ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-26
    Description: The USCLIVAR working group on drought recently initiated a series of global climate model simulations forced with idealized SST anomaly patterns, designed to address a number of uncertainties regarding the impact of SST forcing and the role of land-atmosphere feedbacks on regional drought. Specific questions that the runs are designed to address include, What are the mechanisms that maintain drought across the seasonal cycle and from one year to the next? What is the role of the leading patterns of SST variability, and what are the physical mechanisms linking the remote SST forcing to regional drought, including the role of land-atmosphere coupling? The runs were carried out with five different atmospheric general circulation models (AGCMs), and one coupled atmosphere-ocean model in which the model was continuously nudged to the imposed SST forcing. This talk provides an overview of the experiments and some initial results focusing on the responses to the leading patterns of annual mean SST variability consisting of a Pacific El Nino/Southern Oscillation (ENSO)-like pattern, a pattern that resembles the Atlantic Multi-decadal Oscillation (AMO), and a global trend pattern. One of the key findings is that all the AGCMs produce broadly similar (though different in detail) precipitation responses to the Pacific forcing pattern, with a cold Pacific leading to reduced precipitation and a warm Pacific leading to enhanced precipitation over most of the United States. While the response to the Atlantic pattern is less robust, there is general agreement among the models that the largest precipitation response over the U.S. tends to occur when the two oceans have anomalies of opposite sign. That is, a cold Pacific and warm Atlantic tend to produce the largest precipitation reductions, whereas a warm Pacific and cold Atlantic tend to produce the greatest precipitation enhancements. Further analysis of the response over the U.S. to the Pacific forcing highlights a number of noteworthy and to some extent unexpected results. These include a seasonal dependence of the precipitation response that is characterized by signal-to-noise ratios that peak in spring, and surface temperature signal-to-noise ratios that are both lower and show less agreement among the models than those found for the precipitation response. Another interesting result concerns what appears to be a substantially different character in the surface temperature response over the U.S. to the Pacific forcing by the only model examined here that was developed for use in numerical weather prediction. The response to the positive SST trend forcing pattern is an overall surface warming over the world's land areas with substantial regional variations that are in part reproduced in runs forced with a globally uniform SST trend forcing. The precipitation response to the trend forcing is weak in all the models. It is hoped that these early results will serve to stimulate further analysis of these simulations, as well as suggest new research on the physical mechanisms contributing to hydroclimatic variability and change throughout the world.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-26
    Description: Many state and local air quality agencies use the U.S. Environmental Protection Agency (EPA) Community Multiscale Air Quality (CMAQ) modeling system to determine compliance with the National Ambient Air Quality Standards (NAAQS). Because emission reduction scenarios are tested using CMAQ with an aim of determining the most efficient and cost effective strategies for attaining the NAAQS, it is very important that trace gas concentrations derived by CMAQ are accurate. Overestimating concentrations can literally translate into billions of dollars lost by commercial and government industries forced to comply with the standards. Costly health, environmental and socioeconomic problems can result from concentration underestimates. Unfortunately, lightning modeling for CMAQ is highly oversimplified. This leads to very poor estimates of lightning-produced nitrogen oxides "NOx" (= NO + NO2) which directly reduces the accuracy of the concentrations of important CMAQ trace gases linked to NOx concentrations such as ozone and methane. Today it is known that lightning is the most important NOx source in the upper troposphere with a global production rate estimated to vary between 2-20 Tg(N)/yr. In addition, NOx indirectly influences our climate since it controls the concentration of ozone and hydroxyl radicals (OH) in the atmosphere. Ozone is an important greenhouse gas and OH controls the oxidation of various greenhouse gases. We describe a robust NASA lightning model, called the Lightning Nitrogen Oxides Model (LNOM) that combines state-of-the-art lightning measurements, empirical results from field studies, and beneficial laboratory results to arrive at a realistic representation of lightning NOx production for CMAQ. NASA satellite lightning data is used in conjunction with ground-based lightning detection systems to assure that the best representation of lightning frequency, geographic location, channel length, channel altitude, strength (i.e., channel peak current), and number of strokes per flash are accounted for. LNOM combines all of these factors in a straightforward approach that is easily implemented into CMAQ. We anticipate that future applications of LNOM will produce significant and important changes in CMAQ trace gas concentrations for various regions and times. We also anticipate that these changes will have a direct impact on decision makers responsible for NAAQS attainment.
    Keywords: Meteorology and Climatology
    Type: MSFC-2190 , 89th American Meteorological Society; 11-15 Jan. 2009; Pheonix, AZ; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-09-13
    Description: To meet the goals of extreme weather event warning, this approach couples a modeling and visualization system that integrates existing NASA technologies and improves the modeling system's parallel scalability to take advantage of petascale supercomputers. It also streamlines the data flow for fast processing and 3D visualizations, and develops visualization modules to fuse NASA satellite data.
    Keywords: Meteorology and Climatology
    Type: Computing in Science and Engineering (ISSN 1521-9615); 13; 56; 55-67
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-06
    Description: This paper gives an overview of August 2004 through July 2009 upper tropospheric (UT) water vapor (H2O) and ice water content (IWC) from the Aura Microwave Limb Sounder (MLS) and comparisons with outputs from the NASA Goddard Earth Observing System Version 5 (GEOS-5) data assimilation system. Both MLS and GEOS-5 show that high values of H2O and IWC at 215 to 147 hPa are associated with areas of deep convection. They exhibit good (within approximately 15%) agreement in IWC at these altitudes, but GEOS-5 H2O is approximately 50% (215 hPa) to approximately 30% (147 hPa) larger than MLS, possibility due to its higher temperatures at these altitudes. GOES-5 produces a weaker intertropical convergence zone than MLS, while a seasonally-migrating band of tropical deep convection is clearly evident in both the MLS and GEOS-5 UT H2O and IWC. MLS and GEOS-5 both show spatial anti-correlation between IWC and H2O at 100 hPa, where less H2O is associated with low temperatures in regions of tropical convection. At 100 hPa, GEOS-5 produces 50% less IWC and 15% less H2O in the tropics, and approximately 20% more H2O in the extra-tropics, than does MLS. Behavior of the 100 hPa H2O, which exhibits a quasi-biennial oscillation, appears consistent with it being controlled by temperature. The seasonal cycle in the vertical transport of tropical mean H2O from approximately 147 hPa to approximately 10 hPa appears much stronger in MLS than in GEOS-5. The UT IWC and H2O interannual variations, from both MLS and GEOS-5, show clear imprints of the El Nino-Southern Oscillation.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-06
    Description: In this paper we examine differences between cloud pressures retrieved from the Ozone Monitoring Instrument (OMI) using the ultraviolet rotational Raman scattering (RRS) algorithm and those from the thermal infrared (IR) Aqua/MODIS. Several cloud data sets are currently being used in OMI trace gas retrieval algorithms including climatologies based on IR measurements and simultaneous cloud parameters derived from OMI. From a validation perspective, it is important to understand the OMI retrieved cloud parameters and how they differ with those derived from the IR. To this end, we perform radiative transfer calculations to simulate the effects of different geophysical conditions on the OMI RRS cloud pressure retrievals. We also quantify errors related to the use of the Mixed Lambert-Equivalent Reflectivity (MLER) concept as currently implemented of the OMI algorithms. Using properties from the Cloudsat radar and MODIS, we show that radiative transfer calculations support the following: (1) The MLER model is adequate for single-layer optically thick, geometrically thin clouds, but can produce significant errors in estimated cloud pressure for optically thin clouds. (2) In a two-layer cloud, the RRS algorithm may retrieve a cloud pressure that is either between the two cloud decks or even beneath the top of the lower cloud deck because of scattering between the cloud layers; the retrieved pressure depends upon the viewing geometry and the optical depth of the upper cloud deck. (3) Absorbing aerosol in and above a cloud can produce significant errors in the retrieved cloud pressure. (4) The retrieved RRS effective pressure for a deep convective cloud will be significantly higher than the physical cloud top pressure derived with thermal IR.
    Keywords: Meteorology and Climatology
    Type: Journal of Geophysical Research; Volume 113; D15S19
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-06
    Description: Aircraft lidar works by shooting laser pulses toward the earth and recording the return time and intensity of any of the light returning to the aircraft after scattering off atmospheric particles and/or the Earth s surface. The scattered light signatures can be analyzed to tell the exact location of cloud and aerosol layers and, with the aid of a few optical assumptions, can be analyzed to retrieve estimates of optical properties such as atmospheric transparency. Radar works in a similar fashion except it sends pulses toward earth at a much larger wavelength than lidar. Radar records the return time and intensity of cloud or rain reflection returning to the aircraft. Lidar can measure scatter from optically thin cirrus and aerosol layers whose particles are too small for the radar to detect. Radar can provide reflection profiles through thick cloud layers of larger particles that lidar cannot penetrate. Only after merging the two instrument products can accurate measurements of the locations of all layers in the full atmospheric column be achieved. Accurate knowledge of the vertical distribution of clouds is important information for understanding the Earth/atmosphere radiative balance and for improving weather/climate forecast models. This paper describes one such merged data set developed from the Tropical Composition, Cloud and Climate Coupling (TC4) experiment based in Costa Rica in July-August 2007 using the nadir viewing Cloud Physics Lidar (CPL) and the Cloud Radar System (CRS) on board the NASA ER-2 aircraft. Statistics were developed concerning cloud probability through the atmospheric column and frequency of the number of cloud layers. These statistics were calculated for the full study area, four sub-regions, and over land compared to over ocean across all available flights. The results are valid for the TC4 experiment only, as preferred cloud patterns took priority during mission planning. The TC4 Study Area was a very cloudy region, with cloudy profiles occurring 94 percent of the time during the ER-2 flights. One to three cloud layers were common, with the average calculated at 2.03 layers per profile. The upper troposphere had a cloud frequency generally over 30%, reaching 42 percent near 13 km during the study. There were regional differences. The Caribbean was much clearer than the Pacific regions. Land had a much higher frequency of high clouds than ocean areas. One region just south and west of Panama had a high probability of clouds below 15 km altitude with the frequency never dropping below 25% and reaching a maximum of 60% at 11-13 km altitude. These cloud statistics will help characterize the cloud volume for TC4 scientists as they try to understand the complexities of the tropical atmosphere.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-06
    Description: The GPCP has developed Version 2.1 of its long-term (1979-present) global Satellite-Gauge (SG) data sets to take advantage of the improved GPCC gauge analysis, which is one key input. As well, the OPI estimates used in the pre-SSM/I era have been rescaled to 20 years of the SSM/I-era SG. The monthly, pentad, and daily GPCP products have been entirely reprocessed, continuing to enforce consistency of the submonthly estimates to the monthly. Version 2.1 is close to Version 2, with the global ocean, land, and total values about 0%, 6%, and 2% higher, respectively. The revised long-term global precipitation rate is 2.68 mm/d. The corresponding tropical (25 N-S) increases are 0%, 7%, and 3%. Long-term linear changes in the data tend to be smaller in Version 2.1, but the statistics are sensitive to the threshold for land/ocean separation and use of the pre-SSM/I part of the record.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-06
    Description: One of the grand challenges of the Global Precipitation Measurement (GPM) mission is to improve cold season precipitation measurements in middle and high latitudes through the use of high-frequency passive microwave radiometry. For this, the Weather Research and Forecasting (WRF) model with the Goddard microphysics scheme is coupled with a satellite data simulation unit (WRF-SDSU) that has been developed to facilitate over-land snowfall retrieval algorithms by providing a virtual cloud library and microwave brightness temperature (Tb) measurements consistent with the GPM Microwave Imager (GMI). This study tested the Goddard cloud microphysics scheme in WRF for two snowstorm events, a lake effect and a synoptic event, that occurred between 20 and 22 January 2007 over the Canadian CloudSAT/CALIPSO Validation Project (C3VP) site in Ontario, Canada. The 24h-accumulated snowfall predicted by the WRF model with the Goddard microphysics was comparable to the observed accumulated snowfall by the ground-based radar for both events. The model correctly predicted the onset and ending of both snow events at the CARE site. WRF simulations capture the basic cloud properties as seen by the ground-based radar and satellite (i.e., CloudSAT, AMSU-B) observations as well as the observed cloud streak organization in the lake event. This latter result reveals that WRF was able to capture the cloud macro-structure reasonably well.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-06
    Description: West Africa is one of the most food insecure regions of the world. Sharply increased food and energy prices in 2008 brought the role of markets in food access and availability around the world into the spotlight, particularly in urban areas. The period of high prices had the immediate consequence of sharply increasing the number of hungry people in the region without boosting farmer incomes significantly. In this article, the interaction between markets, food prices, agricultural technology and development is explored in the context of West Africa. To improve food security in West Africa, sustained commitment to investment in the agriculture sector will be needed to provide some protection against global swings in both production and world markets. Climate change mitigation programs are likely to force global energy and commodity price increases in the coming decades, putting pressure on regions like West Africa to produce more food locally to ensure stability in food security for the most vulnerable.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-06
    Description: This article investigates the African Easterly Jet (AEJ), its structure and the forcings contributing to its maintenance, critically revisiting previous work which attributed the maintenance of the jet to soil moisture gradients over tropical Africa. A state-of-the-art global model in a high-end computer framework is used to produce a 3-member 73-year ensemble run forced by observed SST to represent the Control run. The AEJ as produced by the Control is compared with the representation of the AEJ in the European Center for Medium Range Forecast Reanalyses (ERA-40) and other observational data sets and found very realistic. Five Experiments are then performed, each represented by sets of 3-member 22 year long (1980-2001) ensemble runs. The goal of the Experiments is to investigate the role of meridional soil moisture gradients, different land surface properties and orography. Unlike previous studies, which have suppressed soil moisture gradients within a highly idealized framework (i.e., the so-called bucket model), terrestrial evaporation control is here achieved with a highly sophisticated landsurface treatment and with an extensively tested and complex methodology. The results show that the AEJ is suppressed by a combination of absence of meridional evaporation gradients over Africa and constant vegetation, even if the individual forcings taken separately do not lead to the AEJ disappearance, but only its modification. Moreover, the suppression of orography also leads to a different circulation in which there is no AEJ. This work suggests that it is not just soil moisture gradients, but a unique combination of geographical features present only in northern tropical Africa, which causes and maintains the jet.
    Keywords: Meteorology and Climatology
    Type: Submitted to the Journal of Climate for publication
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2018-06-06
    Description: The global hydrological cycle is central to the Earth's climate system, with rainfall and the physics of its formation acting as the key links in the cycle. Two-thirds of global rainfall occurs in the Tropics. Associated with this rainfall is a vast amount of heat, which is known as latent heat. It arises mainly due to the phase change of water vapor condensing into liquid droplets; three-fourths of the total heat energy available to the Earth's atmosphere comes from tropical rainfall. In addition, fresh water provided by tropical rainfall and its variability exerts a large impact upon the structure and motions of the upper ocean layer. An improved convective -stratiform heating (CSH) algorithm has been developed to obtain the 3D structure of cloud heating over the Tropics based on two sources of information: 1) rainfall information, namely its amount and the fraction due to light rain intensity, observed directly from the Precipitation Radar (PR) on board the TRMM satellite and 2) synthetic cloud physics information obtained from cloud-resolving model (CRM) simulations of cloud systems. The cloud simulations provide details on cloud processes, specifically latent heating, eddy heat flux convergence and radiative heating/cooling, that. are not directly observable by satellite. The new CSH algorithm-derived heating has a noticeably different heating structure over both ocean and land regions compared to the previous CSH algorithm. One of the major differences between new and old algorithms is that the level of maximum cloud heating occurs 1 to 1.5 km lower in the atmosphere in the new algorithm. This can effect the structure of the implied air currents associated with the general circulation of the atmosphere in the Tropics. The new CSH algorithm will be used provide retrieved heating data to other heating algorithms to supplement their performance.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-06-06
    Description: We present a source inversion technique for chemical constituents that uses assimilated constituent observations rather than directly using the observations. The method is tested with a simple model problem, which is a two-dimensional Fourier-Galerkin transport model combined with a Kalman filter for data assimilation. Inversion is carried out using a Green's function method and observations are simulated from a true state with added Gaussian noise. The forecast state uses the same spectral spectral model, but differs by an unbiased Gaussian model error, and emissions models with constant errors. The numerical experiments employ both simulated in situ and satellite observation networks. Source inversion was carried out by either direct use of synthetically generated observations with added noise, or by first assimilating the observations and using the analyses to extract observations. We have conducted 20 identical twin experiments for each set of source and observation configurations, and find that in the limiting cases of a very few localized observations, or an extremely large observation network there is little advantage to carrying out assimilation first. However, in intermediate observation densities, there decreases in source inversion error standard deviation using the Kalman filter algorithm followed by Green's function inversion by 50% to 95%.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-06-06
    Description: During the months of July-August 2007 NASA conducted a research campaign called the Tropical Composition, Clouds and Climate Coupling (TC4) experiment. Vertical profiles of ozone were measured daily using an instrument known as an ozonesonde, which is attached to a weather balloon and launch to altitudes in excess of 30 km. These ozone profiles were measured over coastal Las Tablas, Panama (7.8N, 80W) and several times per week at Alajuela, Costa Rica (ION, 84W). Meteorological systems in the form of waves, detected most prominently in 100- 300 in thick ozone layer in the tropical tropopause layer, occurred in 50% (Las Tablas) and 40% (Alajuela) of the soundings. These layers, associated with vertical displacements and classified as gravity waves ("GW," possibly Kelvin waves), occur with similar stricture and frequency over the Paramaribo (5.8N, 55W) and San Cristobal (0.925, 90W) sites of the Southern Hemisphere Additional Ozonesondes (SHADOZ) network. The gravity wave labeled layers in individual soundings correspond to cloud outflow as indicated by the tracers measured from the NASA DC-8 and other aircraft data, confirming convective initiation of equatorial waves. Layers representing quasi-horizontal displacements, referred to as Rossby waves, are robust features in soundings from 23 July to 5 August. The features associated with Rossby waves correspond to extra-tropical influence, possibly stratospheric, and sometimes to pollution transport. Comparison of Las Tablas and Alajuela ozone budgets with 1999-2007 Paramaribo and San Cristobal soundings shows that TC4 is typical of climatology for the equatorial Americas. Overall during TC4, convection and associated meteorological waves appear to dominate ozone transport in the tropical tropopause layer.
