ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-01-24
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN76613 , American Meteorological Society (AMS) Annual Meeting; Jan 12, 2020 - Jan 16, 2020; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-01-24
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN76760 , AMS Annual Meeting; Jan 12, 2020 - Jan 16, 2020; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-01-23
    Description: Atmospheric Rivers (ARs) are responsible for much of the precipitation along the west coast of the United States. In order to accurately predict AR events in numerical weather prediction, subseasonal and seasonal timescales, it is important to understand the large-scale meteorological influence on extreme AR events.Here, characteristics of ARs that result in an extreme precipitation event are compared to typical ARs on the coast of WashingtonState. In addition to more intense water vapor transport, notable differences in the synoptic forcing are present during extreme precipitation events that are not present during typical AR events.In particular, a negatively tilted low pressure system is positioned to the west in the Gulf of Alaska, alongside an upper level jet streak. Subseasonal and seasonal teleconnection patterns are known to influence the weather in the Pacific Northwest. The Madden JulianOscillation (MJO) is shown to be particularly important in determining the strength of precipitation associated with in AR ont he Washington coast.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN76948
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-05-21
    Description: Transport from the Northern Hemisphere (NH) midlatitudes to the Arctic plays a crucial role in determining the abundance of trace gases and aerosols that are important to Arctic climate via impacts on radiation and chemistry. Here we examine this transport using an idealized tracer with a fixed lifetime and predominantly midlatitude land-based sources in models participating in the Chemistry Climate Model Initiative (CCMI). We show that there is a 25%-45% difference in the Arctic concentrations of this tracer among the models. This spread is correlated with the spread in the location of the Pacific jet, as well as the spread in the location of the Hadley Cell (HC) edge, which varies consistently with jet latitude. Our results suggest that it is likely that the HC-related zonal-mean meridional transport rather than the jet-related eddy mixing is the major contributor to the inter-model spread in the transport of land-based tracers into the Arctic. Specifically, in models with a more northern jet, the HC generally extends further north and the tracer source region is mostly covered by surface southward flow associated with the lower branch of the HC, resulting in less efficient transport poleward to the Arctic. During boreal summer, there are poleward biases in jet location in free-running models, and these models likely underestimate the rate of transport into the Arctic. Models using specified dynamics do not have biases in the jet location, but do have biases in the surface meridional flow, which may result in differences in transport into the Arctic. In addition to the land-based tracer, the midlatitude-to-Arctic transport is further examined by another idealized tracer with zonally uniform sources. With equal sources from both land and ocean, the inter-model spread of this zonally uniform tracer is more related to variations in parameterized convection over oceans rather than variations in HC extent, particularly during boreal winter. This suggests that transport of land-based and oceanic tracers or aerosols towards the Arctic differs in pathways and therefore their corresponding inter-model variabilities result from different physical processes.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN68258 , Atmospheric Chemistry and Physics (ISSN 1680-7316) (e-ISSN 1680-7324); 19; 8; 5511-5528
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-29
    Description: We analyze the atmospheric processes that explain the large changes in radiative feed-backs between the two latest climate configurations of the Hadley Centre Global Environmental model. We use a large set of atmosphere-only climate-change simulations (amip and amip-p4K) to separate the contributions to the differences in feedback parameter from all the atmospheric model developments between the two latest model configurations. We show that the differences are mostly driven by changes in the shortwave cloud radiative feedback in the midlatitudes, mainly over the Southern Ocean. Two new schemes explain most of the differences: the introduction of a new aerosol scheme; and the development of a new mixed-phase cloud scheme. Both schemes reduce the strength of the pre-existing shortwave negative cloud feedback in the midlatitudes. The new aerosol scheme dampens a strong aerosol-cloud interaction, and it also suppresses a negative clear-sky shortwave feedback. The mixed-phase scheme increases the amount of cloud liquid water path (LWP) in the present-day, thereby reducing the radiative effciency of the increase of LWP in the warmer climate. It also enhances a strong, pre-existing, positive cloud fraction feedback. We assess the realism of the changes by comparing present-day simulations against observations, and discuss avenues that could help constrain the relevant processes.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN70134 , Journal of Advances in Modeling Earth Systems (e-ISSN 1942-2466)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-05-15
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: M19-7317
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-05-25
    Description: The association between climate variability and episodic events, such as the antecedent moisture conditions prior to wildfire or the cooling following volcanic eruptions, is commonly assessed using Superposed Epoch Analysis (SEA). In SEA the epochal response is typically calculated as the average climate conditions prior to and following all event years or their deviation from climatology. However, the magnitude and significance of the inferred climate association may be sensitive to the selection or omission of individual key years, potentially resulting in a biased assessment of the relationship between these events and climate. Here we describe and test a modified double-bootstrap SEA that generates multiple unique draws of the key years and evaluates the sign, magnitude, and significance of event-climate relationships within a probabilistic framework. This multiple resampling helps quantify multiple uncertainties inherent in conventional applications of SEA within dendrochronology and paleoclimatology. We demonstrate our modified SEA by evaluating the volcanic cooling signal in a Northern Hemisphere tree-ring temperature reconstruction and the link between drought and wildfire events in the western United States. Finally, we make our Matlab and R code available to be adapted for future SEA applications.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN68850 , Dendrochronologia (ISSN 1125-7865); 55; 119-124
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-02
    Description: GPM (Global Precipitation Measurement) Products. Includes information on these two programs that integrate GPM data: Multi-Radar/Multi-Sensor (MRMS) and Integrated Multi-satellitE Retrievals for GPM (IMERG).
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN71369 , Weather and Air Quality Forecasting Applications Workshop; Jul 22, 2019; College Park, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-23
    Description: The water vapor is a relevant greenhouse gas in the Earth's climate system, and satellite products become one of the most effective way to characterize and monitor the columnar water vapor (CWV) content at global scale. Recently, a new product (MCD19) was released as part of MODIS (Moderate Resolution Imaging Spectroradiometer) Collection 6 (C6). This operational product from the Multi-Angle Implementation for Atmospheric Correction (MAIAC) algorithm includes a high 1-kilometer resolution CWV retrievals. This study presents the first global validation of MAIAC C6 CWV obtained from MODIS MCD19A2 product. This evaluation was performed using Aerosol Robotic Network (AERONET) observations at 265 sites (2000-2017). Overall, the results show a good agreement between MAIAC/AERONET CWV retrievals, with correlation coefficient higher than 0.95 and RMS (Root Mean Square) error lower than 0.250 centimeters. The binned error analysis revealed an underestimation (approximately 10 percent) of Aqua CWV retrievals with negative bias for CWV higher than 3.0 centimeters. In contrast, Terra CWV retrievals show a slope of regression close to unity and a low mean bias of 0.075 centimeters. While the accuracy is relatively similar between 1.0 and 5.0 centimeters for both sensor products, Terra dataset is more reliable for applications in humid tropical areas (less than 5.0 centimeters). The expected error was defined as plus or minus 15 percent, with less than 68 percent of retrievals falling within this envelope. However, the accuracy is regionally dependent, and lower error should be expected in some regions, such as South America and Oceania. Since MODIS instruments have exceeded their design lifetime, time series analysis was also presented for both sensor products. The temporal analysis revealed a systematic offset of global average between Terra and Aqua CWV records. We also found an upward trend (approximately 0.2 centimeters per decade) in Terra CWV retrievals, while Aqua CWV retrievals remain stable over time. The sensor degradation influences the ability to detect climate signals, and this study indicates the need for revisiting calibration of the MODIS bands 17-19, mainly for Terra instrument, to assure the quality of the MODIS water vapor product. Finally, this study presents a comprehensive validation analysis of MAIAC CWV over land, raising the understanding of its overall quality.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN68951 , Atmospheric Research (ISSN 0169-8095 ); 225; 181-192
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-11
    Description: While the increase of computer power mobilizes a part of the community towards models with explicit convection or based on machine learning, we review the part of the literature dedicated to convective parameterization development for large-scale forecast and climate models. Recent findings: Many developments are underway to overcome endemic limitations of traditional convective parameterizations, either in unified or multi-object frameworks: scale-aware and stochastic approaches, new prognostic equations or representations of new components such as cold pools. Understanding their impact on the emergent properties of a model remains challenging, due to subsequent tuning of parameters and the limited understanding given by traditional metrics. Summary: Further effort still needs to be dedicated to the representation of the life cycle of convective systems, in particular their mesoscale organization and associated cloud cover. The development of more process-oriented metrics based on new observations is also needed to help quantify model improvement and better understand the mechanisms of climate change.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN68302 , Current Climate Change Reports; 5; 2; 95-11
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-07-20
