales, in apparent agreement with results from present-generation altimetry. Eddy viscosity is taken to roughly represent coupling of mesoscale eddies to internal waves or to submesoscale eddies. Filtering the output of either the QG or realistic models before computing Π(K) also greatly increases the forward cascade. Such filtering mimics the smoothing inherent in the construction of present-generation gridded altimeter data. It is therefore difficult to say whether the forward cascades seen in present-generation altimeter data are due to real physics (represented here by eddy viscosity) or to insufficient horizontal resolution. The inverse cascade at larger scales remains in the models even after filtering, suggesting that its existence in the models and in altimeter data is robust. However, the magnitude of the inverse cascade is affected by filtering, suggesting that the wide-swath altimeter will allow a more accurate determination of the inverse cascade at larger scales as well as providing important constraints on smaller-scale dynamics.
    Description: BKA received support from Office of Naval Research Grant N00014-11-1-0487, National Science Foundation (NSF) Grants OCE-0924481 and OCE- 09607820, and University of Michigan startup funds. KLP acknowledges support from Woods Hole Oceanographic Institution bridge support funds. RBS acknowledges support from NSF grants OCE-0960834 and OCE-0851457, a contract with the National Oceanography Centre, Southampton, and a NASA subcontract to Boston University. JFS and JGR were supported by the projects ‘‘Global and remote littoral forcing in global ocean models’’ and ‘‘Agesotrophic vorticity dynamics of the ocean,’’ respectively, both sponsored by the Office of Naval Research under program element 601153N.
    Description: 2013-08-01
    Keywords: Eddies ; Nonlinear dynamics ; Ocean dynamics ; Satellite observations ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 37 (2007): 1103-1121, doi:10.1175/jpo3041.1.
    Description: The role of mesoscale oceanic eddies is analyzed in a quasigeostrophic coupled ocean–atmosphere model operating at a large Reynolds number. The model dynamics are characterized by decadal variability that involves nonlinear adjustment of the ocean to coherent north–south shifts of the atmosphere. The oceanic eddy effects are diagnosed by the dynamical decomposition method adapted for nonstationary external forcing. The main effects of the eddies are an enhancement of the oceanic eastward jet separating the subpolar and subtropical gyres and a weakening of the gyres. The flow-enhancing effect is due to nonlinear rectification driven by fluctuations of the eddy forcing. This is a nonlocal process involving generation of the eddies by the flow instabilities in the western boundary current and the upstream part of the eastward jet. The eddies are advected by the mean current to the east, where they backscatter into the rectified enhancement of the eastward jet. The gyre-weakening effect, which is due to the time-mean buoyancy component of the eddy forcing, is a result of the baroclinic instability of the westward return currents. The diagnosed eddy forcing is parameterized in a non-eddy-resolving ocean model, as a nonstationary random process, in which the corresponding parameters are derived from the control coupled simulation. The key parameter of the random process—its variance—is related to the large-scale flow baroclinicity index. It is shown that the coupled model with the non-eddy-resolving ocean component and the parameterized eddies correctly simulates climatology and low-frequency variability of the control eddy-resolving coupled solution.
    Description: Funding for this work came from NSF Grants OCE 02-221066 and OCE 03-44094. Additional funding for PB was provided by the U.K. Royal Society Fellowship and by WHOI Grants 27100056 and 52990035.
    Keywords: Ocean dynamics ; Ocean models ; Eddies ; Jets ; Coupled models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 37 (2007): 1092–1097, doi:10.1175/JPO3045.1.
    Description: The impact of the observed relationship between sea surface temperature and surface wind stress on baroclinic instability in the ocean is explored using linear theory and a nonlinear model. A simple parameterization of the influence of sea surface temperature on wind stress is used to derive a surface boundary condition for the vertical velocity at the base of the oceanic Ekman layer. This boundary condition is applied to the classic linear, quasigeostrophic stability problem for a uniformly sheared flow originally studied by Eady in the 1940s. The results demonstrate that for a wind directed from warm water toward cold water, the coupling acts to enhance the growth rate, and increase the wavelength, of the most unstable wave. Winds in the opposite sense reduce the growth rate and decrease the wavelength of the most unstable wave. For representative coupling strengths, the change in growth rate can be as large as ±O(50%). This effect is largest for shallow, strongly stratified, low-latitude flows.