    Keywords: Meteorology and Climatology
    Type: Journal of Geophysical Research Atmospheres; Volume 115
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-06-06
    Description: During the months of July-August 2007 NASA conducted a research campaign called the Tropical Composition, Clouds and Climate Coupling (TC4) experiment. Vertical profiles of ozone were measured daily using an instrument known as an ozonesonde, which is attached to a weather balloon and launch to altitudes in excess of 30 km. These ozone profiles were measured over coastal Las Tablas, Panama (7.8N, 80W) and several times per week at Alajuela, Costa Rica (ION, 84W). Meteorological systems in the form of waves, detected most prominently in 100-300 in thick ozone layer in the tropical tropopause layer, occurred in 50% (Las Tablas) and 40% (Alajuela) of the soundings. These layers, associated with vertical displacements and classified as gravity waves ("GW," possibly Kelvin waves), occur with similar stricture and frequency over the Paramaribo (5.8N, 55W) and San Cristobal (0.925, 90W) sites of the Southern Hemisphere Additional Ozonesondes (SHADOZ) network. The gravity wave labeled layers in individual soundings correspond to cloud outflow as indicated by the tracers measured from the NASA DC-8 and other aircraft data, confirming convective initiation of equatorial waves. Layers representing quasi-horizontal displacements, referred to as Rossby waves, are robust features in soundings from 23 July to 5 August. The features associated with Rossby waves correspond to extra-tropical influence, possibly stratospheric, and sometimes to pollution transport. Comparison of Las Tablas and Alajuela ozone budgets with 1999-2007 Paramaribo and San Cristobal soundings shows that TC4 is typical of climatology for the equatorial Americas. Overall during TC4, convection and associated meteorological waves appear to dominate ozone transport in the tropical tropopause layer.
    Keywords: Meteorology and Climatology
    Type: Journal of Atmospheric and Oceanic Technology; Volume 26; Issue 8; 1543-1557
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018-06-06
    Description: In the September-October 2007 issue of'The Earth Observer [volume 19, Number 4, pp. 13-21] we presented an article entitled "Expedition to Siberia: A Firsthand Account." In that article we shared excerpts from a blog that chronicled the adventures of a team of scientists from NASA and Russia's Academy of Science as they embarked on a three-week adventure in the wilds of Siberia in hopes of collecting measurements to validate data from satellites flying 700 km overhead. The same team, plus a couple new participants, headed back to Siberia this past sumner and we are now pleased to present the continuation of their story. For more background details on the expedition to Siberia or if you missed the first part of the story, please refer to the previous article.
    Keywords: Meteorology and Climatology
    Type: The Earth Observer; Volume 21; Iss. 1; 9-20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-06-06
    Description: Data Collection 5 processing for the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the NASA Earth Observing System EOS Terra and Aqua spacecraft includes an algorithm for detecting multilayered clouds in daytime. The main objective of this algorithm is to detect multilayered cloud scenes, specifically optically thin ice cloud overlying a lower-level water cloud, that presents difficulties for retrieving cloud effective radius using single layer plane-parallel cloud models. The algorithm uses the MODIS 0.94 micron water vapor band along with CO2 bands to obtain two above-cloud precipitable water retrievals, the difference of which, in conjunction with additional tests, provides a map of where multilayered clouds might potentially exist. The presence of a multilayered cloud results in a large difference in retrievals of above-cloud properties between the CO2 and the 0.94 micron methods. In this paper the MODIS multilayered cloud algorithm is described, results of using the algorithm over example scenes are shown, and global statistics for multilayered clouds as observed by MODIS are discussed. A theoretical study of the algorithm behavior for simulated multilayered clouds is also given. Results are compared to two other comparable passive imager methods. A set of standard cloudy atmospheric profiles developed during the course of this investigation is also presented. The results lead to the conclusion that the MODIS multilayer cloud detection algorithm has some skill in identifying multilayered clouds with different thermodynamic phases
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-06-06
    Description: This article investigates the role of the Saharan air layer (SAL) in tropical cyclogenetic processes associated with a nondeveloping and a developing African easterly wave observed during the Special Observation Period (SOP-3) phase of the 2006 NASA African. Monsoon Multidisciplinary Analyses (NAMMA). The two waves are chosen because they both interact heavily with Saharan air. A glottal data assimilation and forecast system, the NASA Goddard Earth Observing System. version 5 (GEOS-5), is being run to produce a set of high-9 uality global analyses, inclusive of all observations used operationally but with additional satellite information. In particular, following previous works by the same authors, the duality-controlled data from the Atmospheric Infrared Sounder (AIRS) used to produce these analyses have a better coverage than the one adopted by operational centers. From these improved analyses, two sets of 31 five-day high-resolution forecasts, at horizontal resolutions of both half and quarter degrees, are produced. Results indicate that very steep moisture gradients are associated with the SAL in forecasts and analyses, even at great distances from their source over the Sahara. In addition, a thermal dipole in the vertiieat (warm above, cool below) is present in the nondeveloping case. The Moderate Resolution Imaging Spoctroradiometer (MODIS) aboard NASA's Terra and Aqua satellites shows that aerosol optical thickness, indicative of more dust as opposed to other factors, is higher in the nondeveloping case. Altogether, results suggest that the radiative effect of dust may play some role in producing a thermal structure less favorable to cyclogenesis. Results also indicate that only global horizontal resolutions on the order of 20-30 km can capture the large-scale transport and the tine thermal structure of the SAL, inclusive of the sharp moisture gradients, reproducing the effect of tropical cyclone suppression that has been hypothesized by previous authors from observational and regional modeling perspectives. Thcse effects cannot be fully represented at lower resolutions, therefore global resolution of a quarter of a degree is a minimum critical threshold necessary to investigate Atlantic tropical cyclogenesis from a global modeling perspective
    Keywords: Meteorology and Climatology
    Type: Journal of the Atmospheric Sciences; Volume 66; Issue 12; 3563-3578
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2018-06-06
    Description: In situ measurements of ice crystal concentrations and sizes made with aircraft instrumentation over the past two decades have often indicated the presence of numerous relatively small (〈 50 m diameter) crystals in cirrus clouds. Further, these measurements frequently indicate that small crystals account for a large fraction of the extinction in cirrus clouds. The fact that the instruments used to make these measurements, such as the Forward Scattering Spectrometer Probe (FSSP) and the Cloud Aerosol Spectrometer (CAS), ingest ice crystals into the sample volume through inlets has led to suspicion that the indications of numerous small ]crystals could be artifacts of large ]crystal shattering on the instrument inlets. We present new aircraft measurements in anvil cirrus sampled during the Tropical Composition, Cloud, and Climate Coupling (TC4) campaign with the 2 ] Dimensional Stereo (2D ]S) probe, which detects particles as small as 10 m. The 2D ]S has detector "arms" instead of an inlet tube. Since the 2D ]S probe surfaces are much further from the sample volume than is the case for the instruments with inlets, it is expected that 2D ]S will be less susceptible to shattering artifacts. In addition, particle inter ]arrival times are used to identify and remove shattering artifacts that occur even with the 2D ]S probe. The number of shattering artifacts identified by the 2D ]S interarrival time analysis ranges from a negligible contribution to an order of magnitude or more enhancement in apparent ice concentration over the natural ice concentration, depending on the abundance of large crystals and the natural small ]crystal concentration. The 2D ]S measurements in tropical anvil cirrus suggest that natural small ]crystal concentrations are typically one to two orders of magnitude lower than those inferred from CAS. The strong correlation between the CAS/2D ]S ratio of small ]crystal concentrations and large ]crystal concentration suggests that the discrepancy is likely caused by shattering of large crystals on the CAS inlet. We argue that past measurements with CAS in cirrus with large crystals present may contain errors due to crystal shattering, and past conclusions derived from these measurements may need to be revisited. Further, we present correlations between CAS spurious concentration and 2D ]S large ]crystal mass from spatially uniform anvil cirrus sampling periods as an approximate guide for estimating quantitative impact of large ]crystal shattering on CAS concentrations in previous datasets. We use radiative transfer calculations to demonstrate that in the maritime anvil cirrus sampled during TC4, small crystals indicated by 2D ]S contribute relatively little cloud extinction, radiative forcing, or radiative heating in the anvils, regardless of anvil age or vertical location in the clouds. While 2D ]S ice concentrations in fresh anvil cirrus may often exceed 1 cm.3, and are observed to exceed 10 cm.3 in turrets, they are typically ~0.1 cm.3 and rarely exceed 1 cm.3 (〈1.4% of the time) in aged anvil cirrus. We hypothesize that isolated occurrences of higher ice concentrations in aged anvil cirrus may be caused by ice nucleation driven by either small ]scale convection or gravity waves. It appears that the numerous small crystals detrained from convective updrafts do not persist in the anvil cirrus sampled during TC ]4.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018-06-05
    Description: We derive the tropical modal age of air from an analysis of the water vapor tape recorder. We combine the observationally derived modal age with mean age of air from CO2 and SF6 to create diagnostics for the independent evaluation of the vertical transport rate and horizontal recirculation into the tropics between 16-32 km. These diagnostics are applied to two Global Modeling Initiative (GMI) chemistry and transport model (CTM) age tracer simulations to give new insights into the tropical transport characteristics of the meteorological fields from the GEOS4-GCM and the GEOS4-DAS. Both simulations are found to have modal ages that are in reasonable agreement with the empirically derived age (i.e ., transit times) over the entire altitude range. Both simulations show too little horizontal recirculation into the tropics above 22 km, with the GEOS4-DAS fields having greater recirculation. Using CH4 as a proxy for mean age, comparisons between HALOE and model CH4 in the Antarctic demonstrate how the strength of tropical recirculation affects polar composition in both CTM experiments. Better tropical recirculation tends to improve the CH4 simulation in the Antarctic. However, mean age in the Antarctic lower stratosphere can be compromised by poor representation of tropical ascent, tropical recirculation, or vortex barrier strength. The connection between polar and tropical composition shown in this study demonstrates the importance of diagnosing each of these processes separately in order to verify the adequate representation of the processes contributing to polar composition in models.
    Keywords: Meteorology and Climatology
    Type: Atmospheric Chemistry and Physics; Volume 9; Issue 7; 2471-2480
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2018-06-05
    Description: In this study, we examine seasonal and geographical variability of marine aerosol fine-mode fraction (f(sub m)) and its impacts on deriving the anthropogenic component of aerosol optical depth (tau(sub a)) and direct radiative forcing from multispectral satellite measurements. A proxy of f(sub m), empirically derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5 data, shows large seasonal and geographical variations that are consistent with the Goddard Chemistry Aerosol Radiation Transport (GOCART) and Global Modeling Initiative (GMI) model simulations. The so-derived seasonally and spatially varying f(sub m) is then implemented into a method of estimating tau(sub a) and direct radiative forcing from the MODIS measurements. It is found that the use of a constant value for fm as in previous studies would have overestimated Ta by about 20% over global ocean, with the overestimation up to 45% in some regions and seasons. The 7-year (2001-2007) global ocean average tau(sub a) is 0.035, with yearly average ranging from 0.031 to 0.039. Future improvement in measurements is needed to better separate anthropogenic aerosol from natural ones and to narrow down the wide range of aerosol direct radiative forcing.
    Keywords: Meteorology and Climatology
    Type: Journal of Geophysical Research; Volume 114
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2018-06-05
    Description: The foremost challenge in parameterizing convective clouds and cloud systems in large-scale models are the many coupled dynamical and physical processes that interact over a wide range of scales, from microphysical scales to the synoptic and planetary scales. This makes the comprehension and representation of convective clouds and cloud systems one of the most complex scientific problems in Earth science. During the past decade, the Global Energy and Water Cycle Experiment (GEWEX) Cloud System Study (GCSS) has pioneered the use of single-column models (SCMs) and cloud-resolving models (CRMs) for the evaluation of the cloud and radiation parameterizations in general circulation models (GCMs; e.g., GEWEX Cloud System Science Team 1993). These activities have uncovered many systematic biases in the radiation, cloud and convection parameterizations of GCMs and have led to the development of new schemes (e.g., Zhang 2002; Pincus et al, 2003; Zhang and Wu 2003; Wu et al. 2003; Liang and Wu 2005; Wu and Liang 2005, and others). Comparisons between SCMs and CRMs using the same large-scale forcing derived from field campaigns have demonstrated that CRMs are superior to SCMs in the prediction of temperature and moisture tendencies (e.g., Das et al. 1999; Randall et al 2003b; Xie et al. 2005).
    Keywords: Meteorology and Climatology
    Type: Bulletin of the American Meteorological Society; Volume 90; Issue 4; 515-534
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2018-06-05
    Description: Part I of this paper compares two simulations, one using a bulk and the other a detailed bin microphysical scheme, of a long-lasting, continental mesoscale convective system with leading convection and trailing stratiform region. Diagnostic studies and sensitivity tests are carried out in Part II to explain the simulated contrasts in the spatial and temporal variations by the two microphysical schemes and to understand the interactions between cloud microphysics and storm dynamics. It is found that the fixed raindrop size distribution in the bulk scheme artificially enhances rain evaporation rate and produces a stronger near surface cool pool compared with the bin simulation. In the bulk simulation, cool pool circulation dominates the near-surface environmental wind shear in contrast to the near-balance between cool pool and wind shear in the bin simulation. This is the main reason for the contrasting quasi-steady states simulated in Part I. Sensitivity tests also show that large amounts of fast-falling hail produced in the original bulk scheme not only result in a narrow trailing stratiform region but also act to further exacerbate the strong cool pool simulated in the bulk parameterization. An empirical formula for a correction factor, r(q(sub r)) = 0.11q(sub r)(exp -1.27) + 0.98, is developed to correct the overestimation of rain evaporation in the bulk model, where r is the ratio of the rain evaporation rate between the bulk and bin simulations and q(sub r)(g per kilogram) is the rain mixing ratio. This formula offers a practical fix for the simple bulk scheme in rain evaporation parameterization.
    Keywords: Meteorology and Climatology
    Type: Journal of the Atmospheric Sciences (ISSN 1520-0469); Volume 66; Issue 1; 22?40
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2018-06-05
    Description: On 19 February 2001, the Tropical Rainfall Measuring Mission (TRMM) satellite observed complex alongfront variability in the precipitation structure of an intense cold-frontal rainband. The TRMM Microwave Imager brightness temperatures suggested that, compared to the northern and southern ends of the rainband, a greater amount of precipitation ice was concentrated in the middle portion of the rainband where the front bowed out. A model simulation conducted using the fifth-generation Pennsylvania State University National Center for Atmospheric Research (PSU NCAR) Mesoscale Model (MM5) is examined to explain the distribution of precipitation associated with the cold-frontal rainband. The simulation reveals that the enhanced precipitation ice production and the implied mean ascent along the central part of the front were associated with a synergistic interaction between a low-level front and an upper-level front associated with an intrusion of high-PV stratospheric air. The low-level front contributed to an intense bow-shaped narrow cold-frontal rainband (NCFR). The upper-level front was dynamically active only along the central to northern portion of the NCFR, where the upper-level PV advection and Q-vector convergence were most prominent. The enhanced mean ascent associated with the upper-level front contributed to a wide cold-frontal rainband (WCFR) that trailed or overlapped with the NCFR along its central to northern segments. Because of the combination of the forcing from both lower- and upper-level fronts, the ascent was deepest and most intense along the central portion of the front. Thus, a large concentration of precipitation ice, attributed to both the NCFR and WCFR, was produced.
    Keywords: Meteorology and Climatology
    Type: Monthly Weather Review (ISSN 1520-0493); Volume 137; Issue 3; 1008?1028
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2018-06-05
    Description: The ARM Shortwave Spectrometer (SWS) measures zenith radiance at 418 wavelengths between 350 and 2170 nm. Because of its 1-sec sampling resolution, the SWS provides a unique capability to study the transition zone between cloudy and clear sky areas. A spectral invariant behavior is found between ratios of zenith radiance spectra during the transition from cloudy to cloud-free. This behavior suggests that the spectral signature of the transition zone is a linear mixture between the two extremes (definitely cloudy and definitely clear). The weighting function of the linear mixture is a wavelength-independent characteristic of the transition zone. It is shown that the transition zone spectrum is fully determined by this function and zenith radiance spectra of clear and cloudy regions. An important result of these discoveries is that high temporal resolution radiance measurements in the clear-to-cloud transition zone can be well approximated by lower temporal resolution measurements plus linear interpolation.