    Description: The Atmospheric Infrared Sounder (AIRS) is the hyperspectral infrared sounder onboard NASA's Aqua satellite, launched in 2002. The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC), in collaboration with NASA Sounder Team at JPL, provides processing, archiving, and distribution services for NASA sounders: the Aqua AIRS mission and the subsequent Suomi-National Polar-orbiting Partnership Cross-track Infrared Sounder (CrIS) mission. The Planetary Boundary Layer (PBL) Height is a new variable added in the AIRS Version 6 support product. It is derived based on gradients of the retrieved atmospheric thermodynamic profile, and gives the pressure at the top of PBL over the ocean. The GES DISC also provides services for the second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) product generated by the Goddard Earth Observing System Model, Version 5 (GEOS-5) data assimilation system. The monthly PBL Height variable has been available in the Giovanni system, which is a Web-based application developed by the GES DISC providing a simple and intuitive way to visualize, analyze, and access vast amounts of Earth science remote sensing data. In this work, we will present the monthly PBL Height data from AIRS and MERRA-2 and the services to support data intercomparison, such as access, plotting, subsetting, re-gridding, and generation of a multi-year monthly mean. We will also show intercomparison results, and evaluate whether (over the ocean) AIRS can observe PBL features similar to the reanalysis product at monthly and longer-term scales.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN65014 , American Meteorological Society (AMS) Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-20
    Description: Emission sources of trace gases and aerosol particles in the South American (SA)and African (Af) continents have a strong seasonal and space variability associated with the extensive vegetation fires activities. In both continents, during the austral winter, the fires affect mainly tropical forest and savannah-type biomes and are mostly associated with deforestation and agricultural/pasture land management. Smoke aerosol particles, on average, contribute to at least 90% of the total aerosol optical depth (AOD) in the visible spectrum in the case of the South America regional smoke. Smoke aerosols also act as cloud condensation nuclei affecting cloud microphysics properties and therefore, changing the radiation budget, hydrological cycle and global circulation patterns over disturbed areas (Kaufman, 1995; Rosenfeld, 1999; Andreae,et al., 2004; Koren et al., 2004, Zhang, 2008; Ott et al., 2010; Randles et al., 2013). This study aims to evaluate and quantify the impact of including a comprehensive emission field of biomass burning aerosol on the performance of a seasonal climate forecast system, not only regarding the AOD itself but mainly on the meteorological state variable (e.g., precipitation and temperature). To address the questions put above, we designed two numerical experiments: 1- named"AERO_CTL" which applies the Quick Fire Emissions Dataset (QFED) emissions estimated with intra-diurnal variation (hereafter, BBE), and 2- named "AERO_CLM" where the sourcee mission is based on a climatology of the QFED emissions, with only monthly variation(hereafter, BBCLIM). Hindcast simulations were produced using the Goddard Earth ObservingSystem global circulation model, version 5, sub-seasonal to seasonal (GEOS5-S2S) system with a nominal spatial resolution of 56km (Rienecker et al., 2008). In both experiments, the aerosol feedbacks from cloud developments and radiation interactions were accounted. The two experiments consisted of 4 members each and ran from June to November spanning over the years 2000 to 2015. Model performance was evaluated by calculating statistical metrics on the mean area of SA and Af. Our results demonstrated that the skill model in predicting AOD is significantly improve when BBE source emission is applied over SA, but not over the Afcontinent. Over SA, the correlation between the AERO_CTL model configuration and MERRA-2 is 0.93 (R2= 0.86, RMS=0.02, BIAS=0.01), while the AERO_CLM model presents a value of0.81 (R2= 0.65, RMS=0.04, BIAS=0.06). However, the AERO_CTL experiment better represents the inter-annual variability of the AOS in both regions. The gain of the skill in predicting the AOD by the AERO_CTL experiment is also seen in some meteorological variables. We observed an increase in the model skill in predicting the 2-meter temperature and precipitation of up to 0.3 for the AERO_CTL experiment in comparison to the AERO_CLM. AERO_CLM. According to the analyzed hindcast, we inferred that representing the BBE more realistically implies in a significant gain of skills in the seasonal climate forecasting over SA and Af continents.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN64697 , American Meteorological Society (AMS) Annual Meeting 2019; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-20
    Description: We developed and implemented a simple representation of a cold pool in the Grell-Freitas (GF) convection parameterization. The cold pool parameterization is based on the observation that convective-scale downdrafts produce a local deficit of the moist static energy (MSE). This information is advected and becoming downwind available to trigger and intensify new convection. The cold pool is dissipated by a simple exponential decay using a lifetime of a few hours, or by interacting with the underneath surface by exchanging latent and sensible heat fluxes. Preliminary results show some improvement of the simulation of the diurnal cycle of the precipitation over the land, mainly during the nighttime.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN64710 , American Meteorological Society (AMS) Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-20
    Description: Atmospheric chemistry models are a central tool to study the impact of chemical constituents on the environment, vegetation and human health. These models split the atmosphere in a large number of grid-boxes and consider the emission of compounds into these boxes and their subsequent transport, deposition, and chemical processing. The chemistry is represented through a series of simultaneous ordinary differential equations, one for each compound. Given the difference in life-times between the chemical compounds (milli-seconds for O1D to years for CH4) these equations are numerically stiff and solving them consists of a significant fraction of the computational burden of a chemistry model. We have investigated a machine learning approach to emulate the chemistry instead of solving the differential equations numerically. From a one-month simulation of the GEOS-Chem model we have produced a training dataset consisting of the concentration of compounds before and after the differential equations are solved, together with some key physical parameters for every grid-box and time-step. From this dataset we have trained a machine learning algorithm (regression forest) to be able to predict the concentration of the compounds after the integration step based on the concentrations and physical state at the beginning of the time step. We have then included this algorithm back into the GEOS-Chem model, bypassing the need to integrate the chemistry. This machine learning approach shows many of the characteristics of the full simulation and has the potential to be substantially faster. There are a wide range of application for such an approach - generating boundary conditions, for use in air quality forecasts, chemical data assimilation systems, etc. We discuss speed and accuracy of our approach, and highlight some potential future directions for improving it.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN67517 , European Geosciences Union General Assembly (EGU); Apr 07, 2019 - Apr 12, 2019; Vienna; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-20
    Description: Analysis of multispectral (red-green-blue, RGB) satellite image composites can be used to improve understanding of thermodynamic and / or dynamic features associated with the development of significant weather events (cyclones, hurricanes, intense convection, turbulence, etc.) The enhanced water vapor imaging capabilities of the Advanced Baseline Imager on GOES-16 and GOES-17 satellites provide a unique opportunity to demonstrate this capability through a comparison of the Air Mass (AM) and Differential Water Vapor (DWV) RGB image products for several case studies.
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN64361 , Annual American Meteorological Society Conference (AMS 2019); Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN64237 , Annual Meeting of the American Meteorological Society; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN64174 , American Meteorological Society (AMS) Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN64396 , American Meteorological Society (AMS) Annual Meeting 2019; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-20
    Description: Conclusions: GLM (Geostationary Lightning Mapper) flash rates were 2 to 5 times lower than LMA (Lightning Mapping Array) in an Alabama supercell that was tracked using a combination of GLM flash initiation density and VIL (Vertically Integrated Liquid); Since most lightning was initiating at 8-9 kilometers (and not at low levels) according to LMA, flash height does not appear to be a primary factor in low GLM flash rates; When (LMA-GLM) flash rate differences were largest, the LMA observed flash areas were relatively small (and vice versa); Flash size may be a primary factor in low GLM flash rates due to detectability and/or flash clustering issues with small flashes within the coarse 8 kilometers by 8 kilometers resolution; High cloud liquid water droplet concentrations were inferred indirectly from riming necessary for large radar MESH (Maximum Expected Size of Hail), VIL and hail/graupel volumes. High cloud water droplet concentrations in supercells may decrease GLM detection efficiency due to optical extinction of near IR (near Infrared) emitted by lightning as it moves through cloud; Despite large flash rate differences, GLM & LMA lightning jumps during robust supercell generally agreed with each other and radar trends in HID (Radar Reflectivity and Hydrometeor Identification), MESH and VIL.However, more LMA jumps (than GLM) in developing supercell and more GLM jumps (than LMA) in weak to decaying supercell. Future work: improve GLM tracking.
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN64184 , AMS 2019-1018 , Annual American Meteorological Society Conference (AMS 2019); Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN63728 , American Meteorological Society (AMS) Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-20
    Description: We propose a novel Bayesian Monte Carlo Integration (BMCI) technique to retrieve the profiles of temperature, water vapor, and cloud liquid/ice water content from microwave cloudy measurements in the presence of tropical cyclones (TC). These retrievals then can either be directly used by meteorologists to analyze the structure of TCs or be assimilated into numerical models to provide accurate initial conditions for the NWP (Numerical Weather Prediction) models. The BMCI technique is applied to the data from the Advanced Technology Microwave Sounder (ATMS) onboard Suomi National Polar-orbiting Partnership (NPP) and Global Precipitation Measurement (GPM) Microwave Imager (GMI). The retrieved profiles are then assimilated into Hurricane WRF (Weather Research and Forecasting) using the GSI (Gridpoint Statistical Interpolation) data assimilation system.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN66775 , Meteorology, Ocean Engineering and Marine Sciences Seminar; Apr 17, 2019; Melborne, FL; United States|University of Maryland Departmental Seminar Series: AOSC 494: Atmospheric and Oceanic Science Seminar; Mar 14, 2019; College Park, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN64526 , American Meteorological Society (AMS) Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN67432 , NASA Atmospheric Infrared Sounder (AIRS) Spring Science Team Meeting 2019; Apr 03, 2019 - Apr 05, 2019; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN64336 , Annual American Meteorological Society Conference (AMS 2019); Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-20
    Description: Outline: Collaborative Partners; What is the Geostationary Lightning Mapper (GLM)?; Initial observations (Density Products); Lightning safety with GLM; The 30-minute lightning hazard product; Goal - Basic understanding of and how to use the lightning hazard product.