    Description: This work was supported by the Office of Naval Research Grant N00014-05-1-0300.
    Keywords: Wind stress ; Instability ; Sea surface temperature ; Baroclinic flows ; Ocean dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2006. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 36 (2006): 2185-2198, doi:10.1175/JPO2967.1.
    Description: The time-dependent response of an ocean basin to the imposition of cooling (or heating) is examined in the context of a quasigeostrophic, two-layer model on the beta plane. The focus is on the structure and magnitude of the vertical motion and its response to both a switch-on forcing and a periodic forcing. The model employed is a time-dependent version of an earlier model used to discuss the intensification of sinking in the region of the western boundary current. The height of the interface of the two-layer model serves as an analog of temperature, and the vertical velocity at the interface consists of a cross-isopycnal velocity modeled in terms of a relaxation to a prescribed interface height, an adiabatic representation of eddy thickness fluxes parameterized as lateral diffusion of thickness, and the local vertical motion of the interface itself. The presence of time dependence adds additional dynamical features to the problem, in particular the emergence of low-frequency, weakly damped Rossby basin modes. If the buoyancy forcing is zonally uniform the basin responds to a switch-on of the forcing by coming into steady-state equilibrium after the passage of a single baroclinic Rossby wave. If the forcing is nonuniform in the zonal direction, a sequence of Rossby basin modes is excited and their decay is required before the basin achieves a steady state. For reasonable parameter values the boundary layers, in which both horizontal and vertical circulations are closed, are quasi-steady and respond to the instantaneous state of the interior. As in the steady problem the flow is sensitive to small nonquasigeostrophic mass fluxes across the perimeter of the basin. These fluxes generally excite basin modes as well. The basin modes will also be weakly excited if the beta-plane approximation is relaxed. The response to periodic forcing is also examined, and the sensitivity of the response to the structure of the forcing is similar to the switch-on problem.
    Description: This research was supported in part by NSF Grant OCE-9901654,
    Keywords: Vertical motion ; Ocean dynamics ; Buoyancy ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 25 (2012): 343–349, doi:10.1175/JCLI-D-11-00059.1.
    Description: The Equatorial Undercurrent (EUC) is a major component of the tropical Pacific Ocean circulation. EUC velocity in most global climate models is sluggish relative to observations. Insufficient ocean resolution slows the EUC in the eastern Pacific where nonlinear terms should dominate the zonal momentum balance. A slow EUC in the east creates a bottleneck for the EUC to the west. However, this bottleneck does not impair other major components of the tropical circulation, including upwelling and poleward transport. In most models, upwelling velocity and poleward transport divergence fall within directly estimated uncertainties. Both of these transports play a critical role in a theory for how the tropical Pacific may change under increased radiative forcing, that is, the ocean dynamical thermostat mechanism. These findings suggest that, in the mean, global climate models may not underrepresent the role of equatorial ocean circulation, nor perhaps bias the balance between competing mechanisms for how the tropical Pacific might change in the future. Implications for model improvement under higher resolution are also discussed.
    Description: KBK gratefully acknowledges the J. Lamar Worzel Assistant Scientist Fund. GCJ is supported by NOAA’s Office of Oceanic and Atmospheric Research. RM gratefully acknowledges the generous support and hospitality of the Divecha Centre for Climate Change and CAOS at IISc, Bangalore, and partial support by NASA PO grants.
    Description: 2012-07-01
    Keywords: Tropics ; Ocean circulation ; Ocean dynamics ; Climate models ; Coupled models ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 659–668, doi:10.1175/JPO-D-11-0125.1.