    Keywords: Meteorology and Climatology
    Type: Geophysical Research Letters; Volume 36; Issue 16; 802-805
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2018-06-05
    Description: The characteristics of convective system populations in West Africa and the western Pacific tropical cyclone basin were analyzed to investigate whether interannual variability in convective activity in tropical continental and oceanic environments is driven by variations in the number of events during the wet season or by favoring large and/or intense convective systems. Convective systems were defined from Tropical Rainfall Measuring Mission (TRMM) data as a cluster of pixels with an 85-GHz polarization-corrected brightness temperature below 255 K and with an area of at least 64 square kilometers. The study database consisted of convective systems in West Africa from May to September 1998-2007, and in the western Pacific from May to November 1998-2007. Annual cumulative frequency distributions for system minimum brightness temperature and system area were constructed for both regions. For both regions, there were no statistically significant differences between the annual curves for system minimum brightness temperature. There were two groups of system area curves, split by the TRMM altitude boost in 2001. Within each set, there was no statistically significant interannual variability. Subsetting the database revealed some sensitivity in distribution shape to the size of the sampling area, the length of the sample period, and the climate zone. From a regional perspective, the stability of the cumulative frequency distributions implied that the probability that a convective system would attain a particular size or intensity does not change interannually. Variability in the number of convective events appeared to be more important in determining whether a year is either wetter or drier than normal.
    Keywords: Meteorology and Climatology
    Type: Journal of Climate; Volume 22; Issue 19; 5218-5231
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-02
    Description: Vertical and latitudinal changes in the stratospheric ozone in the post-chlorofluorocarbon (CFC) era are investigated using simulations of the recent past and the 21st century with a coupled chemistry-climate model. Model results reveal that, in the 2060s when the stratospheric halogen loading is projected to return to its 1980 values, the extratropical column ozone is significantly higher than that in 1975-1984, but the tropical column ozone does not recover to 1980 values. Upper and lower stratospheric ozone changes in the post-CFC era have very different patterns. Above 15 hPa ozone increases almost latitudinally uniformly by 6 Dobson Unit (DU), whereas below 15 hPa ozone decreases in the tropics by 8 DU and increases in the extratropics by up to 16 DU. The upper stratospheric ozone increase is a photochemical response to greenhouse gas induced strong cooling, and the lower stratospheric ozone changes are consistent with enhanced mean advective transport due to a stronger Brewer-Dobson circulation. The model results suggest that the strengthening of the Brewer-Dobson circulation plays a crucial role in ozone recovery and ozone distributions in the post-CFC era.
    Keywords: Meteorology and Climatology
    Type: Atmospheric Chemistry and Physics; Volume 9; No. 6; 2207-2213
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2018-06-02
    Description: We have examined summertime 1998 2009 U.S. lightning data from the National Lightning Detection Network (NLDN) to look for weekly cycles in lightning activity. As was found by Bell et al. (2008) for rain over the southeast U.S., there is a significant weekly cycle in afternoon lightning activity that peaks in the middle of the week there. The weekly cycle appears to be reduced over population centers. Lightning activity peaks on weekends over waters near the SE U.S. The statistical significance of weekly cycles over the western half of the country is generally small. We found no evidence of a weekly cycle of synoptic-scale forcing that might explain these patterns. The lightning behavior is entirely consistent with the explanation suggested by Bell et al. (2008) for the cycles in rainfall and other atmospheric data from the SE U.S., that aerosols can cause storms to intensify in humid, convectively unstable environments.
    Keywords: Meteorology and Climatology
    Type: Geophysical Research Letters (ISSN 0094-8276); Volume 36
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2018-06-02
    Description: One-second-resolution zenith radiance measurements from the Atmospheric Radiation Measurement program's new shortwave spectrometer (SWS) provide a unique opportunity to analyze the transition zone between cloudy and cloud-free air, which has considerable bearing on the aerosol indirect effect. In the transition zone, we find a remarkable linear relationship between the sum and difference of radiances at 870 and 1640 nm wavelengths. The intercept of the relationship is determined primarily by aerosol properties, and the slope by cloud properties. We then show that this linearity can be predicted from simple theoretical considerations and furthermore that it supports the hypothesis of inhomogeneous mixing, whereby optical depth increases as a cloud is approached but the effective drop size remains unchanged.
    Keywords: Meteorology and Climatology
    Type: Atmospheric Chemistry and Physics; Volume 9; 1419-1430
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-06
    Description: Aerosols in the atmosphere alter the radiative balance of the Earth by reflecting or absorbing solar radiation. Spaceborne measurements of clouds and aerosols advected over the southeastern Atlantic Ocean indicate that the greater the cloud cover below the aerosols, the more likely the aerosols are to heat the planet.
    Keywords: Meteorology and Climatology
    Type: Nature Geoscience; Volume 2; 167-168
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2018-06-06
    Description: If the complete state of the earth's atmosphere (e.g., pressure, temperature, winds and humidity, everywhere throughout the atmosphere) were known at any particular initial time, then solving the equations that govern the dynamical behavior of the atmosphere would give the complete state at all subsequent times. Part of the difficulty of weather prediction is that the governing equations can only be solved approximately, which is what weather prediction models do. But weather forecasts would still be far from perfect even if the equations could be solved exactly, because the atmospheric state is not and cannot be known completely at any initial forecast time. Rather, the initial state for a weather forecast can only be estimated from incomplete observations taken near the initial time, through a process known as data assimilation. Weather prediction models carry out their computations on a grid of points covering the earth's atmosphere. The formulation of these models is guided by a mathematical convergence theory which guarantees that, given the exact initial state, the model solution approaches the exact solution of the governing equations as the computational grid is made more fine. For the data assimilation process, however, there does not yet exist a convergence theory. This book chapter represents an effort to begin establishing a convergence theory for data assimilation methods. The main result, which is called the principle of energetic consistency, provides a necessary condition that a convergent method must satisfy. Current methods violate this principle, as shown in earlier work of the author, and therefore are not convergent. The principle is illustrated by showing how to apply it as a simple test of convergence for proposed methods.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2018-06-06
    Description: This article investigates the role of the Saharan Air Layer (SAL) in tropical cyclogenetic processes associated with a non-developing and a developing African easterly wave observed during the Special Observation Period (SOP-3) phase of the 2006 NASA African Monsoon Multidisciplinary Analyses (NAMMA). The two waves are chosen because both interact heavily with Saharan air. A global data assimilation and forecast system, the NASA GEOS-5, is being run to produce a set of high-quality global analyses, inclusive of all observations used operationally but with denser satellite information. In particular, following previous works by the same Authors, the quality-controlled data from the Atmospheric Infrared Sounder (AIRS) used to produce these analyses have a better coverage than the one adopted by operational centers. From these improved analyses, two sets of 31 5-day high resolution forecasts, at horizontal resolutions of both half and quarter degrees, are produced. Results show that very steep moisture gradients are associated with the SAL in forecasts and analyses even at great distance from the Sahara. In addition, a thermal dipole (warm above, cool below) is present in the non-developing case. Moderate Resolution Imaging Spectroradiometer (MODIS) show that aerosol optical thickness is higher in the non-developing case. Altogether, results suggest that radiative effect of dust may play some role in producing a thermal structure less favorable to cyclogenesis. Results also indicate that only global horizontal resolutions on the order of 20-30 kilometers can capture the large-scale transport and the fine thermal structure of the SAL, inclusive of the sharp moisture gradients, reproducing the effect of tropical cyclone suppression which has been hypothesized by previous authors from observational and regional modeling perspectives. These effects cannot be fully represented at lower resolutions. Global resolution of a quarter of a degree is a minimum critical threshold to investigate Atlantic tropical cyclogenesis from a global modeling perspective.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2018-06-06
    Description: A 3-D cloud scale chemical transport model that includes a parameterized source of lightning NO(x), based on observed flash rates has been used to simulate six midlatitude and subtropical thunderstorms observed during four field projects. Production per intracloud (P(sub IC) and cloud-to-ground (P(sub CG)) flash is estimated by assuming various values of P(sub IC) and P(sub CG) for each storm and determining which production scenario yields NO(x) mixing ratios that compare most favorably with in-cloud aircraft observations. We obtain a mean P(sub CG) value of 500 moles NO (7 kg N) per flash. The results of this analysis also suggest that on average, P(sub IC) may be nearly equal to P(sub CG), which is contrary to the common assumption that intracloud flashes are significantly less productive of NO than are cloud-to-ground flashes. This study also presents vertical profiles of the mass of lightning NO(x), after convection based on 3-D cloud-scale model simulations. The results suggest that following convection, a large percentage of lightning NO(x), remains in the middle and upper troposphere where it originated, while only a small percentage is found near the surface. The results of this work differ from profiles calculated from 2-D cloud-scale model simulations with a simpler lightning parameterization that were peaked near the surface and in the upper troposphere (referred to as a "C-shaped" profile). The new model results (a backward C-shaped profile) suggest that chemical transport models that assume a C-shaped vertical profile of lightning NO(x) mass may place too much mass neat the surface and too little in the middle troposphere.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2018-06-06
    Description: Cloud and aerosol effects have a significant impact on the atmospheric radiation budget in the Tropical Atlantic because of the spatial and temporal extent of desert dust and smoke from biomass burning in the atmosphere. The influences of African dust and smoke aerosols on cloud radiative properties over the Tropical Atlantic Ocean were analyzed for the month of July for three years (2006-2008) using collocated data collected by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Clouds and the Earth s Radiant Energy System (CERES) instruments on the CALIPSO and Aqua satellites. Aerosol layer height and type can be more accurately determined using CALIOP data, through parameters such as cloud and aerosol layer height, optical depth and depolarization ratio, than data from atmospheric imagers used in previous cloud-aerosol interaction studies. On average, clouds below 5 km had a daytime instantaneous shortwave (SW) radiative flux of 270.2 +/- 16.9 W/sq m and thin cirrus clouds had a SW radiative flux of 208.0 +/- 12.7 W/sq m. When dust aerosols interacted with clouds below 5 km, as determined from CALIPSO, the SW radiative flux decreased to 205.4 +/- 13.0 W/sq m. Similarly, smoke aerosols decreased the SW radiative flux of low clouds to a value of 240.0 +/- 16.6 W/sq m. These decreases in SW radiative flux were likely attributed to the aerosol layer height and changes in cloud microphysics. CALIOP lidar observations, which more accurately identify aerosol layer height than passive instruments, appear essential for better understanding of cloud-aerosol interactions, a major uncertainty in predicting the climate system.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2018-06-06
    Description: Land-atmosphere interactions play a critical role in determining the diurnal evolution of both planetary boundary layer (PBL) and land surface temperature and moisture states. The degree of coupling between the land surface and PBL in numerical weather prediction and climate models remains largely unexplored and undiagnosed due to the complex interactions and feedbacks present across a range of scales. Further, uncoupled systems or experiments (e.g., the Project for Intercomparison of Land Parameterization Schemes, PILPS) may lead to inaccurate water and energy cycle process understanding by neglecting feedback processes such as PBL-top entrainment. In this study, a framework for diagnosing local land-atmosphere coupling is presented using a coupled mesoscale model with a suite of PBL and land surface model (LSM) options along with observations during field experiments in the U. S. Southern Great Plains. Specifically, the Weather Research and Forecasting (WRF) model has been coupled to the Land Information System (LIS), which provides a flexible and high-resolution representation and initialization of land surface physics and states. Within this framework, the coupling established by each pairing of the available PBL schemes in WRF with the LSMs in LIS is evaluated in terms of the diurnal temperature and humidity evolution in the mixed layer. The co-evolution of these variables and the convective PBL is sensitive to and, in fact, integrative of the dominant processes that govern the PBL budget, which are synthesized through the use of mixing diagrams. Results show how the sensitivity of land-atmosphere interactions to the specific choice of PBL scheme and LSM varies across surface moisture regimes and can be quantified and evaluated against observations. As such, this methodology provides a potential pathway to study factors controlling local land-atmosphere coupling (LoCo) using the LIS-WRF system, which will serve as a testbed for future experiments to evaluate coupling diagnostics within the community.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2018-06-06
    Description: The USCLI VAR working group on drought recently initiated a series of global climate model simulations forced with idealized SST anomaly patterns, designed to address a number of uncertainties regarding the impact of SST forcing and the role of land-atmosphere feedbacks on regional drought. Specific questions that the runs are designed to address include: What are the mechanisms that maintain drought across the seasonal cycle and from one year to the next? What is the role of the leading patterns of SST variability, and what are the physical mechanisms linking the remote SST forcing to regional drought, including the role of land-atmosphere coupling? The runs were carried out with five different atmospheric general circulation models (AGCM5), and one coupled atmosphere-ocean model in which the model was continuously nudged to the imposed SST forcing. This paper provides an overview of the experiments and some initial results focusing on the responses to the leading patterns of annual mean SST variability consisting of a Pacific El Nino/Southern Oscillation (ENSO)-like pattern, a pattern that resembles the Atlantic Multi-decadal Oscillation (AMO), and a global trend pattern. One of the key findings is that all the AGCMs produce broadly similar (though different in detail) precipitation responses to the Pacific forcing pattern, with a cold Pacific leading to reduced precipitation and a warm Pacific leading to enhanced precipitation over most of the United States. While the response to the Atlantic pattern is less robust, there is general agreement among the models that the largest precipitation response over the U.S. tends to occur when the two oceans have anomalies of opposite sign. That is, a cold Pacific and warm Atlantic tend to produce the largest precipitation reductions, whereas a warm Pacific and cold Atlantic tend to produce the greatest precipitation enhancements. Further analysis of the response over the U.S. to the Pacific forcing highlights a number of noteworthy and to some extent unexpected results. These include a seasonal dependence of the precipitation response that is characterized by signal-to-noise ratios that peak in spring, and surface temperature signal-to-noise ratios that are both lower and show less agreement among the models than those found for the precipitation response. Another interesting result concerns what appears to be a substantially different character in the surface temperature response over the U.S. to the Pacific forcing by the only model examined here that was developed for use in numerical weather prediction. The response to the positive SST trend forcing pattern is an overall surface warming over the world's land areas with substantial regional variations that are in part reproduced in runs forced with a globally uniform SST trend forcing. The precipitation response to the trend forcing is weak in all the models.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2018-06-06
    Description: A Goddard bulk microphysical parameterization is implemented into the Weather Research and Forecasting (WRF) model. This bulk microphysical scheme has three different options, 2ICE (cloud ice & snow), 3ICE-graupel (cloud ice, snow & graupel) and 3ICE-hail (cloud ice, snow & hail). High-resolution model simulations are conducted to examine the impact of microphysical schemes on different weather events: a midlatitude linear convective system and an Atlantic hurricane. The results suggest that microphysics has a major impact on the organization and precipitation processes associated with a summer midlatitude convective line system. The Goddard 3ICE scheme with the cloud ice-snow-hail configuration agreed better with observations ill of rainfall intensity and having a narrow convective line than did simulations with the cloud ice-snow-graupel and cloud ice-snow (i.e., 2ICE) configurations. This is because the Goddard 3ICE-hail configuration has denser precipitating ice particles (hail) with very fast fall speeds (over 10 m/s) For an Atlantic hurricane case, the Goddard microphysical scheme (with 3ICE-hail, 3ICE-graupel and 2ICE configurations) had no significant impact on the track forecast but did affect the intensity slightly. The Goddard scheme is also compared with WRF's three other 3ICE bulk microphysical schemes: WSM6, Purdue-Lin and Thompson. For the summer midlatitude convective line system, all of the schemes resulted in simulated precipitation events that were elongated in southwest-northeast direction in qualitative agreement with the observed feature. However, the Goddard 3ICE-hail and Thompson schemes were closest to the observed rainfall intensities although the Goddard scheme simulated more heavy rainfall (over 48 mm/h). For the Atlantic hurricane case, none of the schemes had a significant impact on the track forecast; however, the simulated intensity using the Purdue-Lin scheme was much stronger than the other schemes. The vertical distributions of model-simulated cloud species (e.g., snow) are quite sensitive to the microphysical schemes, which is an issue for future verification against satellite retrievals. Both the Purdue-Lin and WSM6 schemes simulated very little snow compared to the other schemes for both the midlatitude convective line and hurricane case. Sensitivity tests with these two schemes showed that increasing the snow intercept, turning off the auto-conversion from snow to graupel, eliminating dry growth, and reducing the transfer processes from cloud-sized particles to precipitation-sized ice collectively resulted in a net increase in those schemes' snow amounts.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2018-06-06
    Description: In this study, satellite passive microwave sensor observations from the TRMM Microwave Imager (TMI) are utilized to make estimates of latent + eddy sensible heating rates (Q1-QR) in regions of precipitation. The TMI heating algorithm (TRAIN) is calibrated, or "trained" using relatively accurate estimates of heating based upon spaceborne Precipitation Radar (PR) observations collocated with the TMI observations over a one-month period. The heating estimation technique is based upon a previously described Bayesian methodology, but with improvements in supporting cloud-resolving model simulations, an adjustment of precipitation echo tops to compensate for model biases, and a separate scaling of convective and stratiform heating components that leads to an approximate balance between estimated vertically-integrated condensation and surface precipitation. Estimates of Q1-QR from TMI compare favorably with the PR training estimates and show only modest sensitivity to the cloud-resolving model simulations of heating used to construct the training data. Moreover, the net condensation in the corresponding annual mean satellite latent heating profile is within a few percent of the annual mean surface precipitation rate over the tropical and subtropical oceans where the algorithm is applied. Comparisons of Q1 produced by combining TMI Q1-QR with independently derived estimates of QR show reasonable agreement with rawinsonde-based analyses of Q1 from two field campaigns, although the satellite estimates exhibit heating profile structure with sharper and more intense heating peaks than the rawinsonde estimates. 2
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2018-06-06
    Description: One of the grand challenges of the Global Precipitation Measurement (GPM) mission is to improve precipitation measurements in mid- and high-latitudes during cold seasons through the use of high-frequency passive microwave radiometry. Toward this end, the Weather Research and Forecasting (WRF) model with the Goddard microphysics scheme is coupled with a Satellite Data Simulation Unit (WRF-SDSU) that has been developed to facilitate over-land snowfall retrieval algorithms by providing a virtual cloud library and microwave brightness temperature (Tb) measurements consistent with the GPM Microwave Imager (GMI). This study tested the Goddard cloud microphysics scheme in WRF for snowstorm events (January 20-22, 2007) that took place over the Canadian CloudSAT/CALIPSO Validation Project (C3VP) ground site (Centre for Atmospheric Research Experiments - CARE) in Ontario, Canada. In this paper, the performance of the Goddard cloud microphysics scheme both with 2ice (ice and snow) and 3ice (ice, snow and graupel) as well as other WRF microphysics schemes will be presented. The results are compared with data from the Environment Canada (EC) King Radar, an operational C-band radar located near the CARE site. In addition, the WRF model output is used to drive the Goddard SDSU to calculate radiances and backscattering signals consistent with direct satellite observations for evaluating the model results.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2018-06-05
    Description: Intra-seasonal oscillations (ISO) are observed in the zonal-mean of mesospheric wind and temperature measurements-and the numerical spectral model (NSM) generates such oscillations. Relatively large temperature ISO are evident also in stratospheric CPC (NCEP) data at high latitudes, where the NSM produces amplitudes around 3 K at 30 km. Analyzing the NCEP data for the years 1996-2006, we find in Fourier spectra signatures of oscillations with periods between 1.7 and 3 months. With statistical confidence levels exceeding 70%, the spectral features are induced by nonlinear interactions involving the annual and semi-annual variations. The synthesized data show for the 10-year average that the temperature ISO peak in winter, having amplitudes close to 4 K. The synthesized complete spectrum for periods around 2 months produces oscillations, varying from year to year, which can reach peak amplitudes of 15 and 5 K respectively at northern and southern polar latitudes.