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN64243 , Annual American Meteorological Society Conference (AMS 2019); Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN66424 , European Geosciences Union (EGU) General Assembly 2019; Apr 07, 2019 - Apr 12, 2019; Vienna; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN67155 , Workshop on Predictability, Dynamics and Applications Research Using the TIGGE and S2S Ensembles; Apr 02, 2019 - Apr 05, 2019; Reading; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-20
    Description: Glacialinterglacial variations in CO2 (exp) and methane in polar ice cores have been attributed, in part, to changes in global wetland extent, but the wetland distribution before the Last Glacial Maximum (LGM, 21 ka to 18 ka) remains virtually unknown. We present a study of global peatland extent and carbon (C) stocks through the last glacial cycle (130 ka to present) using a newly compiled database of 1,063 detailed stratigraphic records of peat deposits buried by mineral sediments, as well as a global peatland model. Quantitative agreement between modeling and observations shows extensive peat accumulation before the LGM in northern latitudes (〉40N), particularly during warmer periods including the last interglacial (130 ka to 116 ka, MIS 5e) and the interstadial (57 ka to 29 ka, MIS 3). During cooling periods of glacial advance and permafrost formation, the burial of northern peatlands by glaciers and mineral sediments decreased active peatland extent, thickness, and modeled C stocks by 70 to 90% from warmer times. Tropical peatland extent and C stocks show little temporal variation throughout the study period. While the increased burial of northern peats was correlated with cooling periods, the burial of tropical peat was predominately driven by changes in sea level and regional hydrology. Peat burial by mineral sediments represents a mechanism for long-term terrestrial C storage in the Earth system. These results show that northern peatlands accumulate significant C stocks during warmer times, indicating their potential for C sequestration during the warming Anthropocene.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN66093 , Proceedings of the National Academy of Sciences; 116; 11; 4822-4827
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-20
    Description: Data quality looks better than Suomi-NPP (Suomi National Polar-orbiting Partnership): similar biases. Smaller standard deviation of first guess departures and diagnosed observation errors. Weaker striping signal than Suomi-NPP ATMS (Advanced Technology Microwave Sounder). Improved first guess fits to: temperature observations (AMSU-A (Advanced Microwave Sounding Unit-A), CrIS (Cross-track Infrared Sounder), GPSRO (Global Positioning System Radio Occultation)); Humidity observations (MHS (Microwave Humidity Sounder), GEO CSRs (Geostationary Orbit Clear Sky Radiances)). Indicates improved accuracy of short range temperature and humidity forecasts. Neutral to slightly positive forecast scores.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN66556 , Annual Meeting Global Space-based Inter-Calibration System (GSICS 2019); Mar 04, 2019 - Mar 08, 2019; Frascati; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-20
    Description: At the NASA Goddard Earth Sciences (GES) Data and Information Service Center (DISC), we have archived and distributed more than 2,400 Earth science data products, from different missions or projects containing more than 100 M data files/granules with a total volume size nearly 2 PB that broadly serve user needs in science areas such as Atmospheric Composition, Water & Energy Cycles and Climate Variability. To date, GES DISC has developed many pertinent services to facilitate the usage of data products by our research communities, represented by approximately 24,000 registered users. We are facing the big data with increasingly archival volume and data types, moreover, we also encounter increasing users' demands and the demands are more diversified. It is still a challenge for us to better understand exactly what our users' needs are, even after developing more than 70 services, including well-known online tools such as Giovanni and MERRA subsetter. In this presentation, we will try to address how we can accommodate the users' needs from two applicational user communities, Air Quality and Wind Energy, from data or service discovery to guide them properly utilize the data and services to fit their needs.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN65771 , American Meteorological Society (AMS) Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN64434 , American Meteorological Society Conference; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-20
    Description: Observational data are essential for Earth science research and applications. Traditional ground-based observations suffer from many limitations (e.g. costly deployment). As a result, data are often sparse and inconsistent, especially over vast oceans that cover nearly 71% of the Earth's surface, and for remote continents. Precipitation is one of the important physical parameters in the global hydrological cycle and other disciplines. Each year, severe floods and droughts happen in different parts of the world and cause significant damage to the economy, as well as human casualties (e.g. Hurricane Katrina, the Dust Bowl). Accurate and timely precipitation observations and predictions are important for research and applications. However, ground-based precipitation observations are quite limited, especially in remote and mountainous regions. Since the satellite era began, satellite-based precipitation products have gained popularity in Earth science research, applications, and education. Accessing satellite products can be a daunting task to many users, especially those who do not have prior experience or knowledge with satellite data. Recognizing this obstacle, the NASA Goddard Earth Sciences and Data and Information Services Center (GES DISC), home to data archives for the NASA-JAXA Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM), has developed data services including an online visualization and analysis tool, Giovanni (the Geospatial Interactive Online Visualization ANd aNalysis Infrastructure), enabling users at different levels to access, explore, and evaluate NASA satellite-based data products without downloading either data and software, or requiring coding. Currently, global and regional precipitation products from different satellite missions (TRMM, GPM) and projects (e.g. the Modern Era Retrospective-analysis for Research and Applications Version 2 (MERRA-2), and the North American Land Data Assimilation System (NLDAS)), ranging from half-hourly to monthly temporal resolution, are available in Giovanni. There are over 1900 variables in Giovanni, covering measurements in precipitation, hydrology, atmospheric dynamics, atmospheric chemistry, etc. In this poster presentation, we will provide a live demonstration of Giovanni and its latest development, including precipitation-related variables, and new basic features such as polar projections. The session will also provide a Q&A opportunity for attendees.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN64638 , American Meteorological Society Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-20
    Description: The Goddard Earth Sciences (GES) Data and Information Services Center (DISC) is home to data archives of the NASA-JAXA Global Precipitation Measurement (GPM), the Tropical Rainfall Measuring Mission (TRMM), and other NASA missions and projects. To maximize the use of NASA data products in scientific research and applications as well as for societal benefits, we provide data and information services that make datasets easy to find and use through simplification of data access for users at all levels around the world. Over the years, user-friendly data services have been developed at GES DISC, including data subsetting, format conversion, online visualization and analysis (i.e. Giovanni), user support system, etc. We routinely analyze questions, feedback, and use cases from users and algorithm developers around the world as well as best practices and new technology to improve existing services and formulate new data services. Interaction between users and algorithm developers is an important process for identifying issues in products, collecting user requirements, and improving product quality and usability. Staff members regularly communicate with algorithm developers with user questions and concerns through conferences and workshops. We publish peer-reviewed papers and articles in major Earth science journals and book chapters to describe NASA global and regional precipitation datasets and services with examples. News articles about GPM and TRMM datasets associated with significant events are regularly posted in the GES DISC Web portal and social media. We also actively participate in training activities. In this presentation, we present our latest activities about GPM and TRMM data services, data/service metrics, and future plans at GES DISC.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN64656 , American Meteorological Society Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-20
    Description: High latitude weather forecasts, on scales ranging from mesoscale to synoptic, present difficulties due, in part, to the sparsity of conventional observations. In addition, the prevalence of extended low-level stratus cloud cover limits the use of infrared data, which are operationally assimilated only in areas unaffected by clouds. Use of cloud-cleared AIRS (Atmospheric Infrared Sounder) radiances (AIRS CCR), allows the assimilation of infrared information in cloudy regions, permitting data ingestion in regions usually undersampled. This study explores the sensitivity of planetary boundary layer height and related atmospheric dynamics to the assimilation of these data in the Goddard Earth Observing System (GEOS, version 5) data assimilation and forecast system during the boreal fall 2014 season using observing system experiments (OSEs). Examined here are comparisons between the current, operational approach of assimilating AIRS clear-sky radiances against the assimilation of CCR. Assimilation of hyperspectral infrared information from AIRS over the Arctic region slightly modifies the lower midtropospheric temperature structure, which in turn contributes to adjustments in geopotential height, affecting the baroclinic instability properties over the entire hemisphere and explaining the overall improvement in global forecast skill.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN64778 , Arctic Year of Polar Prediction (YOPP) Science Workshop; Jan 14, 2019 - Jan 16, 2019; Helsinki; Finland
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-20
    Description: The Fertile Crescent, its hilly flanks and surrounding drylands has been a critical region for studying how climate has influenced societal change, and this review focuses on the region over the last 20,000 years. The complex social, economic, and environmental landscapes in the region today are not new phenomena and understanding their interactions requires a nuanced, multidisciplinary understanding of the past. This review builds on a history of collaboration between the social and natural palaeoscience disciplines. We provide a multidisciplinary, multiscalar perspective on the relevance of past climate, environmental, and archaeological research in assessing present day vulnerabilities and risks for the populations of southwest Asia. We discuss the complexity of palaeoclimatic data interpretation, particularly in relation to hydrology, and provide an overview of key time periods of palaeoclimatic interest. We discuss the critical role that vegetation plays in the humanclimateenvironment nexus and discuss the implications of the available palaeoclimate and archaeological data, and their interpretation, for palaeonarratives of the region, both climatically and socially. We also provide an overview of how modelling can improve our understanding of past climate impacts and associated change in risk to societies. We conclude by looking to future work, and identify themes of scale and seasonality as still requiring further focus. We suggest that by appreciating a given locale's place in the regional hydroscape, be it an archaeological site or palaeoenvironmental archive, more robust links to climate can be made where appropriate and interpretations drawn will demand the resolution of factors acting across multiple scales.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN65528 , WIREs Water; 6; 2; e1330
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: M18-7128 , Conference on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN64453 , American Meteorological Society (AMS) Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-25
    Description: Following over 3 decades of gradual but uneven increases in sea ice coverage, the yearly average Antarctic sea ice extents reached a record high of 12.8 by 10 (sup 6) square kilometers in 2014, followed by a decline so precipitous that they reached their lowest value in the 40-year 1979-2018 satellite multichannel passive-microwave record, 10.7 by 10 (sup 6) square kilometers, in 2017. In contrast, it took the Arctic sea ice cover a full 3 decades to register a loss that great in yearly average ice extents. Still, when considering the 40-year record as a whole, the Antarctic sea ice continues to have a positive overall trend in yearly average ice extents, although at 11,300 plus or minus 5,300 square kilometers per year, this trend is only 50 percent of the trend for 1979-2014, before the precipitous decline. Four of the 5 sectors into which the Antarctic sea ice cover is divided all also have 40-year positive trends that are well reduced from their 2014-2017 values. The one anomalous sector in this regard,the Bellingshausen/Amundsen Seas, has a 40-year negative trend, with the yearly average ice extents decreasing overall in the first 3 decades, reaching a minimum in 2007, and exhibiting an overall upward trend since 2007 (i.e., reflecting a reversal in the opposite direction from the other 4 sectors and the Antarctic sea ice cover as a whole).