    Description: Ice-tethered profiler (ITP) measurements from the Arctic Ocean’s Canada Basin indicate an ocean surface layer beneath sea ice with significant horizontal density structure on scales of hundreds of kilometers to the order 1 km submesoscale. The observed horizontal gradients in density are dynamically important in that they are associated with restratification of the surface ocean when dense water flows under light water. Such restratification is prevalent in wintertime and competes with convective mixing upon buoyancy forcing (e.g., ice growth and brine rejection) and shear-driven mixing when the ice moves relative to the ocean. Frontal structure and estimates of the balanced Richardson number point to the likelihood of dynamical restratification by isopycnal tilt and submesoscale baroclinic instability. Based on the evidence here, it is likely that submesoscale processes play an important role in setting surface-layer properties and lateral density variability in the Arctic Ocean.
    Description: Funding was provided by the National Science Foundation Office of Polar Programs Arctic Sciences Section under Awards ARC-0519899, ARC-0856479, and ARC-0806306. Support was also provided by the Woods Hole Oceanographic Institution Arctic Research Initiative.
    Description: 2012-10-01
    Keywords: Arctic ; Ocean dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 27 (2014): 2405–2416, doi:10.1175/JCLI-D-13-00359.1.
    Description: Several recent studies utilizing global climate models predict that the Pacific Equatorial Undercurrent (EUC) will strengthen over the twenty-first century. Here, historical changes in the tropical Pacific are investigated using the Simple Ocean Data Assimilation (SODA) reanalysis toward understanding the dynamics and mechanisms that may dictate such a change. Although SODA does not assimilate velocity observations, the seasonal-to-interannual variability of the EUC estimated by SODA corresponds well with moored observations over a ~20-yr common period. Long-term trends in SODA indicate that the EUC core velocity has increased by 16% century−1 and as much as 47% century−1 at fixed locations since the mid-1800s. Diagnosis of the zonal momentum budget in the equatorial Pacific reveals two distinct seasonal mechanisms that explain the EUC strengthening. The first is characterized by strengthening of the western Pacific trade winds and hence oceanic zonal pressure gradient during boreal spring. The second entails weakening of eastern Pacific trade winds during boreal summer, which weakens the surface current and reduces EUC deceleration through vertical friction. EUC strengthening has important ecological implications as upwelling affects the thermal and biogeochemical environment. Furthermore, given the potential large-scale influence of EUC strength and depth on the heat budget in the eastern Pacific, the seasonal strengthening of the EUC may help reconcile paradoxical observations of Walker circulation slowdown and zonal SST gradient strengthening. Such a process would represent a new dynamical “thermostat” on CO2-forced warming of the tropical Pacific Ocean, emphasizing the importance of ocean dynamics and seasonality in understanding climate change projections.
    Description: EJDis supported by NSFGrantsOCE-1031971 and OCE-1233282. KBK is supported by NSF Grant OCE-1233282.
    Description: 2014-09-15
    Keywords: Tropics ; Currents ; Ocean dynamics ; Atmosphere-ocean interaction ; Climate variability ; Reanalysis data
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 21 (2014): 2015–2025, doi:10.1175/JTECH-D-13-00262.1.