    Keywords: Meteorology and Climatology
    Type: Journal of Atmospheric and Solar-Terrestrial Physics; Volume 71; Issue 12; 1299-1308
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2018-06-05
    Description: A common feature of stratospheric simulations of the past or future is an increase in tropical upwelling and a decrease in mean age. Possible causes or these changes include (1) increases in tropical sea surface temperatures (SSTs) driven by increases in well-mixed greenhouse gases (WMGHGs), (2) the direct radiative effect of increases in WMGHGs, and (3) changes in ozone. Here we examine a suite of simulations from the Goddard Earth Observing System chemistry-climate model (GEOS CCM) to isolate the relative role of these three factors. Our analysis indicates that all three factors cause changes in the mean age, but the relative impact of each factor depends on the time period analyzed. Over the past 30-40 years ozone depletion is the major factor causing the decrease in mean age, with negligible changes due to direct radiative impact of WMGHG's. However, ozone is predicted to recover back to 1970 levels during the next 50-60 years, and this causes an increase in the mean age, whereas the continued increase in SSTs from increased levels of WMGHGs and the direct radiative impact of WMGHGs will still cause a decrease in the mean age. The net impact of these factors will still result in a decreasing mean age although the rate will be smaller than that of the past. The decreases in mean age are primarily caused by increases in upwelling in the tropical lower stratosphere. The increased upwelling from both increased tropical SSTs and polar ozone loss appears to be related to changes in zonal winds and increases in wave activity propagating into the stratosphere. The different contributions of changes in SSTs, WMGHGs, and ozone to the circulation of the stratosphere may help explain the large spread in the rate of change of tropical upwelling seen in previous studies.
    Keywords: Meteorology and Climatology
    Type: Journal of Geophysical Research; Volume 114
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-19
    Description: The Land Information System (LIS; http://lis.gsfc.nasa.gov; Kumar et al., 2006; Peters- Lidard et al.,2007) is a flexible land surface modeling framework that has been developed with the goal of integrating satellite- and ground-based observational data products and advanced land surface modeling techniques to produce optimal fields of land surface states and fluxes. As such, LIS represents a step towards the next generation land component of an integrated Earth system model. In recognition of LIS object-oriented software design, use and impact in the land surface and hydrometeorological modeling community, the LIS software was selected ase co-winner of NASA's 2005 Software of the Year award. LIS facilitates the integration of observations from Earth-observing systems and predictions and forecasts from Earth System and Earth science models into the decision-making processes of partnering agency and national organizations. Due to its flexible software design, LIS can serve both as a Problem Solving Environment (PSE) for hydrologic research to enable accurate global water and energy cycle predictions, and as a Decision Support System (DSS) to generate useful information for application areas including disaster management, water resources management, agricultural management, numerical weather prediction, air quality and military mobility assessment. LIS has evolved from two earlier efforts North American Land Data Assimilation System (NLDAS; Mitchell et al. 2004) and Global Land Data Assimilation System (GLDAS; Rodell al. 2004) that focused primarily on improving numerical weather prediction skills by improving the characterization of the land surface conditions. Both of GLDAS and NLDAS now use specific configurations of the LIS software in their current implementations. In addition, LIS was recently transitioned into operations at the US Air Force Weather Agency (AFWA) to ultimately replace their Agricultural Meteorology (AGRMET) system, and is also used routinely by NOAA's National Centers for Environmental Prediction (NCEP)/Environmental Modeling Center (EMC) for their land data assimilation systems to support weather and climate modeling. LIS not only consolidates the capabilities of these two systems, but also enables a much larger variety of configurations with respect to horizontal spatial resolution, input datasets and choice of land surface model through "plugins,". As described in Kumar et al., 2007, and demonstrated in Case et al., 2008, and Santanello et al., 2009, LIS has been coupled to the Weather Research and Forecasting (WRF) model to support studies of land-atmosphere coupling the enabling ensembles of land surface states to be tested against multiple representations of the atmospheric boundary layer. LIS has also been demonstrated for parameter estimation as described in Peters-Lidard et al. (2008) and Santanello et al. (2007), who showed that the use of sequential remotely sensed soil moisture products can be used to derive soil hydraulic and texture properties given a sufficient dynamic range in the soil moisture retrievals and accurate precipitation inputs. LIS has also recently been demonstrated for multi-model data assimilation (Kumar et al., 2008) using an Ensemble Kalman Filter for sequential assimilation of soil moisture, snow, and temperature. Ongoing work has demonstrated the value of bias correction as part of the filter, and also that of joint calibration and assimilation. Examples and case studies demonstrating the capabilities and impacts of LIS for hydrometeoroogical modeling, assimilation and parameter estimation will be presented as advancements towards the next generation of integrated observation and modeling systems.
    Keywords: Meteorology and Climatology
    Type: 6th International Scientific Conference on Global Energy and Water Cycle/2nd Integrated Land Ecosystem-Atmosphere Processes Study Science Conference - Water in a Changing Climate: Progress in Land-Atmosphere Interactions and Energy/Water Cycle Research; Aug 24, 2009 - Aug 28, 2009; Melbourne; Australia
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-19
    Description: Numerous case studies and recent modeling studies have found that various metrics of updraft intensity appear to be reasonably well correlated to lightning production in thunderstorms, particularly severe thunderstorms. Indeed, the relationship between updraft and lightning flash rate is hypothesized to be the physical connection between a lightning "jump" signature and manifestations of severe weather such as tornadic activity. This study further examines this connection using a combination of dual Doppler wind retrievals made with the UAH ARMOR dual polarimetric and KHTX WSR 88D Doppler radar pair, together with northern Alabama Lightning Mapping Array (LMA) data. The dual Doppler data were used to construct three dimensional wind fields and the retrieved vertical velocity fields were subsequently compared to collocated total lightning flash rates observed by the LMA. Particular attention was paid to the timing of updraft pulses relative to changes in the flash rate, with the goal of assessing impacts on warning decision lead time. Results from the analysis of severe and non severe thunderstorms in Northern Alabama will be presented including the EF 4 tornado producing supercell on 6 February 2008.
    Keywords: Meteorology and Climatology
    Type: MSFC-2189 , 89th American Meteorological Society Annual Meeting; Jan 11, 2009 - Jan 15, 2009; Phoenix, AZ; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-19
    Description: The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center, NOAA Hurricane Research Division, the University of Central Florida and the University of Michigan. HIRAD is being designed to enhance the realtime airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft using the operational airborne Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (~ 3 x the aircraft altitude). The present paper describes a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing instruments (air, surface, and space-based) are simulated from the output of a detailed numerical model, and those results are used to construct H*Wind analyses. The H*Wind analysis, a product of the Hurricane Research Division of NOAA s Atlantic Oceanographic and Meteorological Laboratory, brings together wind measurements from a variety of observation platforms into an objective analysis of the distribution of wind speeds in a tropical cyclone. This product is designed to improve understanding of the extent and strength of the wind field, and to improve the assessment of hurricane intensity. See http://www.aoml.noaa.gov/hrd/data_sub/wind.html. Evaluations will be presented on the impact of the HIRAD instrument on H*Wind analyses, both in terms of adding it to the full suite of current measurements, as well as using it to replace instrument(s) that may not be functioning at the future time the HIRAD instrument is implemented. Also shown will be preliminary results of numerical weather prediction OSSEs in which the impact of the addition of HIRAD observations to the initial state on numerical forecasts of the hurricane intensity and structure is assessed.
    Keywords: Meteorology and Climatology
    Type: MSFC-2191 , 13th Conference on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface (IOAS-AOLS); Jan 11, 2009 - Jan 15, 2009; Phoenix, AZ; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-19
    Description: The close and productive collaborations between the NWS Warning and Forecast Office (WFO) in Great Falls, MT and the Short Term Prediction and Research Transition (SPORT) Center at NASA/Marshall Space Flight Center have provided a unique opportunity for science sharing and technology transfer. In particular, SPoRT has provided a false color composite product derived from MODIS data, which is part of NASA's Earth Observing System. This product is designed to delineate snow and ice covered ground, bare ground and clouds. The Great Falls WFO has been a test bed of the MODIS false color composite as a tool in operations to monitor the development and dissipation of snow cover In particular, preliminary applications have shown that the product can be used to monitor snow cover in remote locations as well as ice in rivers. This information can lead to improved assessments of flooding potential during post event conditions where rapid melting and runoff are anticipated. The potential of this product on future geostationary satellites may substantially contribute to the NWS mission by providing enhanced situational awareness. The operational use of this product has been transitioned at WFO Great Falls through a process of product implementation, discussions with the service hydrologist and forecasters, and post event analysis. A concentrated assessment period from January to March, 2008 was initiated to investigate the impact of the MODIS false color product on WFO Great Falls' operations. This presentation will emphasize the impact the MODIS false color product had in the WFO's situational awareness and how best this information can be used to influence operational decisions.
    Keywords: Meteorology and Climatology
    Type: 89th American Meteorological Society Annual Meeting; Jan 11, 2009 - Jan 15, 2009; Phoenix, AZ; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-19
    Description: The TRMM Lightning Imaging Sensor (LIS) has sampled global tropical and sub-tropical lightning flash densities for approximately 11 years. These data were originally processed and results presented by the authors in the 3rd AMS MALD Conference held in 2007 using both pre and post TRMM-boost lightning data. These data were normalized for the orbit boost by scaling the pre-boost data by a fixed constant based on the different swath areas for the pre and post-boost years (post-boost after 2001). Inevitably, one must question this simple approach to accounting for the orbit boost when sampling such a noisy quantity. Hence we are in the process of reprocessing the entire 11-year TRMM LIS dataset to reduce the orbit swath of the post-boost era to that of the pre-boost in order to eliminate sampling bias in the dataset. Study of the diurnal/seasonal/annual sampling suggests that those biases are already minimal and should not contribute to error in examination of annual trends. We will present new analysis of the 11-year annual trends in total lightning flash density for all latitudinal belts and select regions/regimes of the tropics as related to conventional climate signals and precipitation contents in the same period. The results should enable us to address, in some fashion, the sensitivity of the lightning flash density to subtle changes in climate.
    Keywords: Meteorology and Climatology
    Type: MSFC-2192 , 89th American Meteorological Society Annual Meeting; Jan 11, 2009 - Jan 15, 2009; Phoenix, AZ; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: The atmosphere, as in other parts of nature, is full of phenomena that involve rapid transitions from one (quasi-) equilibrium state to another--- i.e. catastrophes. These (quasi-) equilibria are the multiple solutions of the same dynamical system. Unlocking the mystery behind a catastrophe reveals not only the physical mechanism responsible for the transition, but also how the (quasi-) equilibria before and after the transition are maintained. Each catastrophe is different, but they do have some common traits. Understanding these common traits is the first step in studying these catastrophes. In this seminar, three examples chosen based on the speaker's research interest--tropical cyclogenesis, stratospheric sudden warming, and monsoon onset--are given to illustrate how atmospheric catastrophes can be studied.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: Intertropical convergence zones (ITCZs), monsoons and monsoon onset are among the most prominent of atmospheric phenomena. Understanding their origins is fundamental to a full understanding of the atmospheric general circulation and has challenged meteorologists for a very long time. There has been important progress in understanding these phenomena in recent years, and in this seminar, recent developments, to which the speaker has contributed, are reviewed. First, contrary to conventional belief, land-sea thermal contrast is not necessary for monsoons to form. Second, monsoon onset occurs when there is a sudden poleward jump of an ITCZ during its annual cycle of latitudinal movement. A monsoon, then, is an ITCZ after its poleward jump. Third, the SST latitudinal maximum is not the most significant, or even a necessary, factor in the formation of an ITCZ; there are other important, if not more important, factors. These factors are the interaction between convection and surface fluxes, the interaction between convection and radiation, and the earth's rotation. Finally, the recent understanding of how ITCZs form has led to a conceptual explanation for the origin of the double ITCZ bias in GCM simulations.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-19
    Description: Plasmapause transitions, as seen in the H + and He+ density gradients measured by the Orbiting Geophysical Observatory 5 (OGO 5) ion spectrometer [Sharp, IEE Trans. in Geosci. Elect., 1969], have been investigated in an attempt to relate them to their topside ionospheric signatures as seen in the Alouette-1 & 2 and ISIS-1 data. The satellite data were obtained from the National Space Science Data Center (NSSDC). A search of the OGO-5 data revealed 54 sharp plasmapause crossings as evaluated from the H+ density. The ionospheric footprints (at 1400 km altitude) of the magnetic-field lines through the locations of these plasmapause crossings were then used to search for topside ionospheric electron-density profiles from the NSSDC. No profiles corresponding to these projections were identified. A similar search of the topside-sounder 35-mm ionogram-film database, however, identified 17 cases of candidate "conjunctions" involving Alouette l & 2 and ISIS 1. We will present samples of the plasmapause OGO-5 ion transitions and the related topside ionospheric signatures and discuss the observations in relation to the recent similar study based on Explorer-45 and ISIS-2 data [Grebowsky et al., JASTP, 2009].
    Keywords: Meteorology and Climatology
    Type: American Geophysical Union 12228-10ST 2009 Fall AGU Conference; Dec 13, 2009 - Dec 19, 2009; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-13
    Description: This abstract describes work that will be done by the Applied Meteorology Unit (AMU) in assessing the success of different model configurations in predicting "wind cycling" cases at Edwards Air Force Base, CA (EAFB), in which the wind speeds and directions oscillate among towers near the EAFB runway. The Weather Research and Forecasting (WRF) model allows users to choose among two dynamical cores - the Advanced Research WRF (ARW) and the Non-hydrostatic Mesoscale Model (NMM). There are also data assimilation analysis packages available for the initialization of the WRF model - the Local Analysis and Prediction System (LAPS) and the Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS). Having a series of initialization options and WRF cores, as well as many options within each core, creates challenges for local forecasters, such as determining which configuration options are best to address specific forecast concerns. The goal of this project is to assess the different configurations available and determine which configuration will best predict surface wind speed and direction at EAFB.