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN70817 , PNAS (Proceedings of the National Academy of Sciences) (ISSN 0027-8424) (e-ISSN 1091-6490); 116 ; 29 ; 14414-14423
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN64212 , American Meteorological society Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-20
    Description: GMAO Sub/Seasonal prediction system (S2S) has recently been upgraded. A complete set (1981-2016) of 9-months hindcasts for the previous and current versions (S2S-1.0 and S2S-2.1 respectively) allows for the evaluation of the forecast skill and a study of various characteristics of the ensemble forecasts in particular. We compared the intra-seasonal, interannual and intra-ensemble SST variability of the two systems against the observed. Focusing on the ENSO SST indices, we analyzed the consistency of the forecasts ensembles by studying rank histograms and comparing the ensemble spread with the standard error of the estimate.The S2S-2.1 ensemble appears to be more consistent with observations in Nio1+2 region compared to S2S-1.0, while in the central equatorial Pacific ocean this measure is comparably good for both systems. The S2S-1.0 system tends to be under dispersive, while the new system is under dispersive only at very short lead times, but tends to be over dispersive at long leads and for forecasts verifying in spring in Nio 3.4 region.Overall, the new system has greater skill in predicting ENSO. The evaluation techniques tested here will be applied for testing of the next generation sub/seasonal forecast system under development.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN64576 , American Astronomical Society (AMS) Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN64477 , Annual Meeting of the American Meteorological Society; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN64370 , American Meteorological Society (AMS) Annual Meeting; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN67174 , Science Theme Meeting: Career Day for the Science and Tech Program, Eleanor Roosevelt High School; Mar 14, 2019; Greenbelt, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-20
    Description: Previous work by this team (Reale et al. 2018) has found that the current assimilation of AIRS (Atmospheric InfraRed Sounder) radiances on a regularly spaced thinning grid is suboptimal, probably because of horizontal error correlation over meteorologically inactive areas. Moreover, cloud-cleared radiances appear to be a better product than clear-sky radiances, but need to be assimilated at a much lower density globally, because of the higher information content. Specifically: 1. Assimilation of AIRS cloud-cleared radiances at a density of about one quarter of the clear-sky radiances improves global forecast skill; 2. An adaptive thinning strategy assimilating cloud-cleared radiances at reduced density globally except around tropical cyclones (TCs), leads to substantial improvement in the structure and intensity forecast of TCs without damaging global skill.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN66629 , Arctic Year of Polar Prediction (YOPP 2019) Science Workshop; Jan 14, 2019 - Jan 16, 2019; Helsinki; Finland
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN64559 , Cyclone Global Navigation Satellite System (CYGNSS) Science Team Meeting; Jan 15, 2019; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-20
    Description: The United States Air Force (USAF) operates two space launch ranges, the Eastern Range (ER) and the Western Range (WR). The ER is primarily located at the Cape Canaveral Air Force Station (CCAFS) and the WR is located at the Vandenberg Air Force Base (VAFB). Multiple systems are used to measure the atmosphere at both ranges, including a suite of 915-Mhz (megahertz) Doppler Radar Wind Profilers (DRWP). The 915-MHz DRWPs are used to measure winds in the lowest few kilometers of the atmosphere, primarily in the boundary layer. Boundary layer winds are important during launch, and observations of such can be used as input to toxic dispersion and low-level abort trajectory models. However, these 915-MHz systems are nearing the end of their service life and need to be replaced by systems with similar, or greater, capabilities. The USAF funded evaluations of two systems: a 449-MHz DRWP and a Lidar. Both systems were stationed at each range for separate periods of approximately three months from November 2017 through May 2018. The USAF also funded NASAs Marshall Space Flight Center (MSFC) Natural Environments Branch (NE) to evaluate wind output from the two systems. MSFC NE conducted analysis to demonstrate the systems wind accuracy relative to measurements from the Automated Meteorological Profiling System (AMPS) (Divers et al., 2000), data availability, and Effective Vertical Resolution (EVR).
    Keywords: Meteorology and Climatology
    Type: M19-7165 , Conference on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States|Annual American Meteorological Society Conference (AMS 2019); Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-20
    Description: Earth-GRAM (Earth-Global Reference Atmospheric Model) Overview: Provides monthly statistics at any point in the atmosphere; Monthly, geographic, altitude variation; Current Version - Earth-GRAM 2016, C++; Output Includes - pressure, density, temperature, horizontal and vertical winds, speed of sound, atmospheric constituents; Used by engineering community to create atmospheric dispersions at a rapid runtime; Not a forecast model. MERRA-2 (Modern-Era Retrospective Analysis for Research and Applications, Version 2) Background: Developed by NASA Goddard Modelling and Assimilation Office; Horizontal Resolution: 0.625 degrees by 0.5 degrees longitude-by-latitude grid (NCEP (National Centers for Environmental Prediction) reanalysis I vs. 2.5 degrees by 2.5 degrees currently used in Earth-GRAM); Vertical resolution: 72 model layers or interpolated to 42 pressure levels to 0.1 hectopascals (hPa) (NCEP reanalysis I, surface to 10hPa at 17 pressure levels).
    Keywords: Meteorology and Climatology
    Type: M18-7141 , Annual American Meteorological Society Conference (AMS 2019); Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-20
    Description: Weather balloons have been a longstanding asset to NASA and Aerospace meteorology. Balloons are used from launch vehicle design to day-of-launch operations. One of the most valuable assets from these balloons is wind data from the surface up to 30 kilometers. Due to aloft winds, the balloons may drift downrange of the launch site and vehicle flight path. A 2017 study found balloons at Kennedy Space Center (KSC) can drift as far as 200 kilometers from the launch site (Decker 2017). To obtain robust launch vehicle wind assessments, it is highly desirable to characterize the wind environment along the flight path. This study looks into the errors associated with spatial separation of wind measurements using the North American Regional Reanalysis (NARR).
    Keywords: Meteorology and Climatology
    Type: M18-7121 , Annual American Meteorological Society Conference (AMS 2019); Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States|Conference on Aviation, Range, and Aerospace Meteorology; Jan 06, 2019 - Jan 10, 2019; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-13
    Description: The Community Coordinated Modeling Center (CCMC) provides a variety of services to the space science community. The mission for the CCMC's Space Weather Forecasting team is to address the space weather needs of NASA's robotic mission by conducting customized space weather services to NASA end-users. The team leverages CCMC tools/resources, carries out prototyping activities for the next generation space weather tools and follows communications/interactions with the users. We provide space weather forecasts, notifications, analysis and also education. This presentation will describe the team's concepts of operations, notification processes, anomaly analysis, and the tools used for space weather forecasting. The tools include a system that are completely open and available to the public's use like the Integrated Space Weather Analysis (iSWA) tool and the Database of Notifications, Knowledge and Information (DONKI). We will also discuss the education and training activities and how events like solar eclipses are important for the improvement and validation of different space weather models.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN67624 , UK Solar Physics Workshop; Jul 02, 2019 - Jul 07, 2019; San Juan; Argentina
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-13
    Description: Recent studies have shown that, in response to a surface warming, the marine tropical low-cloud cover (LCC) as observed by passive-sensor satellites substantially decreases, therefore generating a smaller negative value of the top-of-the-atmosphere (TOA) cloud radiative effect (CRE). Here we study the LCC and CRE interannual changes in response to sea surface temperature (SST) forcings in the GISS model E2 climate model, a developmental version of the GISS model E3 climate model, and in 12 other climate models, as a function of their ability to represent the vertical structure of the cloud response to SST change against 10 years of CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) observations. The more realistic models (those that satisfy the observational constraint) capture the observed interannual LCC change quite well ([delta]LCC]/[delta]SST= -3.491.01%K [negative 1 superscript] vs. [delta]LCC/[delta]SST[subscript obs]= -3.590.28%K[negative 1 superscript]) while the others largely underestimate it ([delta]LCC/[delta]SST= -1.321.28%K[negative 1 superscript]). Consequently, the more realistic models simulate more positive shortwave (SW) feedback ([delta]CRE/[delta]SST=2.601.13Wm[negative 2 superscript] K[negative 1 superscript]) than the less realistic models (CRE/SST=0.872.63Wm2K1), in better agreement with the observations ([delta]CRE/[delta]SST[subscript obs]=30.26Wm[negative 2 superscript] K[negative 1 superscript] ), although slightly underestimated. The ability of the models to represent moist processes within the planetary boundary layer (PBL) and produce persistent stratocumulus (Sc) decks appears crucial to replicating the observed relationship between clouds, radiation and surface temperature. This relationship is different depending on the type of low clouds in the observations. Over stratocumulus regions, cloud-top height increases slightly with SST, accompanied by a large decrease in cloud fraction, whereas over trade cumulus (Cu) regions, cloud fraction decreases everywhere, to a smaller extent.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN66347 , Atmospheric Chemistry and Physics (ISSN 1680-7316) (e-ISSN 1680-7324); 19; 5; 2813–2832
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-13
    Description: Accurate knowledge of soil moisture at the continental scale is important for improving predictions of weather, agricultural productivity and natural hazards, but observations of soil moisture at such scales are limited to indirect measurements, either obtained through satellite remote sensing or from meteorological networks. Land surface models simulate soil moisture processes, using observation-based meteorological forcing data, and auxiliary information about soil, terrain and vegetation characteristics. Enhanced estimates of soil moisture and other land surface variables, along with their uncertainty, can be obtained by assimilating observations of soil moisture into land surface models. These assimilation results are of direct relevance for the initialization of hydro-meteorological ensemble forecasting systems. The success of the assimilation depends on the choice of the assimilation technique, the nature of the model and the assimilated observations, and, most importantly, the characterization of model and observation error. Systematic differences between satellite-based microwave observations or satellite-retrieved soil moisture and their simulated counterparts require special attention. Other challenges include inferring root-zone soil moisture information from observations that pertain to a shallow surface soil layer, propagating information to unobserved areas and downscaling of coarse information to finer-scale soil moisture estimates. This chapter summarizes state-of-the-art solutions to these issues with conceptual data assimilation examples, using techniques ranging from simplified optimal interpolation to spatial ensemble Kalman filtering. In addition, operational soil moisture assimilation systems are discussed that support numerical weather prediction at ECMWF and provide value-added soil moisture products for the NASA Soil Moisture Active Passive mission.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN65540 , Handbook of Hydrometeorological Ensemble Forecasting; 701-743
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-13