    Description: The NOAA Tropical Atmosphere Ocean (TAO) moored array has, for three decades, been a valuable resource for monitoring and forecasting El Niño–Southern Oscillation and understanding physical oceanographic as well as coupled processes in the tropical Pacific influencing global climate. Acoustic Doppler current profiler (ADCP) measurements by TAO moorings provide benchmarks for evaluating numerical simulations of subsurface circulation including the Equatorial Undercurrent (EUC). Meanwhile, the Sea Education Association (SEA) has been collecting data during repeat cruises to the central equatorial Pacific Ocean (160°–126°W) throughout the past decade that provide useful cross validation and quantitative insight into the potential for stationary observing platforms such as TAO to incur sampling biases related to the strength of the EUC. This paper describes some essential sampling characteristics of the SEA dataset, compares SEA and TAO velocity measurements in the vicinity of the EUC, shares new insight into EUC characteristics and behavior only observable in repeat cross-equatorial sections, and estimates the sampling bias incurred by equatorial TAO moorings in their estimates of the velocity and transport of the EUC. The SEA high-resolution ADCP dataset compares well with concurrent TAO measurements (RMSE = 0.05 m s−1; R2 = 0.98), suggests that the EUC core meanders sinusoidally about the equator between ±0.4° latitude, and reveals a mean sampling bias of equatorial measurements (e.g., TAO) of the EUC’s zonal velocity of −0.14 ± 0.03 m s−1 as well as a ~10% underestimation of EUC volume transport. A bias-corrected monthly record and climatology of EUC strength at 140°W for 1990–2010 is presented.
    Description: The authors thank the NSF Physical Oceanography program (OCE-1233282) and the WHOI Academic Programs Office for funding.
    Description: 2015-03-01
    Keywords: Pacific Ocean ; Tropics ; Currents ; Ocean dynamics ; Buoy observations ; Sampling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 24 (2007): 1924-1935, doi:10.1175/JTECH2078.1.
    Description: A field evaluation of two new dissolved-oxygen sensing technologies, the Aanderaa Instruments AS optode model 3830 and the Sea-Bird Electronics, Inc., model SBE43, was carried out at about 32-m water depth in western Massachusetts Bay. The optode is an optical sensor that measures fluorescence quenching by oxygen molecules, while the SBE43 is a Clark polarographic membrane sensor. Optodes were continuously deployed on bottom tripod frames by exchanging sensors every 4 months over a 19-month period. A Sea-Bird SBE43 was added during one 4-month deployment. These moored observations compared well with oxygen measurements from profiles collected during monthly shipboard surveys conducted by the Massachusetts Water Resources Authority. The mean correlation coefficient between the moored measurements and shipboard survey data was 〉0.9, the mean difference was 0.06 mL L−1, and the standard deviation of the difference was 0.15 mL L−1. The correlation coefficient between the optode and the SBE43 was 〉0.9 and the mean difference was 0.07 mL L−1. Optode measurements degraded when fouling was severe enough to block oxygen molecules from entering the sensing foil over a significant portion of the sensing window. Drift observed in two optodes beginning at about 225 and 390 days of deployment is attributed to degradation of the sensing foil. Flushing is necessary to equilibrate the Sea-Bird sensor. Power consumption by the SBE43 and required pump was 19.2 mWh per sample, and the optode consumed 0.9 mWh per sample, both within expected values based on manufacturers’ specifications.
    Description: This work was funded by the MWRA and USGS.
    Keywords: Instrumentation ; Sensors ; Ocean dynamics ; Ship observations ; In situ observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 1028–1041, doi:10.1175/JPO-D-12-0159.1.
    Description: The circulation induced by the interaction of surface Ekman transport with an island is considered using both numerical models and linear theory. The basic response is similar to that found for the interaction of Ekman layers and an infinite boundary, namely downwelling (upwelling) in narrow boundary layers and deformation-scale baroclinic boundary layers with associated strong geostrophic flows. The presence of the island boundary, however, allows the pressure signal to propagate around the island so that the regions of upwelling and downwelling are dynamically connected. In the absence of stratification the island acts as an effective barrier to the Ekman transport. The presence of stratification supports baroclinic boundary currents that provide an advective pathway from one side of the island to the other. The resulting steady circulation is quite complex. Near the island, both geostrophic and ageostrophic velocity components are typically large. The density anomaly is maximum below the surface and, for positive wind stress, exhibits an anticyclonic phase rotation with depth (direction of Kelvin wave propagation) such that anomalously warm water can lie below regions of Ekman upwelling. The horizontal and vertical velocities exhibit similar phase changes with depth. The addition of a sloping bottom can act to shield the deep return flow from interacting with the island and providing mass transport into/out of the surface Ekman layer. In these cases, the required transport is provided by a pair of recirculation gyres that connect the narrow upwelling/downwelling boundary layers on the eastern and western sides of the island, thus directly connecting the Ekman transport across the island.