    Keywords: Meteorology and Climatology
    Type: KSC-2009-003 , American Meteorological Society 89th Annual Meeting; Jan 11, 2009 - Jan 15, 2009; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-13
    Description: The peak winds near the surface are an important forecast element for space shuttle landings. As defined in the Flight Rules (FR), there are peak wind thresholds that cannot be exceeded in order to ensure the safety of the shuttle during landing operations. The National Weather Service Spaceflight Meteorology Group (SMG) is responsible for weather forecasts for all shuttle landings, and is required to issue surface average and 10-minute peak wind speed forecasts. They indicate peak winds are a challenging parameter to forecast. To alleviate the difficulty in making such wind forecasts, the Applied Meteorology Unit (AMU) developed a PC-based graphical user interface (GUI) for displaying peak wind climatology and probabilities of exceeding peak wind thresholds for the Shuttle Landing Facility (SLF) at Kennedy Space Center (KSC; Lambert 2003). However, the shuttle occasionally may land at Edwards Air Force Base (EAFB) in southern California when weather conditions at KSC in Florida are not acceptable, so SMG forecasters requested a similar tool be developed for EAFB.
    Keywords: Meteorology and Climatology
    Type: KSC-2009-001 , 25th Conference on International Information and Processing Systems for Meteorology, Oceanography, and Hydrology at the 89th Annual American Meteorological Meeting; Jan 11, 2009 - Jan 15, 2009; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-13
    Description: This report summarizes the Applied Meteorology Unit (AMU) activities for the third quarter of Fiscal Year 2009 April - June 2009).
    Keywords: Meteorology and Climatology
    Type: KSC-2009-199
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-13
    Description: The threat of lightning is a daily concern during the warm season in Florida. Research has revealed distinct spatial and temporal distributions of lightning occurrence that are strongly influenced by large-scale atmospheric flow regimes. Previously, the Applied Meteorology Unit (AMU) calculated the gridded lightning climatologies based on seven flow regimes over Florida for 1-, 3- and 6-hr intervals in 5-, 10-, 20-, and 30-NM diameter range rings around the Shuttle Landing Facility (SLF) and eight other airfields in the National Weather Service in Melbourne (NWS MLB) county warning area (CWA). In this update to the work, the AMU recalculated the lightning climatologies for using individual lightning strike data to improve the accuracy of the climatologies. The AMU included all data regardless of flow regime as one of the stratifications, added monthly stratifications, added three years of data to the period of record and used modified flow regimes based work from the AMU's Objective Lightning Probability Forecast Tool, Phase II. The AMU made changes so the 5- and 10-NM radius range rings are consistent with the aviation forecast requirements at NWS MLB, while the 20- and 30-NM radius range rings at the SLF assist the Spaceflight Meteorology Group in making forecasts for weather Flight Rule violations during Shuttle landings. The AMU also updated the graphical user interface with the new data.
    Keywords: Meteorology and Climatology
    Type: KSC-2009-100 , 34th National Weather Association Annual Meeting; Oct 17, 2009 - Oct 22, 2009; Norfolk, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-13
    Description: The Applied Meteorology Unit (AMU) is a unique joint venture of NASA, the Air Force and the National Weather Service (NWS) and has been supporting the Space Program for nearly two decades. The AMU acts as a bridge between the meteorological research community and operational forecasters by developing, evaluating and transitioning new technology and techniques to improve weather support to spaceport operations at the Eastern Range (ER) and Kennedy Space Center. Its primary customers are the 45th Weather Squadron at Cape Canaveral Air Force Station (CCAFS), the Spaceflight Meteorology Group at Johnson Space Center and the National Weather Service Office in Melbourne, FL. Its products are used to support NASA's Shuttle and ELV programs as well as Department of Defense and commercial launches from the ER. Shuttle support includes landing sites beyond the ER. The AMU is co-located with the Air Force operational forecasters at CCAFS to facilitate continuous two-way interaction between the AMU and its operational customers. It is operated under a NASA, Air Force, and NWS Memorandum of Understanding (MOU) by a competitively-selected contractor. The contract, which is funded and managed by NASA, provides five full time professionals with degrees in meteorology or related fields, some of whom also have operational experience. NASA provides a Ph.D.- level NASA civil service scientist as Chief of the AMU. The AMU is tasked by its customers through a unique, nationally recognized process. The tasks are limited to development, evaluation and operational transition of technology to improve weather support to spaceport operations and providing expert advice to the customers. The MOU expressly forbids using the AMU resources to conduct operations or do basic research. The presentation will provide a brief overview of the AMU and how it is tasked by its customers to provide high priority products and services. The balance of the presentation will cover a sampling of products delivered over the last 18 years that are currently in operational use. Each example will describe the problem to be solved, the solution provided, and the operational benefits of implementing that solution.
    Keywords: Meteorology and Climatology
    Type: KSC-2009-031 , 93rd Range Commanders Council - Meteorology Group; May 05, 2009 - May 07, 2009; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-13
    Description: .Forecasters at the 45th Weather Squadron (45 WS) use observations from the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) wind tower network and the CCAFS (XMR) daily rawinsonde observations (RAOB) to issue and verify wind advisories and warnings for operations. These observations are also used by the National Weather Service (NWS) Spaceflight Meteorology Group (SMG) in Houston, Texas and the NWS Melbourne, Florida (NWS MLB) to initialize their locally-run mesoscale models. In addition, SMG uses these observations to support shuttle landings at the Shuttle Landing Facility (SLF). Due to impending budget cuts, some or all of the wind towers on the east-central Florida mainland and the XMR RAOBs may be eliminated. The locations of the mainland towers and XMR RAOB site are shown in Figure 1. The loss of these data may impact the forecast capability of the 45 WS, SMG and NWS MLB.
    Keywords: Meteorology and Climatology
    Type: KSC-2008-281 , American Meteorological Society 89th Annual Meeting; Jan 11, 2009 - Jan 15, 2009; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-13
    Description: Responding to incidents involving the release of harmful airborne pollutants is a continual challenge for Weather Forecast Offices in the National Weather Service. When such incidents occur, current protocol recommends forecaster-initiated requests of NOAA's Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model output through the National Centers of Environmental Prediction to obtain critical dispersion guidance. Individual requests are submitted manually through a secured web site, with desired multiple requests submitted in sequence, for the purpose of obtaining useful trajectory and concentration forecasts associated with the significant release of harmful chemical gases, radiation, wildfire smoke, etc., into local the atmosphere. To help manage the local HYSPLIT for both routine and emergency use, a graphical user interface was designed for operational efficiency. The interface allows forecasters to quickly determine the current HYSPLIT configuration for the list of predefined sites (e.g., fixed sites and floating sites), and to make any necessary adjustments to key parameters such as Input Model. Number of Forecast Hours, etc. When using the interface, forecasters will obtain desired output more confidently and without the danger of corrupting essential configuration files.
    Keywords: Meteorology and Climatology
    Type: KSC-2009-251 , 34th National Weather Association Annual Meeting; Oct 18, 2009 - Oct 22, 2009; Norfolk, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-13
    Description: The development of tropical depressions within tropical waves over the Atlantic and eastern Pacific is usually preceded by a "surface low along the wave" as if to suggest a hybrid wave-vortex structure in which flow streamlines not only undulate with the waves, but form a closed circulation in the lower troposphere surrounding the low. This structure, equatorward of the easterly jet axis, is identified herein as the familiar critical layer of waves in shear flow, a flow configuration which arguably provides the simplest conceptual framework for tropical cyclogenesis resulting from tropical waves, their interaction with the mean flow, and with diabatic processes associated with deep moist convection. The recirculating Kelvin cat's eye within the critical layer represents a sweet spot for tropical cyclogenesis in which a proto-vortex may form and grow within its parent wave. A common location for storm development is given by the intersection of the wave's critical latitude and trough axis at the center of the cat's eye, with analyzed vorticity centroid nearby. The wave and vortex live together for a time, and initially propagate at approximately the same speed. In most cases this coupled propagation continues for a few days after a tropical depression is identified. For easterly waves, as the name suggests, the propagation is westward. It is shown that in order to visualize optimally the associated Lagrangian motions, one should view the flow streamlines, or stream function, in a frame of reference translating horizontally with the phase propagation of the parent wave. In this co-moving frame, streamlines are approximately equivalent to particle trajectories. The closed circulation is quasi-stationary, and a dividing streamline separates air within the cat's eye from air outside.
    Keywords: Meteorology and Climatology
    Type: Atmospheric Chemistry and Physics; 9; 5587-5646
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-13
    Description: Aerosol perturbations over selected land regions are imposed in Version-4 of the Goddard Earth Observing System (GEOS-4) general circulation model (GCM) to assess the influence of increasing aerosol concentrations on regional circulation patterns and precipitation in four selected regions: India, Africa, and North and South America. Part 1 of this paper addresses the responses to aerosol perturbations in India and Africa. This paper presents the same for aerosol perturbations over the Americas. GEOS-4 is forced with prescribed aerosols based on climatological data, which interact with clouds using a prognostic scheme for cloud microphysics including aerosol nucleation of water and ice cloud hydrometeors. In clear-sky conditions the aerosols interact with radiation. Thus the model includes comprehensive physics describing the aerosol direct and indirect effects on climate (hereafter ADE and AIE respectively). Each simulation is started from analyzed initial conditions for 1 May and was integrated through June-July-August of each of the six years: 1982 1987 to provide a 6-ensemble set. Results are presented for the difference between simulations with double the climatological aerosol concentration and one-half the climatological aerosol concentration for three experiments: two where the ADE and AIE are applied separately and one in which both the ADE and AIE are applied. The ADE and AIE both yield reductions in net radiation at the top of the atmosphere and surface while the direct absorption of shortwave radiation contributes a net radiative heating in the atmosphere. A large net heating of the atmosphere is also apparent over the subtropical North Atlantic Ocean that is attributable to the large aerosol perturbation imposed over Africa. This atmospheric warming and the depression of the surface pressure over North America contribute to a northward shift of the inter-Tropical Convergence Zone over northern America, an increase in precipitation over Central America and the Caribbean, and an enhancement of convergence in the North American monsoon region.
    Keywords: Meteorology and Climatology
    Type: GSFC.JA.4378.2011 , Annales Geophysicae; 27; 4009-4021
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-13
    Description: The first aerosol indirect effect over a clean, northern high-latitude site was investigated by determining the aerosol cloud interaction (ACI) using three different approaches; ground-based in situ measurements, combined ground-based in situ measurements 5 and satellite retrievals and using only satellite retrievals. The obtained values of ACI were highest for in situ ground-based data, clearly lower for combined ground-based and satellite data, and lowest for data relying solely on satellite retrievals. One of the key findings of this study was the high sensitivity of ACI to the definition of the aerosol burden. We showed that at least a part of the variability in ACI can be explained by 10 how different investigators have related dierent cloud properties to "aerosol burden".
    Keywords: Meteorology and Climatology
    Type: Atmospheric Chemistry and Physics Discussions; 9; 27465-27483
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-13
    Description: The paper presents the results of rainfall-runoff data analysis for small catchments of the upper Poprad River affected by wind-induced deforestation in November 2004. Before-event and afterevent measured data were compared in order to assess the impact of deforestation on hydrological regimes. Several characteristics were used including water balance, minimum and maximum runoff, runoff thresholds, number of runoff events, selected characteristics of events, runoff coefficients, and flashiness indices. Despite increased spring runoff minima, which in one catchment (Velick Creek) exceeded previously observed values after deforestation took place, it can be generally concluded that the impact of the deforestation was not clearly manifested in the analyzed hydrological data.
    Keywords: Meteorology and Climatology
    Type: Folia Geographica: Series Geographica - Physica (ISSN 0071-6715); XL (40); 33-44
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-12
    Description: '1he NASA Kennedy Space Center (KSC) and Air Force Eastern Range (ER) use data from two cloud-to-ground (CG) lightning detection networks, the CGLSS and the NLDN, and a volumetric lightning mapping array, LDAR, to monitor and characterize lightning that is potentially hazardous to ground or launch operations. Data obtained from these systems during June-August 2006 have been examined to check the classification of small, negative CGLSS reports that have an estimated peak current, [I(sup p)] less than 7 kA, and to determine the smallest values of I(sup p), that are produced by first strokes, by subsequent strokes that create a new ground contact (NGC), and by subsequent strokes that remain in a pre-existing channel (PEC). The results show that within 20 km of the KSC-ER, 21% of the low-amplitude negative CGLSS reports were produced by first strokes, with a minimum I(sup p) of-2.9 kA; 31% were by NGCs, with a minimum I(sup p) of-2.0 kA; and 14% were by PECs, with a minimum I(sup p) of -2.2 kA. The remaining 34% were produced by cloud pulses or lightning events that we were not able to classify.
    Keywords: Meteorology and Climatology
    Type: KSC-2009-082
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-12
    Description: We have investigated the physical characteristics of greenhouse gases (GHGs) to assess which properties are most important in determining the efficiency of a GHG. Chlorofluorcarbons (CFCs), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), nitrogen fluorides, and various other known atmospheric trace molecules have been included in this study. Compounds containing the halogens F or Cl have in common very polar X-F or X-Cl bonds, particularly the X-F bonds. It is shown that as more F atoms bond to the same central atom, the bond dipoles become larger as a result of the central atom becoming more positive. This leads to a linear increase in the total or integrated XF bond dipole derivatives for the molecule, which leads to a non-linear (quadratic) increase in infrared (IR) intensity. Moreover, virtually all of the X-F bond stretches occur in the atmospheric IR window as opposed to X-H stretches, which do not occur in the atmospheric window. It is concluded that molecules possessing several F atoms will always have a large radiative forcing parameter in the calculation of their global warming potential. Some of the implications for global warming and climate change are discussed.
    Keywords: Meteorology and Climatology
    Type: ARC-E-DAA-TN706
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-12
    Description: A previous hypothesis advanced from observational studies such as METROMEX suggests that the intensity, frequency, and organization of cumulus convection may be impacted by the forcing of enhanced merger activity downstream of urban zones. A resulting corollary is that cities may exert an indirect anthropogenic forcing of parameters related to convection and associated phenomena such as lightning and precipitation. This paper investigates the urban merger hypothesis by examining the role of convective cell mergers on the existence and persistence of the Houston lightning "anomaly", a local maximum in cloud-to-ground (CG) lightning activity documented to exist over and east of Houston. Using eight summer seasons of peak columnar radar reflectivity, CG lightning data and a cell-tracking algorithm, a two-dimensional cell merger climatology is created for portions of eastern Texas and Louisiana. Results from the tracking and analysis of over 3.8 million cells indicate that merger-driven enhancements in convection induce a positive response (O 46%) in ground-flash densities throughout the domain, with areas of enhanced lightning typically being co-located with areas of enhanced merger activity. However, while mergers over the Houston area (relative to elsewhere in the domain) do result in more vigorous convective cells that produce larger CG flash densities, we find that CG lightning contributions due to mergers are distributed similarly throughout the domain. Hence while we demonstrate that cell mergers do greatly impact the production of lightning, the urban cell merger hypothesis does not uniquely explain the presence of a local lightning maximum near and downstream of Houston.
    Keywords: Meteorology and Climatology
    Type: M10-0600
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-19
    Description: The National Weather Service Forecast Office in Melbourne, FL (NWS MLB) is responsible for providing meteorological support to state and county emergency management agencies across East Central Florida in the event of incidents involving the significant release of harmful chemicals, radiation, and smoke from fires and/or toxic plumes into the atmosphere. NWS MLB uses the National Oceanic and Atmospheric Administration Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model to provide trajectory, concentration, and deposition guidance during such events. Accurate and timely guidance is critical for decision makers charged with protecting the health and well-being of populations at risk. Information that can describe the geographic extent of areas possibly affected by a hazardous release, as well as to indicate locations of primary concern, offer better opportunity for prompt and decisive action. In addition, forecasters at the NWS Spaceflight Meteorology Group (SMG) have expressed interest in using the HYSPLIT model to assist with Weather Flight Rules during Space Shuttle landing operations. In particular, SMG would provide low and mid-level HYSPLIT trajectory forecasts for cumulus clouds associated with smoke plumes, and high-level trajectory forecasts for thunderstorm anvils. Another potential benefit for both NWS MLB and SMG is using the HYSPLIT model concentration and deposition guidance in fog situations.
    Keywords: Meteorology and Climatology
    Type: KSC-2009-018 , 2009 Conference on International Information and Processing Systems for Meteorology, Oceanography, and Hydrology; Jun 01, 2009 - Jun 05, 2009; Omaha, NE; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-19
    Description: Continuation of the Earth Radiation Budget (ERB) Climate Data Record (CDR) has been identified as critical in the 2007 NRC Decadal Survey, the Global Climate Observing System WCRP report, and in an assessment titled Impacts of NPOESS Nunn-McCurdy Certification on Joint NASA-NOAA Climate Goals. In response, NASA, NOAA and NPOESS agreed in early 2008 to fly the final existing CERES Flight Model (FM-5) on the NPP spacecraft for launch in 2010. Future opportunities for ERB CDR continuity consist of procuring an additional CERES Sensor with modest performance upgrades for flight on the NPOESS C1 spacecraft in 2013, followed by a new CERES follow-on sensor for flight in 2018 on the NPOESS C3 spacecraft. While science goals remain unchanged for the long-term ERB Climate Data Record, it is now understood that the task of achieving these goals is more difficult for two reasons. The first is an increased understanding of the dynamics of the Earth/atmosphere system which demonstrates that rigorous separation of natural variability from anthropogenic change on decadal time scales requires higher accuracy and stability than originally envisioned. Secondly, future implementation scenarios involve less redundancy in flight hardware (1 vs. 2 orbits and operational sensors) resulting in higher risk of loss of continuity and reduced number of independent observations to characterize performance of individual sensors. Although EOS CERES CDR's realize a factor of 2 to 4 improvement in accuracy and stability over previous ERBE CDR's, future sensors will require an additional factor of 2 improvement to answer rigorously the science questions moving forward. Modest investments, defined through the CERES Science Team s 30-year operational history of the EOS CERES sensors, in onboard calibration hardware and pre-flight calibration and test program will ensure meeting these goals while reducing costs in re-processing scientific datasets. The CERES FM-5 pre-flight radiometric characterization program benefited from the 30-year operational experience of the CERES EOS sensors, as well as a stronger emphasis of radiometric characterization in the Statement of Work with the sensor provider. Improvements to the pre-flight program included increased spectral, spatial, and temporal sampling under vacuum conditions as well as additional tests to characterize the primary and transfer standards in the calibration facility. Future work will include collaboration with NIST to further enhance the understanding of the radiometric performance of this equipment prior to flight. The current effort summarizes these improvements to the CERES FM-5 pre-flight sensor characterization program, as well as modifications to inflight calibration procedures and operational tasking. In addition, an estimate of the impacts to the system level accuracy and traceability is presented.