    Description: The rationale for using multi-model ensembles in climate change projections and impacts research is often based on the expectation that different models constitute independent estimates; therefore, a range of models allows a better characterisation of the uncertainties in the representation of the climate system than a single model. However, it is known that research groups share literature, ideas for representations of processes, parameterisations, evaluation data sets and even sections of model code. Thus, nominally different models might have similar biases because of similarities in the way they represent a subset of processes, or even be near-duplicates of others, weakening the assumption that they constitute independent estimates. If there are near-replicates of some models, then treating all models equally is likely to bias the inferences made using these ensembles. The challenge is to establish the degree to which this might be true for any given application. While this issue is recognised by many in the community, quantifying and accounting for model dependence in anything other than an ad-hoc way is challenging. Here we present a synthesis of the range of disparate attempts to define, quantify and address model dependence in multi-model climate ensembles in a common conceptual framework, and provide guidance on how users can test the efficacy of approaches that move beyond the equally weighted ensemble. In the upcoming Coupled Model Intercomparison Project phase 6 (CMIP6), several new models that are closely related to existing models are anticipated, as well as large ensembles from some models. We argue that quantitatively accounting for dependence in addition to model performance, and thoroughly testing the effectiveness of the approach used will be key to a sound interpretation of the CMIP ensembles in future scientific studies.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN65616 , Earth System Dynamics (ISSN 2190-4979) (e-ISSN 2190-4987); 10; 1; 91-105
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-13
    Description: The profound changes in global SO[subscript 2] emissions over the last decades have affected atmospheric composition on a regional and global scale with large impact on air quality, atmospheric deposition and the radiative forcing of sulfate aerosols. Reproduction of historical atmospheric pollution levels based on global aerosol models and emission changes is crucial to prove that such models are able to predict future scenarios. Here, we analyze consistency of trends in observations of sulfur components in air and precipitation from major regional networks and estimates from six different global aerosol models from 1990 until 2015. There are large interregional differences in the sulfur trends consistently captured by the models and observations, especially for North America and europe. europe had the largest reductions in sulfur emissions in the first part of the period while the highest reduction came later in North America and east Asia. the uncertainties in both the emissions and the representativity of the observations are larger in Asia. However, emissions from East Asia clearly increased from 2000 to 2005 followed by a decrease, while in India a steady increase over the whole period has been observed and modelled. the agreement between a bottom-up approach, which uses emissions and process-based chemical transport models, with independent observations gives an improved confidence in the understanding of the atmospheric sulfur budget.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN65103 , Scientific Reports (e-ISSN 2045-2322); 9; 953
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-13
    Description: Earth system models are complex and represent a large number of processes, resulting in a persistent spread across climate projections for a given future scenario. Owing to different model performances against observations and the lack of independence among models, there is now evidence that giving equal weight to each available model projection is suboptimal. This Perspective discusses newly developed tools that facilitate a more rapid and comprehensive evaluation of model simulations with observations, process-based emergent constraints that are a promising way to focus evaluation on the observations most relevant to climate projections, and advanced methods for model weighting. These approaches are needed to distil the most credible information on regional climate changes, impacts, and risks for stakeholders and policy-makers.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN65080 , Nature Climate Change (ISSN 1758-678X) (e-ISSN 1758-6798); 9; 102-110
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-13
    Description: To understand and forecast biological responses to climate change, scientists frequently use field experiments that alter temperature and precipitation. Climate manipulations can manifest in complex ways, however, challenging interpretations of biological responses. We reviewed publications to compile a database of daily plot-scale climate data from 15 active-warming experiments. We find that the common practices of analysing treatments as mean or categorical changes (e.g. warmed vs.unwarmed) masks important variation in treatment effects over space and time. Our synthesis showed that measured mean warming, in plots with the same target warming within a study, differed by up to 1.6 Celsius degrees (63% of target), on average, across six studies with blocked designs. Variation was high across sites and designs: for example, plots differed by 1.1Celsius degrees (47% of target) on average, for infrared studies with feedback control (n = 3) vs. by 2.2 Celsius degrees (80% of target) on average for infrared with constant wattage designs (n = 2). Warming treatments produce non-temperature effects as well, such as soil drying. The combination of these direct and indirect effects is complex and can have important biological consequences. With a case study of plant phenology across five experiments in our database, we show how accounting for drier soils with warming tripled the estimated sensitivity of budburst to temperature. We provide recommendations for future analyses, experimental design,and data sharing to improve our mechanistic understanding from climate change experiments, and thus their utility to accurately forecast species' responses.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN65060 , Ecology Letters (ISSN 1461-023X) (e-ISSN 1461-0248)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-08-24
    Description: Multidecadal "megadroughts" were a notable feature of the climate of the American Southwest over the Common era, yet we still lack a comprehensive theory for what caused these megadroughts and why they curiously only occurred before about 1600 CE. Here, we use the Paleo Hydrodynamics Data Assimilation product, in conjunction with radiative forcing estimates, to demonstrate that megadroughts in the American Southwest were driven by unusually frequent and cold central tropical Pacific sea surface temperature (SST) excursions in conjunction with anomalously warm Atlantic SSTs and a locally positive radiative forcing. This assessment of past megadroughts provides the first comprehensive theory for the causes of megadroughts and their clustering particularly during the Medieval era. This work also provides the first paleoclimatic support for the prediction that the risk of American Southwest megadroughts will markedly increase with global warming.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN71642 , Science Advances; 5; 7; eaax0087
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-08-24
    Description: The U.S. Global Precipitation Measurement mission (GPM) science team is developing a long-term dataset based on intercalibrated estimates from the international constellation of precipitation-relevant satellites and other data. The Integrated Multi-satellitE Retrievals for GPM (IMERG) merged precipitation product (IMERG) is computed at the half hour, 0.1 x 0.1 resolution globally in three "Runs" Early, Late, and Final (4 hours, 14 hours, and 3.5 months after observation time, respectively). The longer latencies increase the available input data for the resulting estimates, most notably the use of monthly precipitation gauge analyses in the Final run. The Early and Late runs use a climatological gauge adjustment as a proxy for the monthly gauge analyses. At meeting time GPM should be well into computing the new Version 06, which will be the first time IMERG covers the last two decades and routinely provides morphed estimates in polar regions where the surface is snow- and ice-free. In this talk a few salient features of the IMERG algorithm will be summarized, then representative examples of IMERG products will be shown. This starts with basic results, such as animations of near-real-time maps, then extends to preliminary analyses of dataset characteristics. For example, the accumulations during Hurricane Harvey around Houston, Texas, USA, tended to be low, while accumulations along the Texas/Louisiana border to the northeast tended to be high. Furthermore, these opposite-sign differences occurred more or less simultaneously over much of the accumulation period. The working hypothesis is that there were systematic differences in the convective "regime" in the two places. The talk will end with a quick summary of the processing status and the future course of IMERG development.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN71420 , Annual Meeting Asia Oceania Geosciences Society ; Jul 28, 2019 - Aug 02, 2019; Singapore; Singapore
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-08-17
    Description: NASA and the FAA conducted two flight campaigns to quantify onboard weather radar measurements with in-situ measurements of high concentrations of ice crystals found in deep convective storms. The ultimate goal of this research was to improve the understanding and develop onboard weather radar processing to detect regions of high ice water content ahead of an aircraft and enable tactical avoidance of the potentially hazardous conditions. Both High Ice Water Content (HIWC) RADAR campaigns utilized the NASA DC-8 Airborne Science Laboratory which was equipped with a Honeywell RDR-4000 weather radar and icing instruments to characterize the ice crystals clouds. The purpose of this paper is to summarize how these campaigns were conducted and highlight key results.
    Keywords: Meteorology and Climatology
    Type: GRC-E-DAA-TN69115 , SAE International Conference on Icing of Aircraft, Engines, and Structures; Jun 17, 2019 - Jun 21, 2019; Minneapolis, MN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-08-13
    Description: Why is monitoring extreme weather events important? The HKH (Hindu Kush Himalaya region experiences many extreme weather events, such as thunderstorms, especially during monsoon season. These events can cause economic hardship and loss of life. Monitoring Extreme Weather in the HKH Region is a service in development through SERVIR-Hindu Kush Himalaya that aims to develop a customized numerical weather prediction toolkit to assess these high impact events in this relatively data-sparse region. The High Impact Weather Assessment Toolkit (HIWAT) consists of an ensemble Weather Research and Forecasting (WRF)model, threat assessments based on the Global Precipitation Measurement (GPM) missions, and impact assessments based on Landsat and the Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. In spring 2019, we began validation of forecasted precipitation using station data in Bangladesh and Climate Hazards Group InfraRed with Station data (CHIRPS).
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN69175 , Esri User Conference 2019; Jul 08, 2019 - Jul 12, 2019; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-08-13
    Description: This talk describes recent progress assimilating constituent observations into the Goddard Earth Observing System (GEOS). It also will discuss how this work might be integrated into the Joint Effort for Data assimilation Integration (JEDI) framework in the future.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN70181 , Joint Center for Satellite Data Assimilation Technical Review Meeting and Science Workshop (JCSDA 2019); May 29, 2019 - May 31, 2019; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-08-13
    Description: Gradient Features identified in ASCAT (Advanced Scatterometer) data correspond well to observed CYGNSS (Cyclone Global Navigation Satellite System) wind shifts: Comparing ASCAT and CYGNSS winds near tropical convection. Gradient wind magnitude in ASCAT observations has been recently shown to be a useful proxy for the presence of tropical convection cold pools. To help confirm this in the vicinity of precipitation we perform a comparison with the L-band CYGNSS wind dataset. Integrated Multi-satellite Retrievals for GPM (Global Precipitation Measurement)) IMERG.