    Description: This study was supported by the National Science Foundation under Grants OCE-0826656 and OCE-0959381 (MAS), and OCE-0925061 (JP).
    Description: 2013-11-01
    Keywords: Coastal flows ; Ekman pumping/transport ; Ocean dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 1398–1406, doi:10.1175/JPO-D-13-028.1.
    Description: An adiabatic, inertial, and quasigeostrophic model is used to discuss the interaction of surface Ekman transport with an island. The theory extends the recent work of Spall and Pedlosky to include an analytical and nonlinear model for the interaction. The presence of an island that interrupts a uniform Ekman layer transport raises interesting questions about the resulting circulation. The consequential upwelling around the island can lead to a local intake of fluid from the geostrophic region beneath the Ekman layer or to a more complex flow around the island in which the fluid entering the Ekman layer on one portion of the island's perimeter is replaced by a flow along the island's boundary from a downwelling region located elsewhere on the island. This becomes especially pertinent when the flow is quasigeostrophic and adiabatic. The oncoming geostrophic flow that balances the offshore Ekman flux is largely diverted around the island, and the Ekman flux is fed by a transfer of fluid from the western to the eastern side of the island. As opposed to the linear, dissipative model described earlier, this transfer takes place even in the absence of a topographic skirt around the island. The principal effect of topography in the inertial model is to introduce an asymmetry between the circulation on the northern and southern sides of the island. The quasigeostrophic model allows a simple solution to the model problem with topography and yet the resulting three-dimensional circulation is surprisingly complex with streamlines connecting each side of the island.
    Description: This research was supported in part by NSF Grant OCE Grant 0925061.
    Keywords: Baroclinic flows ; Large-scale motions ; Nonlinear dynamics ; Ocean circulation ; Ocean dynamics ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 1334-1339, doi:10.1175/2007JPO3830.1.
    Description: The first-order effects of nonlinearity on the thickness and frictionally driven flux in the Ekman layer are described for the case of an Ekman layer on a solid, flat plate driven by an overlying geostrophic flow as well as the Ekman layer on a free surface driven by a wind stress in the presence of a deep geostrophic current. In both examples, the fluid is homogeneous. Particular attention is paid to the effect of nonlinearity in determining the thickness of the Ekman layer in both cases. An analytical expression for the Ekman layer thickness as a function of Rossby number is given when the Rossby number is small. The result is obtained by insisting that the perturbation expansion of the Ekman problem in powers of the Rossby number remains uniformly valid. There are two competing physical effects. The relative vorticity of the geostrophic currents tends to reduce the width of the layer, but the vertical velocity induced in the layer can fatten or thin the layer depending on the sign of the vertical velocity. The regularized expansion is shown to give, to lowest order, expressions for the flux in agreement with earlier calculations.
    Description: This research was supported in part by NSF Grant OCE-0451086.
    Keywords: Ekman pumping/transport ; Nonlinear dynamics ; Dynamics ; Ocean dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 39 (2009): 2711-2734, doi:10.1175/2009JPO4093.1.