    Keywords: Meteorology and Climatology
    Type: LF99-8960 , 2009 IEEE International Geoscience and Remote Sensing Symposium: Earth Observations - Origins to Applications; Jul 12, 2009 - Jul 17, 2009; Cape Town, South Africa; South Africa
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-19
    Description: The upcoming Ozone Mapper and Profiler Suite (OMPS), which will be launched on the NPOESS Preparatory Project (NPP) platform in early 2011, will continue monitoring the global distribution of the Earth's middle atmosphere ozone and aerosol. OMPS is composed of three instruments, namely the Total Column Mapper (heritage: TOMS, OMI), the Nadir Profiler (heritage: SBUV) and the Limb Profiler (heritage: SOLSE/LORE, OSIRIS, SCIAMACHY, SAGE III). The ultimate goal of the mission is to better understand and quantify the rate of stratospheric ozone recovery. The focus of the paper will be on the Limb Profiler (LP) instrument. The LP instrument will measure the Earth fs limb radiance (which is due to the scattering of solar photons by air molecules, aerosol and Earth surface) in the ultra-violet (UV), visible and near infrared, from 285 to 1000 nm. The LP simultaneously images the whole vertical extent of the Earth's limb through three vertical slits, each covering a vertical tangent height range of 100 km and each horizontally spaced by 250 km in the cross-track direction. The focal plane of the LP spectrometer is a two ]dimensional CCD array comprised of 340 x 740 pixels. Several data analysis tools are presently being constructed and tested to retrieve ozone and aerosol vertical distribution from limb radiance measurements. The primary NASA algorithm is based on earlier algorithms developed for the SOLSE/LORE and SAGE III limb scatter missions. The paper will describe an alternative algorithm which will retrieve ozone density and aerosol extinction directly from radiance data collected on individual CCD pixels. This alternative method uses an optimal estimation approach to retrieve ozone and aerosol in the 10-60 km range from the information contained within an ensemble of about 50000 down-linked pixels. Tangent height registration is performed using the Rayleigh Scattering Attitude Sensor (RSAS) technique applied to columns of pixels in the 340-360 nm range. Cloud height is determined by analyzing the radiance first derivative along pixel columns at longer wavelengths. Wavelength registration is performed using rows of pixels and identifying Fraunhofer solar lines within the measured spectra. Special attention is given to stray-light decontamination and modeling of the measured finite spectral/spatial line shape functions.
    Keywords: Meteorology and Climatology
    Type: LF99-8833 , SPIE Europe Remote Sensing 2009; Aug 31, 2009; Berlin, Germany; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-19
    Description: Investigation of cyclic behavior of temperature and ozone data from five SHADOZ sites between the Equator and 5degS Latitude (Nairobi, Ascension Island, Natal, San Crystobal, and Watukoset) reveal an amazing array of oscillations. In particular, eight years of measurements (1998-2007) reveal changes such as decreasing amounts of ozone at some pressure levels and/or sites, while other levels and/or sites experience increasing ozone. Temperature changes of 1-2 C occur that also experience irregular oscillations. This study is preliminary and only concentrates on the 250-, 200-, 100-, 70-, and 50-hPa pressure surfaces. Surfaces existing below and above the tropopause behave differently.
    Keywords: Meteorology and Climatology
    Type: 2009 Fall AGU Meeting; Dec 14, 2009 - Dec 18, 2009; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-19
    Description: The Hurricane Imaging Radiometer (HIRAD) is a new airborne microwave remote sensor currently under development to enhance real-time hurricane ocean surface wind observations. HIRAD builds on the capabilities of the Stepped Frequency Microwave Radiometer (SFMR), which now operates on NOAA P-3, G-4, and AFRC C-130 aircraft. Unlike the SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRAD will provide images of the surface wind and rain field over a wide swath (approximately 3 times the aircraft altitude). To demonstrate potential improvement in the measurement of peak hurricane winds, we present a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing platforms (air, surface, and space-based) are simulated from the output of a high-resolution (approximately 1.7 km) numerical model. Simulated retrieval errors due to both instrument noise as well as model function accuracy are considered over the expected range of incidence angles, wind speeds and rain rates. Based on numerous simulated flight patterns and data source combinations, statistics are developed to describe relationships between the observed and true (from the model s perspective) peak wind speed. These results have implications for improving the estimation of hurricane intensity (as defined by the peak sustained wind anywhere in the storm), which may often go un-observed due to sampling limitations.
    Keywords: Meteorology and Climatology
    Type: M09-0340 , HIRAD OSSE: Interdepartmental Hurricane Conference 2009/The Office of the Federal Coordinator for Meteorological Services and Supporting Research; Mar 02, 2009 - Mar 05, 2009; Saint Petersburg, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-19
    Description: Bell et al. inferred the presence of increased (decreased) summer rainfall and storm heights over the southern tier (off the east coast) of the continental U.S. (CONUS) during the midweek. Amongst other data sources, the Bell et al. study employed Tropical Rainfall Measurement Mission (TRMM) passive microwave and precipitation radar data to reach these conclusions. Importantly, to explain the midweek increases in rainfall and storm echo top heights Bell et al. invoked the presence of anthropogenic influences via increased aerosol loading present in the middle of the work week. Conversely, Schultz et al. argue against the Bell et al. findings, noting that no significant trend in rainfall (amount or occurrence) can be detected in rain gauge data collected from 219 surface observing stations over a 42 year period. Based on previously suggested impacts of enhanced aerosol concentrations on precipitation microphysics and in particular, the ice phase, the results of Bell et al. suggest that in addition to the rainfall signal there may be a detectable response in lightning frequency (to the extent that the aerosol hypothesis invoked is valid). This study examines TRMM Lightning Imaging Sensor observations to detect both daily increases and decreases of lightning over the CONUS and neighboring ocean regions and further examines the possibility (through observations) of systematic direct impacts on lightning activity associated with large city locations.
    Keywords: Meteorology and Climatology
    Type: MSFC-2193 , 89th American Meteorological Society Annual Meeting; Jan 10, 2009 - Jan 16, 2009; Phoenix, AZ; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-19
    Description: As operational numerical weather prediction is performed at increasingly finer spatial resolution, precipitation traditionally represented by sub-grid scale parameterization schemes is now being calculated explicitly through the use of single- or multi-moment, bulk water microphysics schemes. As computational resources grow, the real-time application of these schemes is becoming available to a broader audience, ranging from national meteorological centers to their component forecast offices. A need for improved quantitative precipitation forecasts has been highlighted by the United States Weather Research Program, which advised that gains in forecasting skill will draw upon improved simulations of clouds and cloud microphysical processes. Investments in space-borne remote sensing have produced the NASA A-Train of polar orbiting satellites, specially equipped to observe and catalog cloud properties. The NASA CloudSat instrument, a recent addition to the A-Train and the first 94 GHz radar system operated in space, provides a unique opportunity to compare observed cloud profiles to their modeled counterparts. Comparisons are available through the use of a radiative transfer model (QuickBeam), which simulates 94 GHz radar returns based on the microphysics of cloudy model profiles and the prescribed characteristics of their constituent hydrometeor classes. CloudSat observations of snowfall are presented for a case in the central United States, with comparisons made to precipitating clouds as simulated by the Weather Research and Forecasting Model and the Goddard single-moment microphysics scheme. An additional forecast cycle is performed with a temperature-based parameterization of the snow distribution slope parameter, with comparisons to CloudSat observations provided through the QuickBeam simulator.
    Keywords: Meteorology and Climatology
    Type: M09-0235 , 89th American Meteorological Society Annual meeting; Jan 11, 2009 - Jan 15, 2009; Phoenix, AZ; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-19
    Description: The NASA Short-term Prediction Research and Transition (SPoRT) Center, the Florida Institute of Technology, and the NOAA/NWS Weather Forecast Office at Miami, FL (MFL) are collaborating on a project to investigate the impact of using high-resolution, 2-km Moderate Resolution Imaging Spectroradiometer (MODIS) sea surface temperature (SST) composites within the Weather Research and Forecasting (WRF) prediction system. The NWS MFL is currently running WRF in real-time to support daily forecast operations, using the National Centers for Environmental Prediction Nonhydrostatic Mesoscale Model dynamical core within the NWS Science and Training Resource Center's Environmental Modeling System (EMS) software. Twenty-seven hour forecasts are run daily initialized at 0300, 0900, 1500, and 2100 UTC on a domain with 4-km grid spacing covering the southern half of Florida and adjacent waters of the Gulf of Mexico and Atlantic Ocean. The SSTs are initialized with the NCEP Real-Time Global (RTG) analyses at 1/12deg resolution. The project objective is to determine whether more accurate specification of the lower-boundary forcing over water using the MODIS SST composites within the 4-km WRF runs will result in improved sea fluxes and hence, more accurate e\~olutiono f coastal mesoscale circulations and the associated sensible weather elements. SPoRT conducted parallel WRF EMS runs from February to August 2007 identical to the operational runs at NWS MFL except for the use of MODIS SST composites in place of the RTG product as the initial and boundary conditions over water. During the course of this evaluation, an intriguing case was examined from 6 May 2007, in which lake breezes and convection around Lake Okeechobee evolved quite differently when using the high-resolution SPoRT MODIS SST composites versus the lower-resolution RTG SSTs. This paper will analyze the differences in the 6 May simulations, as well as examine other cases from the summer 2007 in which the WRF-simulated Lake Okeechobee breezes evolved differently due to the SST initialization. The effects on wind fields and precipitation systems will be emphasized, including validation against surface mesonet observations and Stage IV precipitation grids.
    Keywords: Meteorology and Climatology
    Type: M09-0230 , 89th American Meteorological Society Annual Meeting; Jan 11, 2009 - Jan 15, 2009; Phoenix, AZ; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-19
    Description: The close and productive collaborations between the NWS Warning and Forecast Office, the Short Term Prediction and Research Transition Center at NASA Marshall Space Flight Center and the University of Alabama in Huntsville have provided a unique opportunity for science sharing and technology transfer. One significant technology transfer that has provided immediate benefits to NWS forecast and warning operations is the use of data from the North Alabama Lightning Mapping Array. This network consists of ten VHF receivers deployed across northern Alabama and a base station located at the National Space Science and Technology Center. Preliminary investigations done at WFO Huntsville, along with other similar total lightning networks across the country, have shown distinct correlations between the time rate-of-change of total lightning and trends in intensity/severity of the parent convective cell. Since May 2003 when WFO HUN began receiving these data - in conjunction with other more traditional remotely sensed data (radar, satellite, and surface observations) -- have improved the situational awareness of the WFO staff. The use of total lightning information, either from current ground based systems or future space borne instrumentation, may substantially contribute to the NWS mission, by enhancing severe weather warning and decision-making processes. Operational use of the data has been maximized at WFO Huntsville through a process that includes forecaster training, product implementation, and post event analysis and assessments. Since receiving these data, over 50 surveys have been completed highlighting the use of total lightning information during significant events across the Tennessee Valley. In addition, around 150 specific cases of interest have been archived for collaborative post storm analysis. From these datasets, detailed trending information from radar and total lightning can be compared to corresponding damage reports. This presentation will emphasize the effective use of total lightning information in warning decision making along with best practices for implementation of new technologies into operations.
    Keywords: Meteorology and Climatology
    Type: M09-0223 , 89th AMS Annual Meeting/American Meteorological Society; Jan 11, 2009 - Jan 15, 2009; Phoenix, AZ; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-19
    Description: The North Alabama Lightning Mapping Array NALMA has been collecting total lightning data on storms in the Tennessee Valley region since 2001. Forecasters from nearby National Weather Service (NWS) offices have been ingesting this data for display with other AWIPS products. The current lightning product used by the offices is the lightning source density plot. The new product provides a probabalistic, short-term, graphical forecast of the probability of lightning activity occurring at 5 min intervals over the next 30 minutes . One of the uses of the current lightning source density product by the Huntsville National Weather Service Office is to identify areas of potential for cloud-to-ground flashes based on where LMA total lightning is occurring. This product quantifies that observation. The Lightning Warning Product is derived from total lightning observations from the Washington, D.C. (DCLMA) and North Alabama Lightning Mapping Arrays and cloud-to-ground lightning flashes detected by the National Lightning Detection Network (NLDN). Probability predictions are provided for both intracloud and cloud-to-ground flashes. The gridded product can be displayed on AWIPS workstations in a manner similar to that of the lightning source density product.
    Keywords: Meteorology and Climatology
    Type: M09-0277 , 89th AMS Annual Meeting; Jan 11, 2009 - Jan 15, 2009; Phoenix, AZ; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-19
    Description: tend to produce the greatest precipitation enhancements. Further analysis of the response over the U.S. to the Pacific forcing highlights a number of noteworthy and to some extent unexpected results. These include a seasonal dependence of the precipitation response that is characterized by signal-to-noise ratios that peak in spring, and surface temperature signal-to-noise ratios that are both lower and show less agreement among the models than those found for the precipitation response. Another interesting result concerns what appears to be a substantially different character in the surface temperature response over the U.S. to the Pacific forcing by the only model examined here that was developed for use in numerical weather prediction. The response to the positive SST trend forcing pattern is an overall surface warming over the world's land areas with substantial regional variations that are in part reproduced in runs forced with a globally uniform SST trend forcing. The precipitation response to the trend forcing is weak in all the models.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-19
    Description: The existence of the Saharan air layer (SAL), a layer of warm, dry, dusty air frequently present over the tropical Atlantic Ocean, has long been appreciated. The nature of its impact on hurricanes remains unclear, with some researchers arguing that the SAL amplifies hurricane development and with others arguing that it inhibits it. The potential negative impacts of the SAL include 1) low-level vertical wind shear associated with the African easterly jet; 2) warm air aloft, which increases thermodynamic stability; and 3) dry air, which produces cold downdrafts. Some investigators have assumed the validity of these proposed negative influences and have frequently used them to explain the failure of individual storms to intensify or to explain the relative inactivity of recent hurricane seasons. Multiple NASA satellite data sets and National Centers for Environmental Prediction global analyses are used to characterize the SAL's properties and evolution in relation to developing hurricanes. The results will shows that neither jet--induced vertical wind shear nor warm SAL air (high stability) produce significant negative impacts on Atlantic storms. Dry air appears to be a key mechanism for SAL influence, but the presence of dry SAL air is not always a good indicator of whether a storm will weaken since many examples of intensifying storms surrounded by such dry air can be found. Idealized simulations will be used to evaluate the role of dry air. Finally, two case studies of supposedly "prime examples" of SAL influence will show that the negative influences of the SAL are perhaps too readily ascribed to individual storms that fail to reach their maximum potential intensity.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-19
    Description: Anomalies and trends of outgoing longwave radiation (OLR) serve as important indicators of climate change. Several satellite based instruments currently provide information related to OLR. CERES, on board the EOS Aqua and Terra satellites, contains broad band radiometers that measure total flux and short-wave flux, from which OLR is determined. AIRS is a high spectral resolution IR sounder on EOS Aqua that measures IR radiances covering most of the spectral interval 650 cm-1 to 2670 cm-1. These observations enable the determination of detailed information about atmospheric temperature, moisture, and ozone profiles, as well as surface skin temperatures and cloud parameters. The AIRS OLR product is the total flux over the spectral interval 2 cm-1 to2750 cm-1 computed for the surface and atmospheric state determined from AIRS observations. We compared spatial anomalies and trends of OLR, over the seven year period September 2002 through August 2009, as observed by CERES and computed using Version 5 AIRS products. These two sets of OLR anomalies and trends, obtained in very different ways, agree with each other almost perfectly in essentially every detail. This important finding shows that a very stable high spectral infra-red sounder such as AIRS corroborates the anomalies and trends of OLR obtained from CERES. More significantly, anomalies and trends of the individual geophysical parameters derived from AIRS explain the detailed causes of the anomalies and trends of CERES OLR. Both sets of results show that global mean OLR has been decreasing at a rate of 0.12 W/m2/yr over the seven year time period under study. Both also confirm that the primary cause of this is due to changes in the tropics, in which OLR has been decreasing at a rate of 0.27 W/m2/yr. AIRS products show that the decrease of tropical OLR is a result of increasing tropical atmospheric water vapor and cloud cover over the time period studied, which in turn is responding to a very strong E1 Nino/ La Nina cycle. Equatorial ocean temperatures between 160E and 120W cooled considerably during this time period, with corresponding local decreases in mid-tropospheric humidity and cloud cover, resulting in increases in local OLR. This was more than compensated by substantial increases in water vapor and cloud cover elsewhere in the tropics, resulting in a net decrease in tropical OLR.