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN68950 , International Ocean Vector Winds Science Team Meeting: Scatterometry & Ocean Vector Winds Satellite Studies (OVWST 2019); May 29, 2019 - May 31, 2019; Portland, ME; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-08-13
    Description: We present a new high-resolution global composition forecast system produced by NASA's Global Modeling and Assimilation Office. The NASA Goddard Earth Observing System (GEOS) model has been expanded to provide global near-real-time 5-day forecasts of atmospheric composition at unprecedented horizontal resolution of 0.25 degrees (~25 km). This composition forecast system (GEOS-CF) system combines the operational GEOS weather forecasting model with the state-of-the-science GEOS-Chem chemistry module (version 12) to provide detailed analysis of a wide range of air pollutants such as ozone, carbon monoxide, nitrogen oxides, and fine particulate matter (PM2.5). Satellite observations are assimilated into the system for improved representation of weather and smoke.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN68670 , International GEOS-Chem Meeting (IGC9); May 06, 2019 - May 09, 2019; Cambridge, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN67480 , 2019 IMPACTS Science Team Meeting; Apr 15, 2019 - Apr 17, 2019; Wallops Island, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-08-29
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN72479 , International Precipitation Conference (IPC12); Jun 19, 2019 - Jun 21, 2019; Irvine, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-08-30
    Description: Because of the pervasive role of water in the Earth system, the relative abundances of stable isotopologues of water are valuable for understanding atmospheric, oceanic, and biospheric processes, and for interpreting paleoclimate proxy reconstructions. Isotopologues are transported by both largescale and turbulent flows, and the ratio of heavy to light isotopologues changes due to fractionation that can accompany condensation and evaporation processes. Correctly predicting the isotopic distributions requires resolving the relationships between largescale ocean and atmospheric circulation and smallerscale hydrological processes, which can be accomplished within a coupled climate modeling framework. Here we present the water isotopeenabled version of the Community Earth System Model version 1 (iCESM1), which simulates global variations in water isotopic ratios in the atmosphere, land, ocean, and sea ice. In a transient Last Millennium simulation covering the 850-2005 period, iCESM1 correctly captures the latetwentiethcentury structure of (exp 18)O and D over the global oceans, with more limited accuracy over land. The relationship between salinity and seawater (exp 18)O is also well represented over the observational period, including interbasin variations. We illustrate the utility of coupled, isotopeenabled simulations using both Last Millennium simulations and freshwater hosing experiments with iCESM1. Closing the isotopic mass balance between all components of the coupled model provides new confidence in the underlying depiction of the water cycle in CESM, while also highlighting areas where the underlying hydrologic balance can be improved. The iCESM1 is poised to be a vital community resource for ongoing model development with both modern and paleoclimate applications.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN72198 , Journal of Advances in Modeling Earth Systems (e-ISSN 1942-2466)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-09-04
    Description: Tabular icebergs are almost unique to the Southern Ocean because they originate from large ice shelves or ice tongues that are now nearly absent in the Northern Hemisphere. Their evolution from calving to drift to eventual disintegration illustrates many interesting aspects of both glaciology and oceanography. Several events in 2018 highlighted these iceberg processes.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN72847 , Bulletin of the American Meteorological Society (BAMS); 100; 9; 181-182
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-08-29
    Description: While the idea that downdraft vertical velocity is influenced by thermodynamic stability may seem obvious, there remains a gap in the scientific literature surrounding the interaction between downdrafts and stable layers. A number of questions remain unanswered. Can a stable layer stop the downward progression of a downdraft or merely slow its velocity? Related to this, can a stable layer stop the injection of low entropy air into the boundary layer? Do downdrafts modify the environment in a way that removes pre-existing stable layers (limiting the influence of the stable layer)? Is it possible for evaporative cooling to generate and maintain a stable layer that is sufficiently strong to stop the downward progression of downdrafts?The present study aims to answer these questions using a combination of high-altitude airborne radar and dropsonde observations, both collected within four tropical cyclones (Gaston, Hermine, Karl, and Matthew) during the 2016 NOAA SHOUT field campaign, as well as idealized simulations of tropical deep convection. This presentation will focus on the potential for a stable layer to halt the downward progression of a downdraft (and the associated low entropy air) with particular attention given to conditions and processes that might enhance or mitigate the influence of the stable layer.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN72152 , Conference on Mesoscale Processes; Jul 29, 2019 - Aug 01, 2019; Savannah, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-08-29
    Description: The GPROF algorithm is used to retrieve precipitation values from all the GPM mission partner radiometers (i.e. GMI, MHS, ATMS, SSMIS, AMSR2). GPM produces two precipitation retrieval products (processing at level 2) using the GPROF algorithm. One has the type designation 2A and the other the designation 2A-CLIM. As a result understanding the difference between the two products is important for using and understanding them. Both of these GPROF products use exactly the same algorithm and a-priori databases. The only difference between the two types is the ancillary products used in the initial processing step. In the case of the 2A-CLIM products, ECMWF ERA-I is used as ancillary data. In the case of the 2A products, JMA's GANAL product is used as ancillary data. This presentation will provide a comparison between the two products using zonal mean comparisons. It will provide comparisons separately for land and ocean retrievals. It will compare the GMI differences over the entire current GPM mission life. As the only difference between the two products is the ancillary information used to create them, the comparison provides an elementary sensitivity study of the variables used from the reanalysis products and their impact on the GPROF retrieval. The purpose of the presentation is to provide users with an insight into the two GPROF products and provide them key information useful when using either of the products in scientific studies. Lastly, the presentation also discusses the reasons why only the 2A-CLIM product can be produced for the 17+ years of TRMM era data products.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN72396 , 2019 EGU General Assembly; Apr 07, 2019 - Apr 12, 2019; Vienna; Austria
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-11-02
    Description: The spring dry season occurring in an arid region of the Southwest United States, which receives both winter storm track and summer monsoon precipitation, is investigated. Bimodal precipitation and vegetation growth provide an opportunity to assess multiple climate mechanisms and their impact on hydroclimate and ecosystems.We detect multiple shifts from wet to drier conditions in the observational record and land surface model output. Focusing on the recent dry period, a shift in the late 1990s resulted in earlier and greater spring soil moisture draw down, and later and reduced spring vegetation green-up, compared to a prior wet period (1979 - 1997). A simple soil moisture balance model shows this shift is driven by changes in winter precipitation.The recent post-1999 dry period, as well as an earlier one from 1948 - 1966, are both related to the cool tropics phase of Pacific decadal variability which influences winter precipitation. In agreement with other studies for the Southwest United States, we find the recent drought cannot be explained in terms of precipitation alone, but also is due to the rising influence of temperature, thus highlighting the sensitivity of this region to warming temperatures. Future changes in the spring dry season will therefore be affected by how tropical decadal variability evolves, and also by emerging trends due to human-driven warming.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN73615 , Journal of Hydrometeorology (ISSN 1525-755X) (e-ISSN 1525-7541); 20; 6; 1081–1102
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-10-03
    Description: The WMOs World Weather Research Program (WWRP) Research and Development and Forecast Demonstration Projects (RDP/FDP). Taken place during the Winter Olympics (February-March) of 2018. Focused on the measurement, physics, and improved prediction of heavy orographic snow in the Pyeong Chang region of South Korea.
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN73593 , 2019 Joint Satellite Conference; Sep 28, 2019 - Oct 04, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-10-09
    Description: The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC), in collaboration with NASA Sounder Team at the Jet Propulsion Laboratory (JPL), provides processing, archiving, and distribution services for remotely-sensed data acquired by satellite sounders. Supported data sets begin chronologically with the legacy TIROS Operational Vertical Sounder (TOVS) Pathfinder, continue to the Atmospheric Infrared Sounder (AIRS), a modern hyperspectral sounder onboard the Aqua satellite, and are followed by data from the subsequent Suomi-National Polar-orbiting Partnership Cross-track Infrared Sounder (CrIS) mission and the Joint Polar Satellite System (JPSS) series CrIS missions. These satellite sounders provide long-term global observations of the atmospheric state, including temperature and humidity profiles, outgoing longwave radiation, cloud properties, and trace gases. Applications of sounder data products cover a broad range of fields, including meteorology climatology, hydrology, and air quality. The GES DISC has developed many services to assist users, including simplified and efficient methods for searching, accessing, downloading, and analytically exploring these satellite sounder data products. We have also developed the Giovanni system, a broadly used Web-based application, which provides a simple and intuitive way to visualize, analyze, and access Earth science remote sensing data. In this presentation, we will introduce the standard and near-real time sounder data products, and demonstrate our services through some use cases. Highlights of our service capabilities include data subset, vertical profile plot, inter-comparison, multi-year monthly/seasonal mean, interannual monthly/seasonal time series, and anomaly analysis.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN73831 , 2019 Joint Satellite Conference; Sep 28, 2019 - Oct 04, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-10-09
    Description: After more than a decade of moderate seasonal deviations from the expected climate, it is easy to forget that California is actually prone to instabilities in precipitation patterns that occur on various scales. Using modern satellite and reanalysis data we reassess certain aspects of the precipitation climate in California from the past three decades. California has a well-pronounced rain season that peaks in December-February. However, the 95% confidence interval around the climatological precipitation during these months imply that deviations on the order of 60% of the expected amounts are very likely during the most important period of the rain season. While these positive and negative anomalies alternate almost every year and tend to cancel each other, severe multi-year declines of precipitation in California seem to appear on decadal scales. The 1986-1994 decline of precipitation was similar to the current one that started in 2011, and is apparent in the reanalysis data. In terms of accumulated deficits of precipitation, that episode was no less severe than the current one. While El Nio (the warm phase of the El Nio Southern Oscillation, ENSO) is frequently cited as the natural forcing expected to bring a relief, our assessment is that ENSO has been driving at best only 6% of precipitation variability in California in the past three decades. It means El Nio needs to be stronger and longer, in order to have a higher likelihood of a positive impact, and the current one does not match these criteria. Using fractional risk analysis of precipitation populations during normal and dry periods, we show that the likelihood of losing the most intensive precipitation events drastically increases during the multi-year drying events. Since storms delivering up to 50% of precipitation in California are driven by atmospheric rivers making landfall, thus the importance of their suppression and blockage by persistent ridges of atmospheric pressure in the northeast Pacific.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN73845 , 2019 Joint Satellite Conference; Sep 28, 2019 - Oct 04, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-10-09
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN73626 , 2019 Joint Satellite Conference; Sep 28, 2019 - Oct 04, 2019; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-10-05
    Description: Radiative heating rates computed with cloud properties derived from passive and active sensors are investigated. Zonal monthly radiative heating rate anomalies computed using both active and passive sensors show that larger variability in longwave cooling exists near the tropical tropopause and near the top of the boundary layer between ~50N to ~50S. Aerosol variability contributes to increases in shortwave heating rate variability. When zonal monthly mean cloud effects on the radiative heating rate computed with both active and passive sensors and those computed with passive sensor only are compared, the latter shows cooling and heating peaks corresponding to cloud top and base height ranges used for separating cloud types. The difference of these two sets of cloud radiative effect on heating rates in the middle to upper troposphere is larger than the radiative heating rate uncertainty estimated based on the difference of two active sensor radiative heating rate profile data products. In addition, radiative heating rate contribution to generation of eddy available potential energy is also investigated. Although radiation contribution to generation of eddy available potential energy averaged over a year and the entire globe is small, radiation increases the eddy available potential energy in the northern hemisphere during summer. Two key elements that longwave radiation contribute to the generation of eddy potential energy are (1) longitudinal temperature gradient in the atmosphere associated with land and ocean surface temperatures contrasts and absorption of longwave radiation emitted by the surface and (2) cooling near the cloud top of stratocumulus clouds.