    Description: Multiple alternating zonal jets observed in the ocean are studied with an idealized quasigeostrophic zonal-channel model, with the supercritical, zonal background flow imposed. Both eastward and westward background flows with vertical shear are considered. The underlying nonlinear dynamics is illuminated with analysis of the vertical-mode interactions and time-mean eddy fluxes. Interactions between the vertical modes are systematically studied. The barotropic component of the jets is maintained by both barotropic–barotropic and baroclinic–baroclinic time-mean interactions; thus, the barotropic component of the jets cannot be accurately simulated with a randomly forced barotropic model. The roles of the vertical-mode interactions in driving the baroclinic component of the jets are also characterized. Not only the first but also the second baroclinic mode is found to be important for maintaining the baroclinic component of the jets, whereas the barotropic component of the jets is maintained mostly by the barotropic and first baroclinic modes. The properties of the eddy forcing were systematically studied. It is shown that the baroclinic component of the jets is maintained by Reynolds stress forcing and resisted by form stress forcing only in the eastward background flow. In the westward background flow, the jets are maintained by form stress forcing and resisted by Reynolds stress forcing. The meridional scaling and kinematical properties of the jets are studied as well as the roles of meridional boundaries. The Rhines scaling for meridional spacing of the jets is not generally confirmed, and it is also shown that there are multiple stable equilibria with different numbers of the time-mean jets. It is also found that the jets are associated with alternating weak barriers to the meridional material transport, but the locations of these barriers are not unique and depend on the direction of the background flow and depth. Finally, if the channel is closed with meridional walls, then the jets become more latent but the eddy forcing properties do not change qualitatively.
    Description: Funding for PB was provided by NSF Grants OCE 0344094 and OCE 0725796 and by the research grant from the Newton Trust of the University of Cambridge. Funding for IK was provided by NSF Grants OCE 0346178 and 0749722. Funding for JP was provided by NSF Grant OCE 0451086.
    Keywords: Ocean dynamics ; Jets ; Kinematics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 41 (2011): 1041–1056, doi:10.1175/2010JPO4313.1.
    Description: Three autonomous profiling Electromagnetic Autonomous Profiling Explorer (EM-APEX) floats were air deployed one day in advance of the passage of Hurricane Frances (2004) as part of the Coupled Boundary Layer Air–Sea Transfer (CBLAST)-High field experiment. The floats were deliberately deployed at locations on the hurricane track, 55 km to the right of the track, and 110 km to the right of the track. These floats provided profile measurements between 30 and 200 m of in situ temperature, salinity, and horizontal velocity every half hour during the hurricane passage and for several weeks afterward. Some aspects of the observed response were similar at the three locations—the dominance of near-inertial horizontal currents and the phase of these currents—whereas other aspects were different. The largest-amplitude inertial currents were observed at the 55-km site, where SST cooled the most, by about 2.2°C, as the surface mixed layer deepened by about 80 m. Based on the time–depth evolution of the Richardson number and comparisons with a numerical ocean model, it is concluded that SST cooled primarily because of shear-induced vertical mixing that served to bring deeper, cooler water into the surface layer. Surface gravity waves, estimated from the observed high-frequency velocity, reached an estimated 12-m significant wave height at the 55-km site. Along the track, there was lesser amplitude inertial motion and SST cooling, only about 1.2°C, though there was greater upwelling, about 25-m amplitude, and inertial pumping, also about 25-m amplitude. Previously reported numerical simulations of the upper-ocean response are in reasonable agreement with these EM-APEX observations provided that a high wind speed–saturated drag coefficient is used to estimate the wind stress. A direct inference of the drag coefficient CD is drawn from the momentum budget. For wind speeds of 32–47 m s−1, CD ~ 1.4 × 10−3.
    Description: The Office of Naval Research supported the development of the EM-APEX float system through SBIR Contract N00014-03-C-0242 to Webb Research Corporation and with a subcontract to APL-UW. Sanford and J. Girton were supported by the Office of Naval Research through GrantsN00014-04-1-0691 and N00014- 07-1-024, and J. Price was supported through Grant N00014-04-1-0109.
    Keywords: Hurricanes ; Ocean dynamics ; Profilers ; Air-sea interactions
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: text/plain
    Format: application/pdf
    Format: application/zip
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 1611–1626, doi:10.1175/JPO-D-12-0204.1.