    Keywords: Meteorology and Climatology
    Type: 2009 AGU Fall Meeting; Dec 14, 2009 - Dec 18, 2009; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-19
    Description: Meteorologists from the 45th Weather Squadron (45 WS) and National Weather Service Spaceflight Meteorology Group (SMG) have identified anvil forecasting as one of their most challenging tasks when predicting the probability of violations of the Lightning Launch Commit Criteria and Space Shuttle Flight Rules. As a result, the Applied Meteorology Unit (AMU) was tasked to create a graphical overlay tool for the Meteorological Interactive Data Display System (MIDDS) that indicates the threat of thunderstorm anvil clouds, using either observed or model forecast winds as input. The tool creates a graphic depicting the potential location of thunderstorm anvils one, two, and three hours into the future. The locations are based on the average of the upper level observed or forecasted winds. The graphic includes 10 and 20 n mi standoff circles centered at the location of interest, as well as one-, two-, and three-hour arcs in the upwind direction. The arcs extend outward across a 30 sector width based on a previous AMU study that determined thunderstorm anvils move in a direction plus or minus 15 of the upper-level wind direction. The AMU was then tasked to transition the tool to the Advanced Weather Interactive Processing System (AWIPS). SMG later requested the tool be updated to provide more flexibility and quicker access to model data. This presentation describes the work performed by the AMU to transition the tool into AWIPS, as well as the subsequent improvements made to the tool.
    Keywords: Meteorology and Climatology
    Type: KSC-2008-141 , 25th Conference on International Interactive Information and Processing Systems (TIPS) for Meteorology, Oceanography, and Hydrology, American Meteorological Society; Jan 11, 2009 - Jan 15, 2009; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-19
    Description: The Vector Electric Field Investigation (VEFI) on the C/NOFS equatorial satellite provides a unique data set in which to acquire detailed knowledge of irregularities associated with the equatorial ionosphere and in particular with spread-F depletions. We present vector AC electric field observations, primarily gathered within the ELF band (1 Hz to 250 Hz) on C/NOFS that address a variety of key questions regarding how plasma irregularities, from meter to kilometer scales, are created and evolve. The data will be used to explore the anisotropy/isotropy of the waves, their wavelength and phase velocity, as well as their spectral distributions. When analyzed in conjunction with the driving DC electric fields and detailed plasma number density measurements, the combined data reveal important information concerning the instability mechanisms themselves. We also present high resolution, vector measurements of intense lower hybrid waves that have been detected on numerous occasions by the VEFI burst memory VLF electric field channels.
    Keywords: Meteorology and Climatology
    Type: 2009 AGU Joint Assembly: The Meeting of the Americas; May 24, 2009 - May 27, 2009; Toronto, Ontario; Canada
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-19
    Description: Large climate feedback uncertainties limit the prediction accuracy of the Earth s future climate with an increased CO2 atmosphere. One potential to reduce the feedback uncertainties using satellite observations of top-of-atmosphere (TOA) radiative energy imbalance is explored. Instead of solving the initial condition problem in previous energy balance analysis, current study focuses on the boundary condition problem with further considerations on climate system memory and deep ocean heat transport, which is more applicable for the climate. Along with surface temperature measurements of the present climate, the climate feedbacks are obtained based on the constraints of the TOA radiation imbalance. Comparing to the feedback factor of 3.3 W/sq m/K of the neutral climate system, the estimated feedback factor for the current climate system ranges from -1.3 to -1.0 W/sq m/K with an uncertainty of +/-0.26 W/sq m/K. That is, a positive climate feedback is found because of the measured TOA net radiative heating (0.85 W/sq m) to the climate system. The uncertainty is caused by the uncertainties in the climate memory length. The estimated time constant of the climate is large (70 to approx. 120 years), implying that the climate is not in an equilibrium state under the increasing CO2 forcing in the last century.
    Keywords: Meteorology and Climatology
    Type: LF99-8551 , International Symposium on Atmospheric Light Scattering and Remote Sensing; Jul 13, 2009 - Jul 17, 2009; Xl''An; China
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-19
    Description: The Hurricane Imaging Radiometer (HIRAD) is the next-generation Stepped Frequency Microwave Radiometer (SFMR), and it will offer the capability of simultaneous wide-swath observations of both extreme ocean surface wind vector and strong precipitation from either aircraft (including UAS) or satellite platforms. HIRAD will be a compact, lightweight, low-power instrument with no moving parts that will produce valid wind observations under hurricane conditions when existing microwave sensors (radiometers or scatterometers) are hindered by precipitation. The SFMR i s a proven aircraft remote sensing system for simultaneously observing extreme ocean surface wind speeds and rain rates, including those of major hurricane intensity. The proposed HIRAD instrument advances beyond the current nadir viewing SFMR to an equivalent wide-swath SFMR imager using passive microwave synthetic thinned aperture radiometer technology. The first version of the instrument will be a single polarization system for wind speed and rain rate, with a dual-polarization system to follow for wind vector capability. This sensor will operate over 4-7 GHz (C-band frequencies) where the required tropical cyclone remote sensing physics has been validated by both SFMR and WindSat radiometers. HIRAD incorporates a unique, technologically advanced array antenna and several other technologies successfully demonstrated by NASA s Instrument Incubator Program. A brassboard (laboratory) version of the instrument has been completed and successfully tested in a test chamber. Development of the aircraft instrument is underway, with flight testing planned for the fall of 2009. Preliminary Observing System Simulation Experiments (OSSEs) show that HIRAD will have a significant positive impact on surface wind analyses as either a new aircraft or satellite sensor. New off-nadir data collected in 2008 by SFMR that affirms the ability of this measurement technique to obtain wind speed data at non-zero incidence angle will be presented, as well as data from the brassboard instrument chamber tests.
    Keywords: Meteorology and Climatology
    Type: M09-0341 , HIRAD OSSE: Interdepartmental Hurrican Conference 2009/The Office of the Federal Coordinator for Meteorological Services and Supporting Research; Mar 02, 2009 - Mar 05, 2009; Saint Petersburg, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-19
    Description: We present here case studies identifying upper-tropospheric NO2 produced in convective storms during NASA's Tropical Composition, Cloud and Climate Coupling Experiment (TC~i)n July and August 2007. DC8 aircraft missions, flown from the mission base in Costa Rica, recorded in situ NO2 profiles near active storms and in relatively quiet areas. We combine these data with measurements from the Ozone Monitoring Instrument (OMI) on the Aura satellite to estimate the amount of NO2 produced by lightning (LN02) above background levels in the regions influenced by storms. In our analysis, improved off-line processing techniques are employed to minimize known artifacts in the OM1 data. Information on lightning flashes (primarily CG) observed by the surface network operated by the Instituto Costarricense de Electricidad are examined upwind of regions where OM1 indicates enhanced LNO2. Comparisons of the observed flash data with measurements by the TRMM/LIS satellite instrument are used to obtain the lightning detection efficiency for total flashes. Finally, using the NO/NO2 ratio estimated from DC-8 observations, we estimate the average NO(x) production per lightning flash for each case in this study. The magnitudes of the measured NO(x) enhancements are compared with those observed by the DC-8 and with similar OM1 measurements analyzed in mid-latitude experiments.
    Keywords: Meteorology and Climatology
    Type: MSFC-2205 , 2009 American Meteorological Society Meeting; Jan 11, 2009 - Jan 15, 2009; Phoenix, AZ; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-19
    Description: Production of NO(x) by lightning remains the NO(x) source with the greatest uncertainty. Current estimates of the global source strength range over a factor of four (from 2 to 8 TgN/year). Ongoing efforts to reduce this uncertainty through field programs, cloud-resolved modeling, global modeling, and satellite data analysis will be described in this seminar. Representation of the lightning source in global or regional chemical transport models requires three types of information: the distribution of lightning flashes as a function of time and space, the production of NO(x) per flash, and the effective vertical distribution of the lightning-injected NO(x). Methods of specifying these items in a model will be discussed. For example, the current method of specifying flash rates in NASA's Global Modeling Initiative (GMI) chemical transport model will be discussed, as well as work underway in developing algorithms for use in the regional models CMAQ and WRF-Chem. A number of methods have been employed to estimate either production per lightning flash or the production per unit flash length. Such estimates derived from cloud-resolved chemistry simulations and from satellite NO2 retrievals will be presented as well as the methodologies employed. Cloud-resolved model output has also been used in developing vertical profiles of lightning NO(x) for use in global models. Effects of lightning NO(x) on O3 and HO(x) distributions will be illustrated regionally and globally.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-19
    Description: The AIRS Science Team Version 5 retrieval algorithm has been finalized and is now operational at the Goddard DAAC in the processing and reprocessing of all AIRS data. The AIRS Science Team Version 5 retrieval algorithm contains a number of significant improvements over Version 4. Two very significant improvements are described briefly below. 1) The AIRS Science Team Radiative Transfer Algorithm (RTA) has now been upgraded to accurately account for effects of non-local thermodynamic equilibrium on the AIRS observations. This allows for use of AIRS observations in the entire 4.3 micron CO2 absorption band in the retrieval algorithm during both day and night. Following theoretical considerations, the,AIRS Version 5 temperature profile retrieval step uses only 15 micron CO2 radiances for those channels sensitive to atmospheric emission in the stratosphere. Tropospheric temperature profile information is obtained almost exclusively from clear column radiances in the 4.3 micron CO2 band. These clear column radiances are a derived product that are indicative of radiances AIRS channels would have seen if the field of view were completely clear. Tropospheric sounding 15 micron CO2 observations are used heavily in the determination of the parameters necessary to generate for all sounding channels. This approach allows for the generation of accurate values of and T(p) under most cloud conditions.
    Keywords: Meteorology and Climatology
    Type: American Meteorological Society 89th Annual Meeting; Jan 11, 2009 - Jan 15, 2009; Phoenix, AZ; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-27
    Description: We are developing a climate-data record (CDR of daily "clear-sky" ice-surface temperature (IST) of the Greenland Ice Sheet, from 1982 to the present using Advanced Very High Resolution Radiometer (AVHRR) (1982 - present) and Moderate-Resolution Imaging Spectroradiometer (MODIS) data (2000 - present) at a resolution of approximately 5 km. The CDR will be continued in the National Polar-orbiting Operational Environmental Satellite System Visible/Infrared Imager Radiometer Suite era. Two algorithms remain under consideration. One algorithm under consideration is based on the split-window technique used in the Polar Pathfinder dataset (Fowler et al., 2000 & 21007). Another algorithm under consideration, developed by Comiso (2006), uses a single channel of AVHRR data (channel 4) in conjunction with meteorological-station data to account for atmospheric effects and drift between AVHRR instruments. Known issues being addressed in the production of the CDR are: tune-series bias caused by cloud cover (surface temperatures can be different under clouds vs. clear areas) and cross-calibration in the overlap period between AVHRR instruments, and between AVHRR and MODIS instruments. Because of uncertainties, mainly due to clouds (Stroeve & Steffen, 1998; Wang and Key, 2005; Hall et al., 2008 and Koenig and Hall, submitted), time-series of satellite 1S'1" do not necessarily correspond to actual surface temperatures. The CDR will be validated by comparing results with automatic-,",eather station (AWS) data and with satellite-derived surface-temperature products. Regional "clear-sky" surface temperature increases in the Arctic, measured from AVHRR infrared data, range from 0.57+/-0.02 deg C (Wang and Key, 2005) to 0.72+/-0.10 deg C (Comiso, 2006) per decade since the early 1980s. Arctic warming has important implications for ice-sheet mass balance because much of the periphery of the Greenland Ice Sheet is already near 0 deg C during the melt season, and is thus vulnerable to rapid melting if temperatures continue to increase. References
    Keywords: Meteorology and Climatology
    Type: 2009 AGU Fall Meeting; 14?18 Dec. 2009; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-08-26
    Description: Auroral infrared emission observed from the TIMED/SABER broadband 4.3 micron channel is used to develop an empirical geomagnetic storm correction to the International Reference Ionosphere (IRI) E-region electron densities. The observation-based proxy used to develop the storm model is SABER-derived NO+(v) 4.3 micron volume emission rates (VER). A correction factor is defined as the ratio of storm-time NO+(v) 4.3 micron VER to a quiet-time climatological averaged NO+(v) 4.3 micron VER, which is linearly fit to available geomagnetic activity indices. The initial version of the E-region storm model, called STORM-E, is most applicable within the auroral oval region. The STORM-E predictions of E-region electron densities are compared to incoherent scatter radar electron density measurements during the Halloween 2003 storm events. Future STORM-E updates will extend the model outside the auroral oval.
    Keywords: Meteorology and Climatology
    Type: LF99-9190 , SPIE Europe Remote Sensing 2009; Aug 31, 2009 - Sep 03, 2009; Berlin; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-08-26
    Description: Great advances have been made in our understanding of the climate system over the past few decades, and remotely sensed data have played a key role in supporting many of these advances. Improvements in satellites and in computational and data-handling techniques have yielded high quality, readily accessible data. However, rapid increases in data volume have also led to large and complex datasets that pose significant challenges in data analysis (NRC, 2007). Uncertainty characterization is needed for every satellite mission and scientists continue to be challenged by the need to reduce the uncertainty in remotely sensed climate records and projections. The approaches currently used to quantify the uncertainty in remotely sensed data, including statistical methods used to calibrate and validate satellite instruments, lack an overall mathematically based framework.
    Keywords: Meteorology and Climatology
    Type: PB2010-100513
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-12
    Description: Long-distance migration enables many organisms to take advantage of lucrative breeding and feeding opportunities during summer at high latitudes and then to move to lower, more temperate latitudes for the remainder of the year. The latitudinal range of the Ad lie penguin spans ~ 22 deg. Penguins from northern colonies may not migrate, but due to the high latitude of Ross Island colonies, these penguins almost certainly undertake the longest migrations for the species. Previous work has suggested that Adelies require both pack ice and some ambient light at all times of year. Over a 3-yr period, which included winters of both extensive and reduced sea ice, we investigated migratory routes and characteristics and wintering locations of Adelie Penguins from two colonies of very different size on Ross Island, Ross Sea, the southernmost colonies for any penguin. We acquired data from 3-16 Geolocation Sensors affixed to penguins each year at both Cape Royds and Cape Crozier in 2003-2005. Migrations averaged 12,760 km, with the longest being 17,600 km, and were in part facilitated by pack ice movement. Trip distances varied annually, but not by colony. Penguins rarely traveled north of the main sea ice pack, and used areas with high sea-ice concentration, ranging from 75-85%, about 500 km inward from the ice edge. They also used locations where there was some twilight (2-7 hr with sun greater than 6 below horizon). We review how Adelie Penguin migration has likely changed since withdrawal of the West Antarctic Ice 35 Sheet across the Ross Sea beginning 12,000 yBP. If sea ice extent in the Ross Sea sector decreases, as predicted by climate models, we can expect change in wintering areas, the location of which ultimately may be limited more by the availability of adequate light for visual foraging than by the availability of suitable pack-ice.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-12
    Description: The responses of the atmospheric water cycle and climate of West Africa and the Atlantic to radiative forcing of Saharan dust are studied using the NASA finite volume general circulation model (fvGCM), coupled to a mixed layer ocean. We find evidence of an "elevated heat pump" (EHP) mechanism that underlines the responses of the atmospheric water cycle to dust forcing as follow. During the boreal summerr, as a result of large-scale atmospheric feedback triggered by absorbing dust aerosols, rainfall and cloudiness are ehanIed over the West Africa/Eastern Atlantic ITCZ, and suppressed over the West Atlantic and Caribbean region. Shortwave radiation absorption by dust warms the atmosphere and cools the surface, while longwave has the opposite response. The elevated dust layer warms the air over West Africa and the eastern Atlantic. As the warm air rises, it spawns a large-scale onshore flow carrying the moist air from the eastern Atlantic and the Gulf of Guinea. The onshore flow in turn enhances the deep convection over West Africa land, and the eastern Atlantic. The condensation heating associated with the ensuing deep convection drives and maintains an anomalous large-scale east-west overturning circulation with rising motion over West Africa/eastern Atlantic, and sinking motion over the Caribbean region. The response also includes a strengthening of the West African monsoon, manifested in a northward shift of the West Africa precipitation over land, increased low-level westerlies flow over West Africa at the southern edge of the dust layer, and a near surface westerly jet underneath the dust layer overr the Sahara. The dust radiative forcing also leads to significant changes in surface energy fluxes, resulting in cooling of the West African land and the eastern Atlantic, and warming in the West Atlantic and Caribbean. The EHP effect is most effective for moderate to highly absorbing dusts, and becomes minimized for reflecting dust with single scattering albedo at0.95 or higher.