    Keywords: Meteorology and Climatology
    Type: NF1676L-32348 , Journal of Geophysical Research: Atmospheres (ISSN 2169-897X) (e-ISSN 2169-8996); 124; 3; 1720-1740
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-12-03
    Description: The algorithm for the Surface Reference Technique (SRT) has been updated from version V6A to version V6X. The modified algorithm is designed to process dual-frequency radar data which are now available over the full swath. Comparisons between V6A and V6X show that the dual-wavelength version of the SRT (DSRT) eliminates some of the overestimates of path attenuation in the outer swath that occurred in the earlier version of the algorithm when dual-frequency data was unavailable in the outer swath. However, the DSRT is not reliable in cases of light rain rates where only the Ku-band channel detects rain, nor is it reliable in high rain rate cases where the Ka-band surface signal is lost through attenuation. A modified hybrid algorithm is planned for version 7 that can combine the best features of single- and dual-frequency path attenuation methods.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN75817 , PMM 2019 Science Team Meeting; Nov 04, 2019 - Nov 08, 2019; Indianapolis, IN
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-11-30
    Description: Understanding the connection between microphysical properties of falling snow and remote sensing observations requires detailed models of snow particles and the related electromagnetic scattering properties. To this end, we have created a database of synthetically-grown snow particles along with electromagnetic scattering properties calculated using advanced computational methods. We showcase the breadth of the catalog, current work, applications of the catalog, and future plans.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN75693 , Precipitation Measurement Missions (PMM) Science Team Meeting; Nov 04, 2019 - Nov 08, 2019; Indianapolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-11-30
    Description: The new V06 IMERG is briefly reviewed, then key data visualizations are shown, including the zonal profile of calibration by GPCP, the long-term time series of ocean estimates for the Final Run (with comparison to TMPA and GPCP SG), the time series of tropical ocean rainrate histogram, diurnal cycle, and atoll validation at the monthly time scale.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN75701 , Precipitation Measurement Missions (PMM) Science Team Meeting; Nov 04, 2019 - Nov 08, 2019; Indianapolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-11-30
    Description: In 1999, the first sprites were observed above European thunderstorms using sensitive cameras. Since then, Eurosprite campaigns have been conducted to observe sprites and other transient luminous events (TLEs), expanding into a network covering large parts of Europe and coastal areas. In 2009 through 2013, the number of optical observations of TLEs reached a peak of 2000 per year. Because of this unprecedented number of European observations, it was possible to construct a climatology of 8394 TLEs observed above 1018 thunderstorm systems and study for the first time their distribution and seasonal cycle above Europe and parts of the Mediterranean Sea. The number of TLEs per thunderstorm was found to follow a power law, with less than 10 TLEs for 801 thunderstorms and up to 195 TLEs above the most prolific one. The majority of TLEs were classified as sprites, 641 elves, 280 halos, 70 upward lightning, 2 blue jets and 1 gigantic jet. The climatology shows intense TLE activity during summer over continental areas and in late autumn over coastal areas and sea. The two seasons peak, respectively, in August and November, separated by March and April with almost no TLEs, and a relative minimum around September. The observed TLE activity, i.e. mostly sprites, is shown to be largely consistent with lightning activity, with a 1/1000 of observed TLE-to-lightning ratio in regions with most observations. The overall behaviour is consistent among individual years, making the observed seasonal cycle a robust general feature of TLE activity above Europe.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN75395 , Surveys in Geophysics (ISSN 0169-3298) (e-ISSN 1573-0956); 1-33
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-11-30
    Description: Plants are expected to generate more global-scale runoff under increasing atmospheric carbon dioxide concentrations through their influence on surface resistance to evapotranspiration. Recent studies using Earth System Models from phase 5 of the Coupled Model Intercomparison Project ostensibly reaffirm this result, further suggesting that plants will ameliorate the dire reductions in water availability projected by other studies that use aridity metrics. Here we complicate this narrative by analysing the change in precipitation partitioning to plants, runoff and storage in multiple Earth system models under both high carbon dioxide concentrations and warming. We show that projected plant responses directly reduce future runoff across vast swaths of North America, Europe and Asia because bulk canopy water demands increase with additional vegetation growth and longer and warmer growing seasons. These runoff declines occur despite increased surface resistance to evapotranspiration and vegetation total water use efficiency, even in regions with increasing or unchanging precipitation. We demonstrate that constraining the large uncertainty in the multimodel ensemble with regional-scale observations of evapotranspiration partitioning strengthens these results. We conclude that terrestrial vegetation plays a large and unresolved role in shaping future regional freshwater availability, one that will not ubiquitously ameliorate future warming-driven surface drying.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN75135 , Nature Geoscience (ISSN 1752-0894) (e-ISSN 1752-0908); 12; 983-988
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-11-05
    Description: Climate change is estimated to exacerbate existing challenges faced by smallholder farmers in Sub-Sahara Africa. However, limited studies quantify the extent of variation in climate change impact under these systems at the local scale. The Decision Support System for Agro-technological Transfer (DSSAT) was used to quantify variation in climate change impacts on maize yield under current agricultural practices in semi-arid regions of Senegal (Nioro du Rip) and Ghana (Navrongo and Tamale). Multi-benchmark climate models (Mid-Century, 20402069 for two Representative Concentration Pathways, RCP4.5 and RCP8.5), and multiple soil and management information from agronomic surveys were used as input for DSSAT. The average impact of climate scenarios on grain yield among farms ranged between 9% and 39% across sites. Substantial variation in climate response exists across farms in the same farming zone with relative standard deviations from 8% to 117% at Nioro du Rip, 13% to 64% in Navrongo and 9% to 37% in Tamale across climate models. Variations in fertilizer application, planting dates and soil types explained the variation in the impact among farms. This study provides insight into the complexities of the impact of climate scenarios on maize yield and the need for better representation of heterogeneous farming systems for optimized outcomes in adaptation and resilience planning in smallholder systems.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN74379 , Agronomy (e-ISSN 2073-4395); 9; 10; 639
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2020-01-01
    Description: Global warming due to greenhouse gases and atmospheric aerosols alter precipitation rates, but the influence on extreme precipitation by aerosols relative to greenhouse gases is still not well known. Here we use the simulations from the Precipitation Driver and Response Model Intercomparison Project that enable us to compare changes in mean and extreme precipitation due to greenhouse gases with those due to black carbon and sulfate aerosols, using indicators for dry extremes as well as for moderate and very extreme precipitation. Generally, we find that the more extreme a precipitation event is, the more pronounced is its response relative to global mean surface temperature change, both for aerosol and greenhouse gas changes. Black carbon (BC) stands out with distinct behavior and large differences between individual models. Dry days become more frequent with BC-induced warming compared to greenhouse gases, but so does the intensity and frequency of extreme precipitation. An increase in sulfate aerosols cools the surface and thereby the atmosphere, and thus induces a reduction in precipitation with a stronger effect on extreme than on mean precipitation. A better understanding and representation of these processes in models will provide knowledge for developing strategies for both climate change and air pollution mitigation.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN76182 , npj Climate and Atmospheric Science (e-ISSN 2397-3722); 2; 24
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-12-28
    Description: The TTL lies between the neutral buoyancy level (NBL) at ~350 K and the tropopause. Within the the TTL radiative heating drives ascent and air parcel supersaturation. Ticosonde measurements since 2005 show that the incidence ofsupersaturation in the TTL over Costa Rica is ~60%. This is due to diabatic ascent. The frequency is highest (68%) in summer, when convection is frequent. The TSL was defined by Selkirk et al. (2010) as the upper edge of the TTL. It isIn this layer that the final saturation of air parcels rising into the stratosphere occurs and thus the water vapor minima which define the so-called "writehead" of the Atmospheric Tape Recorder.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN74863 , EOA Aura Science Team Meeting 2019; Aug 27, 2019 - Aug 29, 2019; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-12-28
    Description: Observing and better understanding clouds and aerosols are priorities in the NASA Earth Science Decadal Survey, US National Climate Assessment, and Intergovernmental Panel on Climate Change Report. The Global Learning & Observations to Benefit the Environment (GLOBE) Program is NASA's largest and longest running citizen science program in the Earth Sciences that collects cloud observations. Since January 2017, NASA GLOBE students and citizen scientists have submitted over 800,000 cloud observations worldwide using both paper-based and smartphone app platforms. In this presentation, we compare satellite, model, and volunteer-reported total cloud cover. The comparison reveals a systematic misreporting of obscured skies (sky not visible due to smoke, dust, haze, etc.) versus overcast skies (100% total cloud cover) by GLOBE participants. We discuss implications for improving procedures for volunteer reporting under overcast and obscured sky conditions, and relevance for reporting extreme air pollution events in areas with little or no formal institutional monitoring networks.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN76180 , IN51E-0679 , American Geophysical Union Annual Meeting; Dec 09, 2019 - Dec 13, 2019; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-12-27
    Description: The GLOBE (Global Learning and Observations to Benefit the Environment) Program is NASA's largest and longest-operating citizen science program contributing Earth observations. Over 800,000 cloud observations have been reported worldwide since YEAR that include reports of short-lived, persistent, and persistent-spreading contrails. While contrails can be challenging to observe with space-borne platforms, humans are adept at spotting contrails from the ground. The NASA GLOBE Clouds team at NASA Langley Research Center in Hampton, Virginia matches cloud observations to multiple satellite platforms for comparison, including: NASA's CERES (Clouds and Earth's Radiant Energy System) instrument onboard Terra and Aqua, CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation), and geostationary satellites. A pilot project was started with select students in the United States to track airplanes above 25,000 ft and report airplane type, altitude, and report if a contrail was being or was not being produced. The objective of the pilot project was to establish if this is a scalable approach for building an international observational dataset documenting what types of airplanes are creating what types of contrails (short-lived, persistent, spreading) under what atmospheric conditions. Preliminary results of this pilot project will be presented.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN76078 , American Geophysical Union Annual Meeting; Dec 09, 2019 - Dec 13, 2019; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-11-13
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN75058 , Precipitation Measurement Missions (PMM) Science Team Meeting; Nov 04, 2019 - Nov 08, 2019; Indianapolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-11-13