    Description: A new method is proposed for extrapolating subsurface velocity and density fields from sea surface density and sea surface height (SSH). In this, the surface density is linked to the subsurface fields via the surface quasigeostrophic (SQG) formalism, as proposed in several recent papers. The subsurface field is augmented by the addition of the barotropic and first baroclinic modes, whose amplitudes are determined by matching to the sea surface height (pressure), after subtracting the SQG contribution. An additional constraint is that the bottom pressure anomaly vanishes. The method is tested for three regions in the North Atlantic using data from a high-resolution numerical simulation. The decomposition yields strikingly realistic subsurface fields. It is particularly successful in energetic regions like the Gulf Stream extension and at high latitudes where the mixed layer is deep, but it also works in less energetic eastern subtropics. The demonstration highlights the possibility of reconstructing three-dimensional oceanic flows using a combination of satellite fields, for example, sea surface temperature (SST) and SSH, and sparse (or climatological) estimates of the regional depth-resolved density. The method could be further elaborated to integrate additional subsurface information, such as mooring measurements.
    Description: JW and AM were supported by NASA (NNX12AD47G) and NSF (OCE 0928617). JLM was supported by the Office of Naval Research and the Office of Science (BER), U.S. Department of Energy under DE-GF0205ER64119. GRF is supported by OCE-0752346 and JHL by NORSEE (Nordic Seas Eddy Exchanges) funded by the Norwegian Research Council.
    Description: 2014-02-01
    Keywords: Eddies ; Ocean dynamics ; Potential vorticity ; Surface pressure ; Surface temperature ; Inverse methods
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 27 (2014): 2842–2860, doi:10.1175/JCLI-D-13-00227.1.
    Description: Mooring measurements from the Kuroshio Extension System Study (June 2004–June 2006) and from the ongoing Kuroshio Extension Observatory (June 2004–present) are combined with float measurements of the Argo network to study the variability of the North Pacific Subtropical Mode Water (STMW) across the entire gyre, on time scales from days, to seasons, to a decade. The top of the STMW follows a seasonal cycle, although observations reveal that it primarily varies in discrete steps associated with episodic wind events. The variations of the STMW bottom depth are tightly related to the sea surface height (SSH), reflecting mesoscale eddies and large-scale variations of the Kuroshio Extension and recirculation gyre systems. Using the observed relationship between SSH and STMW, gridded SSH products and in situ estimates from floats are used to construct weekly maps of STMW thickness, providing nonbiased estimates of STMW total volume, annual formation and erosion volumes, and seasonal and interannual variability for the past decade. Year-to-year variations are detected, particularly a significant decrease of STMW volume in 2007–10 primarily attributable to a smaller volume formed. Variability of the heat content in the mode water region is dominated by the seasonal cycle and mesoscale eddies; there is only a weak link to STMW on interannual time scales, and no long-term trends in heat content and STMW thickness between 2002 and 2011 are detected. Weak lagged correlations among air–sea fluxes, oceanic heat content, and STMW thickness are found when averaged over the northwestern Pacific recirculation gyre region.
    Description: This work was sponsored by the National Science Foundation (Grants OCE-0220161, OCE-0825152, and OCE-0827125).
    Description: 2014-10-15
    Keywords: Atmosphere-ocean interaction ; Mesoscale processes ; Mesoscale systems ; Ocean dynamics ; Eddies ; Water masses
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 149–163, doi:10.1175/JPO-D-13-0136.1.