    Keywords: Meteorology and Climatology
    Type: GSFC.JA.3298.2010
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-12
    Description: We use aircraft observations of carbon monoxide (CO) from the NASA ARCTAS and NOAA ARCPAC campaigns in April 2008 together with multiyear (2003-2008) CO satellite data from the AIRS instrument and a global chemical transport model (GEOS-Chem) to better understand the sources, transport, and interannual variability of pollution in the Arctic in spring. Model simulation of the aircraft data gives best estimates of CO emissions in April 2008 of 26 Tg month-1 for Asian anthropogenic, 9.1 for European anthropogenic, 4.2 for North American anthropogenic, 9.3 for Russian biomass burning (anomalously large that year), and 21 for Southeast Asian biomass burning. We find that Asian anthropogenic emissions are the dominant source of Arctic CO pollution everywhere except in surface air where European anthropogenic emissions are of similar importance. Synoptic pollution influences in the Arctic free troposphere include contributions of comparable magnitude from Russian biomass burning and from North American, European, and Asian anthropogenic sources. European pollution dominates synoptic variability near the surface. Analysis of two pollution events sampled by the aircraft demonstrates that AIRS is capable of observing pollution transport to the Arctic in the mid-troposphere. The 2003-2008 record of CO from AIRS shows that interannual variability averaged over the Arctic cap is very small. AIRS CO columns over Alaska are highly correlated with the Ocean Nino Index, suggesting a link between El Nino and northward pollution transport. AIRS shows lower-than-average CO columns over Alaska during April 2008, despite the Russian fires, due to a weakened Aleutian Low hindering transport from Asia and associated with the moderate 2007-2008 La Nina. This suggests that Asian pollution influence over the Arctic may be particularly large under strong El Nino conditions.
    Keywords: Meteorology and Climatology
    Type: LF99-9493
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-12
    Description: Previous studies have shown that probabilistic forecasting may be a useful method for predicting persistent contrail formation. A probabilistic forecast to accurately predict contrail formation over the contiguous United States (CONUS) is created by using meteorological data based on hourly meteorological analyses from the Advanced Regional Prediction System (ARPS) and from the Rapid Update Cycle (RUC) as well as GOES water vapor channel measurements, combined with surface and satellite observations of contrails. Two groups of logistic models were created. The first group of models (SURFACE models) is based on surface-based contrail observations supplemented with satellite observations of contrail occurrence. The second group of models (OUTBREAK models) is derived from a selected subgroup of satellite-based observations of widespread persistent contrails. The mean accuracies for both the SURFACE and OUTBREAK models typically exceeded 75 percent when based on the RUC or ARPS analysis data, but decreased when the logistic models were derived from ARPS forecast data.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-12
    Description: Straightforward application of the Schmidt-Appleman contrail formation criteria to diagnose persistent contrail occurrence from numerical weather prediction data is hindered by significant bias errors in the upper tropospheric humidity. Logistic models of contrail occurrence have been proposed to overcome this problem, but basic questions remain about how random measurement error may affect their accuracy. A set of 5000 synthetic contrail observations is created to study the effects of random error in these probabilistic models. The simulated observations are based on distributions of temperature, humidity, and vertical velocity derived from Advanced Regional Prediction System (ARPS) weather analyses. The logistic models created from the simulated observations were evaluated using two common statistical measures of model accuracy, the percent correct (PC) and the Hanssen-Kuipers discriminant (HKD). To convert the probabilistic results of the logistic models into a dichotomous yes/no choice suitable for the statistical measures, two critical probability thresholds are considered. The HKD scores are higher when the climatological frequency of contrail occurrence is used as the critical threshold, while the PC scores are higher when the critical probability threshold is 0.5. For both thresholds, typical random errors in temperature, relative humidity, and vertical velocity are found to be small enough to allow for accurate logistic models of contrail occurrence. The accuracy of the models developed from synthetic data is over 85 percent for both the prediction of contrail occurrence and non-occurrence, although in practice, larger errors would be anticipated.
    Keywords: Meteorology and Climatology
    Type: LF99-7205
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-12
    Description: This study uses short-range ensemble forecasts initialized with an Ensemble-Kalman filter to study the dynamics and predictability of Hurricane Humberto, which made landfall along the Texas coast in 2007. Statistical correlation is used to determine why some ensemble members strengthen the incipient low into a hurricane and others do not. It is found that deep moisture and high convective available potential energy (CAPE) are two of the most important factors for the genesis of Humberto. Variations in CAPE result in as much difference (ensemble spread) in the final hurricane intensity as do variations in deep moisture. CAPE differences here are related to the interaction between the cyclone and a nearby front, which tends to stabilize the lower troposphere in the vicinity of the circulation center. This subsequently weakens convection and slows genesis. Eventually the wind-induced surface heat exchange mechanism and differences in landfall time result in even larger ensemble spread. 1
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-12
    Description: Further development of our self-consistent model of interacting ring current (RC) ions and electromagnetic ion cyclotron (EMIC) waves is presented. This model incorporates large scale magnetosphere-ionosphere coupling and treats self-consistently not only EMIC waves and RC ions, but also the magnetospheric electric field, RC, and plasmasphere. Initial simulations indicate that the region beyond geostationary orbit should be included in the simulation of the magnetosphere-ionosphere coupling. Additionally, a self-consistent description, based on first principles, of the ionospheric conductance is required. These initial simulations further show that in order to model the EMIC wave distribution and wave spectral properties accurately, the plasmasphere should also be simulated self-consistently, since its fine structure requires as much care as that of the RC. Finally, an effect of the finite time needed to reestablish a new potential pattern throughout the ionosphere and to communicate between the ionosphere and the equatorial magnetosphere cannot be ignored.
    Keywords: Meteorology and Climatology
    Type: M09-0228
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-08-13
    Description: Differences in rain rate between TMI and PR vary systematically with PR Z-profile statistics, whose frequency of occurrence is modified to create seasonal biases in the sub-tropical Southeastern U.S. (and almost certainly elsewhere). Tropical (non-tropical) DSDs in N. Alabama exhibit larger (smaller) D(sub 0), and larger (smaller) N(sub 0) and mu. The formulation process for empirical retrievals of DSD using dual-pol radar is sensitive to D(sub max) assumptions used in the scattering model stage. 4. DSD retrievals from Parsivel disdrometers compare favorably to those of the 2DVD unless rain rates exceed 25 mm/hr and D(sub m) exceeds 2 mm (at which point the Parsivels overestimate D(sub m) and rain rate).
    Keywords: Meteorology and Climatology
    Type: M10-0045 , 2009 Precipitation Measurement Missions (PMM) Science Team Meeting; Oct 26, 2009 - Oct 29, 2009; Salt Lake City, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-08-13
    Description: Global forecasts were made with the 0.25-degree latitude version of GEOS-5, with the RAS scheme and with the Kain-Fritsch scheme. Examination was made of the Katrina (2005) hurricane simulation. Replacement of the RAS convective scheme with the K-F scheme results in a much more vigorous Katrina, closer to reality. Still, the result is not as vigorous as reality. In terms of wind maximum, the gap was closed by ~50%. The result seems to be due to the RAS scheme drying out the boundary layer, thus hampering the grid-scale secondary circulation and attending cyclone development. The RAS case never developed a full warm core, whereas the K-F case did. Not shown here: The K-F scheme also resulted in a more vigorous storm than when GEOS-5 is run with no convective parameterization. Also not shown: An experiment in which the RAS firing level was moved up by 3 model levels resulted in a stronger, warm-core storm, though not as strong as the K-F case. Effects on storm track were noticed, but not studied.
    Keywords: Meteorology and Climatology
    Type: M09-0603 , Workshop in High Resolution Climate Modeling; Aug 10, 2009 - Aug 14, 2009; Trieste; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-26
    Description: The central theme of this paper is to describe how cloud system resolving models (CRMs) of grid spacing approximately 1 km have been applied to various important problems in atmospheric science across a wide range of spatial and temporal scales and how these applications relate to other modeling approaches. A long-standing problem concerns the representation of organized precipitating convective cloud systems in weather and climate models. Since CRMs resolve the mesoscale to large scales of motion (i.e., 10 km to global) they explicitly address the cloud system problem. By explicitly representing organized convection, CRMs bypass restrictive assumptions associated with convective parameterization such as the scale gap between cumulus and large-scale motion. Dynamical models provide insight into the physical mechanisms involved with scale interaction and convective organization. Multiscale CRMs simulate convective cloud systems in computational domains up to global and have been applied in place of contemporary convective parameterizations in global models. Multiscale CRMs pose a new challenge for model validation, which is met in an integrated approach involving CRMs, operational prediction systems, observational measurements, and dynamical models in a new international project: the Year of Tropical Convection, which has an emphasis on organized tropical convection and its global effects.
    Keywords: Meteorology and Climatology
    Type: Paper 2008R0000276 , Reviews of Geophysics (ISSN 8755-1209); 47
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-08-24
    Description: To understand the radiative impact of tropical thin cirrus clouds, the frequency of occurrence and optical depths of these clouds have been derived. Thin cirrus clouds are defined here as being those that are not detected by the operational Moderate Resolution Imaging Spectroradiometer (MODIS) cloud mask, corresponding to an optical depth value of approximately 0.3 or smaller, but that are detectable in terms of the cirrus reflectance product based on the MODIS 1.375-micron channel. With such a definition, thin cirrus clouds were present in more than 40% of the pixels flagged as clear sky by the operational MODIS cloud mask algorithm. It is shown that these thin cirrus clouds are frequently observed in deep convective regions in the western Pacific. Thin cirrus optical depths were derived from the cirrus reflectance product. Regions of significant cloud fraction and large optical depths were observed in the Northern Hemisphere during the boreal spring and summer and moved southward during the boreal autumn and winter. The radiative effects of tropical thin cirrus clouds were studied on the basis of the retrieved cirrus optical depths, the atmospheric profiles derived from the Atmospheric Infrared Sounder (AIRS) observations, and a radiative transfer model in conjunction with a parameterization of ice cloud spectral optical properties. To understand how these clouds regulate the radiation field in the atmosphere, the instantaneous net fluxes at the top of the atmosphere (TOA) and at the surface were calculated. The present study shows positive and negative net forcings at the TOA and at the surface, respectively. The positive (negative) net forcing at the TOA (surface) is due to the dominance of longwave (shortwave) forcing. Both the TOA and surface forcings are in a range of 0-20 W/sq m, depending on the optical depths of thin cirrus clouds.
    Keywords: Meteorology and Climatology
    Type: AD-A513329 , Journal of the Atmospheric Sciences; 66; 3721-3731
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-08-24
    Description: Studying the spatial variability of aerosol properties in the vicinity of clouds is essential to our ability to determine aerosol direct and indirect effects on climate. In this paper, we describe aerosol observations collected near cloud edges by an airborne Sun photometer over dark ocean waters. Focusing on case studies of aerosol measurements near eight cloud edges within a dissipating stratiform cloud deck, we compare the airborne Sun photometer observations to retrievals of aerosol properties using the standard Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol algorithm applied to 500-m-resolution MODIS spectral reflectances. We find a persistent, spectrally neutral increase in the Sun photometer-derived aerosol optical depth (AOD) of up to 10% (0.015) in the 2-km distances closest to the edges of several distinct clouds. At midvisible wavelengths, the MODIS AOD retrievals show similar increases toward cloud edges, although a larger increase in AOD is found in the MODIS along-scan direction. At shortwave infrared (SWIR) wavelengths (1240-2130 nm), the MODIS-derived AOD increases near cloud edges are of the order of 0.03 and as such three times as large as the Sun photometer-derived values. Hence, in contrast to recently discussed bluing of aerosols near cloud edges, i.e., a preferential apparent increase in the visible reflectances of clear-sky pixels due to 3-D radiative transfer effects in the vicinity of clouds, we find a reddening of aerosols in the MODIS 500-m-resolution aerosol retrievals near clouds. This reddening in our study can be traced to larger absolute increases in SWIR reflectances when compared to visible reflectances near clouds, which in turn seem to stem from larger electronic cross talk in the MODIS SWIR bands (5-7). We note that the lack of bluing in our MODIS observations is likely due to the small geometric and optical thicknesses of the clouds considered.
    Keywords: Meteorology and Climatology
    Type: Journal of Geophysical Research; 114; D06209
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-08-13
    Description: Overall Goals: 1. Build on the lightning jump framework set through previous studies. 2. Understand what typically occurs in nonsevere convection with respect to increases in lightning. 3. Ultimately develop a lightning jump algorithm for use on the Geostationary Lightning Mapper (GLM). 4 Lightning jump algorithm configurations were developed (2(sigma), 3(sigma), Threshold 10 and Threshold 8). 5 algorithms were tested on a population of 47 nonsevere and 38 severe thunderstorms. Results indicate that the 2(sigma) algorithm performed best over the entire thunderstorm sample set with a POD of 87%, a far of 35%, a CSI of 59% and a HSS of 75%.
    Keywords: Meteorology and Climatology
    Type: M09-0618 , Southern Thunder Workshop; Jul 28, 2009 - Jul 30, 2009; Cocoa Beach, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-08-13
    Description: NASA Marshall Space Flight Center and the University of Alabama Huntsville are collaborating with the 45th Weather Squadron (45WS) to develop improved lightning prediction capabilities for the new C-band dual-polarimetric weather radar being acquired for use by 45WS and launch weather forecasters at Cape Canaveral Air Force Station (CCAFS). In particular, these algorithms will focus on lightning onset, cessation and combined lightning-radar applications for convective winds assessment. Research using radar reflectivity (Z) data for prediction of lightning onset has been extensively discussed in the literature and subsequently applied by launch weather forecasters as it pertains to lightning nowcasting. Currently the forecasters apply a relatively straight forward but effective temperature-Z threshold algorithm for assessing the likelihood of lightning onset in a given storm. In addition, a layered VIL above the freezing level product is used as automated guidance for the onset of lightning. Only limited research and field work has been conducted on lightning cessation using Z and vertically-integrated Z for determining cessation. Though not used operationally vertically-integrated Z (basis for VIL) has recently shown promise as a tool for use in nowcasting lightning cessation. The work discussed herein leverages and expands upon these and similar reflectivity-threshold approaches via the application/addition of over two decades of polarimetric radar research focused on distinct multi-parameter radar signatures of ice/mixed-phase initiation and ice-crystal orientation in highly electrified convective clouds. Specifically, our approach is based on numerous previous studies that have observed repeatable patterns in the behavior of the vertical hydrometeor column as it relates to the temporal evolution of differential reflectivity and depolarization (manifested in either LDR or p(sub hv)), development of in-situ mixed and ice phase microphysics, electric fields, and ensuing lightning in the sub-tropical/tropical convection typical of the southeastern U.S., Maritime Continent, and southwestern Amazon. The polarimetric signatures detected in this setting provide a basis for automated 3-D detection of hydrometeor types in fuzzy logic hydrometeor identification algorithms (HID). Our working hypothesis is that improvement in lightning onset warning lead time and specificity for a given storm, relative to application of a Z-threshold algorithm, should arise as a consequence of the ability of dual-polarimetric radar to unambiguously detect and identify (through HID algorithms) the updraft elevation of rain-water cores above the freezing level and subsequent onset of drop freezing, riming, and robust mixed phase processes leading to significant charge separation and lightning. This type of algorithm, though dependent on the quality of the polarimetric data should be less susceptible to variable Z-calibration that can impact a given Z-threshold approach. To facilitate development of the algorithm while the 45WS dual-pol radar is in its current test stages and to evaluate the impact of polarimetric data quality (e.g., modified scan parameters and sampling) on the ensuing algorithms, we are using the ARMOR C-band dual-pol radar in Huntsville combined with N. Alabama LMA data and ARMOR HID algorithms [NCAR algorithm modified for application at C-band] in a testbed fashion. For lightning cessation we are revisiting the application of differential propagation phase variables for the monitoring of ice crystal alignment driven by in-cloud electric fields combined with metrics of ice water path (i.e., vertically integrated reflectivity). Importantly it should be noted that this approach is still very much a research topic and as such, we will explore operational applications that involve radar frequencies other than C-Band by using the UAH MAX X-band dual-pol radar in slow staring modes.
    Keywords: Meteorology and Climatology
    Type: M09-0496 , M09-0538 , 34th Conference on Radar Meteorology; Oct 05, 2009 - Oct 09, 2009; Williamsburg, VA; United States|Southern Thunder Workshop; Jul 28, 2009 - Jul 30, 2009; Cocoa Beach, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-13
    Description: Pre-launch algorithm development & post-launch product evaluation: The GPM GV paradigm moves beyond traditional direct validation/comparison activities by incorporating improved algorithm physics & model applications (end-to-end validation) in the validation process. Three approaches: 1) National Network (surface): Operational networks to identify and resolve first order discrepancies (e.g., bias) between satellite and ground-based precipitation estimates. 2) Physical Process (vertical column): Cloud system and microphysical studies geared toward testing and refinement of physically-based retrieval algorithms. 3) Integrated (4-dimensional): Integration of satellite precipitation products into coupled prediction models to evaluate strengths/limitations of satellite precipitation producers.
    Keywords: Meteorology and Climatology
    Type: M09-0513 , International GPM Planning Meeting; Jun 16, 2009 - Jun 18, 2009; Paris; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...