    Description: Monthly mapped sea level anomalies (MSLAs) of the NW Atlantic in the region immediately downstream of the Gulf Stream (GS) separation point reveal a leading mode in which the path shifts approximately 100 km meridionally about a nominal latitude of 39°N, producing coherent sea level anomaly (SLA) variability from 72° to 50°W. This mode can be captured by use of a simple 16-point index based on SLA data taken along the maximum of the observed variability in the region 33°–46°N and 45°–75°W. The GS shifts between 2010 and 2012 are the largest of the last decade and equal to the largest of the entire record. The second group of EOF modes of variability describes GS meanders, which propagate mainly westward interrupted by brief periods of eastward or stationary meanders. These meanders have wavelengths of approximately 400 km and can be seen in standard EOFs by spatial phase shifting of a standing meander pattern in the SLA data. The spectral properties of these modes indicate strong variability at interannual and longer periods for the first mode and periods of a few to several months for the meanders. While the former is quite similar to a previous use of the altimeter for GS path, the simple index is a useful measure of the large-scale shifts in the GS path that is quickly estimated and updated without changes in previous estimates. The time-scale separation allows a low-pass filtered 16-point index to be reflective of large-scale, coherent shifts in the GS path.
    Description: Agencia Canaria de Investigación, Innovación y Sociedad de la Información (ACIISI) grant program of Apoyo al Personal Investigador en Formación and NSF Grant OCE-0726720
    Description: 2014-07-01
    Keywords: Atlantic Ocean ; Circulation/ Dynamics ; Boundary currents ; Indices ; Ocean dynamics ; Observational techniques and algorithms ; Altimetry ; Mathematical and statistical techniques ; Empirical orthogonal functions
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 1684–1700, doi:10.1175/JPO-D-11-0230.1.
    Description: The influences of precipitation on water mass transformation and the strength of the meridional overturning circulation in marginal seas are studied using theoretical and idealized numerical models. Nondimensional equations are developed for the temperature and salinity anomalies of deep convective water masses, making explicit their dependence on both geometric parameters such as basin area, sill depth, and latitude, as well as on the strength of atmospheric forcing. In addition to the properties of the convective water, the theory also predicts the magnitude of precipitation required to shut down deep convection and switch the circulation into the haline mode. High-resolution numerical model calculations compare well with the theory for the properties of the convective water mass, the strength of the meridional overturning circulation, and also the shutdown of deep convection. However, the numerical model also shows that, for precipitation levels that exceed this critical threshold, the circulation retains downwelling and northward heat transport, even in the absence of deep convection.
    Description: This study was supported by the National Science Foundation underGrantsOCE-0850416, OCE-0959381, andOCE-0859381.
    Description: 2013-04-01
    Keywords: Boundary currents ; Deep convection ; Eddies ; Meridional overturning circulation ; Ocean dynamics ; Stability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 1834–1858, doi:10.1175/JPO-D-11-0234.1.
    Description: The theoretical resonant excitation of equatorial inertia–gravity waves and mixed Rossby–gravity waves is examined. Contrary to occasionally published expectations, solutions show that winds that are broadband in both zonal wavenumber and frequency do not in general produce peaks in the wavenumber–frequency spectrum of sea surface height (SSH) at wavenumbers associated with vanishing zonal group velocity. Excitation of total wave energy in inertia–gravity modes by broadband zonal winds is virtually wavenumber independent when the meridional structure of the winds does not impose a bias toward negative or positive zonal wavenumbers. With increasing wavenumber magnitude |k|, inertia–gravity waves asymptote toward zonally propagating pure gravity waves, in which the magnitude of meridional velocity υ becomes progressively smaller relative to the magnitude of zonal velocity u and pressure p. When the total wave energy is independent of wavenumber, this effect produces a peak in |υ|2 near the wavenumber where group velocity vanishes, but a trough in |p|2 (or SSH variance). Another consequence of the shift toward pure gravity wave structure is that broadband meridional winds excite inertia–gravity modes progressively less efficiently as |k| increases and υ becomes less important to the wave structure. Broadband meridional winds produce a low-wavenumber peak in total wave energy leading to a subtle elevation of |p|2 at low wavenumbers, but this is due entirely to the decrease in the forcing efficiency of meridional winds with increasing |k|, rather than to the vanishing of the group velocity. Physical conditions that might alter the above conclusions are discussed.
    Description: This research was funded by NASA Grant NNX10AO93G.
    Description: 2013-05-01
    Keywords: Inertia-gravity waves ; Ocean dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...