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN75059 , Precipitation Measurement Missions (PMM) Science Team Meeting; Nov 04, 2019 - Nov 08, 2019; Indianapolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-11-27
    Description: Rainfall production is a fundamental process within the Earth's hydrological cycle because it represents both a principal forcing term in surface water budgets, and its energetics corollary, latent heating, is the principal source of atmospheric diabatic heating. Latent heat release itself is a consequence of phase changes between the vapor, liquid, and frozen states of water. The properties of the vertical distribution of latent heat release modulate large-scale meridional and zonal circulations within the Tropics - as well as modify the energetic efficiencies of mid-latitude weather systems. This paper highlights the retrieval of latent heat release from satellite measurements generated by the Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Mission (GPM) satellite observatory, which were launched in November 1997 and February 2014, respectively. Both TRMM and GPM measurements have been providing an accurate four-dimensional account of rainfall over the global Tropics and mid-latitudes: information that can be used to estimate the space-time structure of latent heating. Two sets of latent heating retrieval algorithm methodologies (Goddard Convective-Stratiform or CSH, and Japan Spectral Latent Heating or SLH) have been developed to estimate latent heating based on rain rate profile retrievals obtained from TRMM and GPM measurements. The CSH algorithm will be described followed by a discussion its improvements and performance against the combined derived surface ran rates. We will also present the CSH retrieved LH for TRMM and GPM.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN75706 , Precipitation Measurement Missions (PMM) Science Team Meeting; Nov 04, 2019 - Nov 08, 2019; Indianapolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-11-05
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN74554 , Regional Knowledge Forum on Early Warning for Flood and High Impact Weather Events; Oct 24, 2019; Kathmandu; Nepal
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-12-31
    Description: Ground validation (GV) for the Global Precipitation Measurement (GPM) mission encompasses in-situ (e.g., gauge, disdrometer) measurements, ground radar products, and comprehensive datasets from dedicated airborne field campaigns. These datasets are used for direct validation of the precipitation products from GPM as well as to inform assumptions used by the algorithms that produce these products. This presentation will focus on current and potential such uses of GV data in the GPM combined radar-radiometer algorithm.The GPM combined algorithm, by virtue of using data from the Dual-frequency Precipitation Radar (DPR) and GPM Microwave Imager (GMI), is the most well-constrained instantaneous precipitation product from GPM. It also plays an important in role the passive microwave algorithms as a basis for the construction of brightness temperature-precipitation profile databases and is a calibrator for the multi- satellite gridded product IMERG. Since both radar and radiometer data are used as observational inputs, and even with these data the retrievals are underconstrained, microphysical properties of the hydrometeor profile that are relevant over the range of GMI and DPR wavelengths and incidence angles need to be assumed by the algorithm forward models. Such properties include the normalized intercept parameter (N w ) and shape parameter () of the particle size distribution, ice size-density relationship, and particle size-aspect ratio relationships. The sub-beam variability must also be prescribed in order to accurately simulate the observed radar reflectivity profiles without introducing significant biases. The sensitivity of the algorithm to these parameters, along with their mean values and variability, will be discussed. Examples of future directions include refinement with new data (particularly the assumptions related to ice), and seeking relationships between assumptions and observable or environmental data.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN76442 , AGU Fall Meeting 2019; Dec 09, 2019 - Dec 13, 2019; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-12-24
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN76221 , Fall Meeting of the American Geophysical Union; Dec 09, 2019 - Dec 13, 2019; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-08-09
    Description: Strong tidal currents in and around the narrow straits of the Lesser Sunda Islands, Indonesia, affect ocean sea surface temperatures (SST) via non-linear tide-induced mixing. A fortnightly springneap cycle in tidal currents can induce a similar cycle in SST, which has been observed to occur in and south of Lombok Strait. Here we report on an atmospheric response to the fortnightly SST cycle which is detected in relative humidity and air temperature measurements at Bali. The fortnightly cycles in both the ocean SST and the Bali atmospheric data have a strong seasonal cycle, with peak signals occurring during boreal summer.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN68783 , Geoscience Letters (e-ISSN 2196-4092); 6; 6
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-08-09
    Description: No abstract available
    Keywords: Meteorology and Climatology
    Type: MSFC-E-DAA-TN71285 , International Space Station Research & Development Conference (ISSR&D 2019); Jul 29, 2019 - Aug 01, 2019; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-08-08
    Description: A total of 16 global chemistry transport models and general circulation models have participated in this study; 14 models have been evaluated with regard to their ability to reproduce the near-surface observed number concentration of aerosol particles and cloud condensation nuclei (CCN), as well as derived cloud droplet number concentration (CDNC). Model results for the period 2011-2015 are compared with aerosol measurements (aerosol particle number, CCN and aerosol particle composition in the submicron fraction) from nine surface stations located in Europe and Japan. The evaluation focuses on the ability of models to simulate the average across time state in diverse environments and on the seasonal and short-term variability in the aerosol properties. There is no single model that systematically performs best across all environments represented by the observations. Models tend to underestimate the observed aerosol particle and CCN number concentrations, with average normalized mean bias (NMB) of all models and for all stations, where data are available, of -24% and -35% for particles with dry diameters 〉 50 and 〉 120nm, as well as -36% and -34% for CCN at supersaturations of 0.2% and 1.0%, respectively. However, they seem to behave differently for particles activating at very low supersaturations (〈 0.1%) than at higher ones. A total of 15 models have been used to produce ensemble annual median distributions of relevant parameters. The model diversity (defined as the ratio of standard deviation to mean) is up to about 3 for simulated N3 (number concentration of particles with dry diameters larger than 3 nm) and up to about 1 for simulated CCN in the extra-polar regions. A global mean reduction of a factor of about 2 is found in the model diversity for CCN at a supersaturation of 0.2% (CCN(0.2)) compared to that for N3, maximizing over regions where new particle formation is important. An additional model has been used to investigate potential causes of model diversity in CCN and bias compared to the observations by performing a perturbed parameter ensemble (PPE) accounting for uncertainties in 26 aerosol-related model input parameters. This PPE suggests that biogenic secondary organic aerosol formation and the hygroscopic properties of the organic material are likely to be the major sources of CCN uncertainty in summer, with dry deposition and cloud processing being dominant in winter. Models capture the relative amplitude of the seasonal variability of the aerosol particle number concentration for all studied particle sizes with available observations (dry diameters larger than 50, 80 and 120nm). The short-term persistence time (on the order of a few days) of CCN concentrations, which is a measure of aerosol dynamic behavior in the models, is underestimated on average by the models by 40% during winter and 20% in summer.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN70776 , Atmospheric Chemistry and Physics (ISSN 1680-7316) (e-ISSN 1680-7324); 19; 13; 8591-8617
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2020-01-16
    Description: Terrestrial gross primary production (GPP) is the basis of vegetation growth and food production globally and plays a critical role in regulating atmospheric CO2 through its impact on ecosystem carbon balance. Even though higher CO2 concentrations in future decades can increase GPP, low soil water availability, heat stress and disturbances associated with droughts could reduce the benefits of such CO2 fertilization. Here we analysed outputs of 13 Earth system models to show an increasingly stronger impact on GPP by extreme droughts than by mild and moderate droughts over the twenty-first century. Due to a dramatic increase in the frequency of extreme droughts, the magnitude of globally averaged reductions in GPP associated with extreme droughts was projected to be nearly tripled by the last quarter of this century (2075-2099) relative to that of the historical period (1850-1999) under both high and intermediate GHG emission scenarios. By contrast, the magnitude of GPP reductions associated with mild and moderate droughts was not projected to increase substantially. Our analysis indicates a high risk of extreme droughts to the global carbon cycle with atmospheric warming; however, this risk can be potentially mitigated by positive anomalies of GPP associated with favourable environmental conditions.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN76047 , Nature Climate Change (ISSN 1758-678X); 9; 948-953
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2020-01-15
    Description: We revisit the bias correction problem in current climate models, taking advantage of state-of-the-art atmospheric reanalysis data and new data assimilation tools that simplify the estimation of short-term (6 hourly) atmospheric tendency errors. The focus is on the extent to which correcting biases in atmospheric tendencies improves the models climatology, variability, and ultimately forecast skill at subseasonal and seasonal time scales. Results are presented for the NASA GMAO GEOS model in both uncoupled (atmosphere only) and coupled (atmosphereocean) modes. For the uncoupled model, the focus is on correcting a stunted North Pacific jet and a dry bias over the central United States during boreal summerlong-standing errors that are indeed common to many current AGCMs. The results show that the tendency bias correction (TBC) eliminates the jet bias and substantially increases the precipitation over the Great Plains. These changes are accompanied by much improved (increased) storm-track activity throughout the northern midlatitudes. For the coupled model, the atmospheric TBCs produce substantial improvements in the simulated mean climate and its variability, including a much reduced SST warm bias, more realistic ENSO-related SST variability and teleconnections, and much improved subtropical jets and related submonthly transient wave activity. Despite these improvements, the improvement in subseasonal and seasonal forecast skill over North America is only modest at best. The reasons for this, which are presumably relevant to any forecast system, involve the competing influences of predictability loss with time and the time it takes for climate drift to first have a significant impact on forecast skill.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN64773 , Journal of Climate (ISSN 0894-8755) (e-ISSN 1520-0442); 32; 2; 639-661
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2020-01-10
    Description: This study evaluates some available schemes designed to solve the stochastic collection equation (SCE) for collision-coalescence of hydrometeors using a size-resolved (bin) microphysics approach, and documents their numerical properties within the framework of a box model. Comparing three widely used SCE schemes, we find that all converge to almost identical solutions at sufficiently fine mass grids. However, one scheme converges far slower than the other two and shows pronounced numerical diffusion at the large-drop tail of the size distribution. One of the remaining two schemes is recommended on the basis that it is well-converged on a relatively coarse mass grid, stable for large time steps, strictly mass-conservative, and computationally efficient. To examine the effects of SCE scheme choice on simulating clouds and precipitation, two of the three schemes are compared in large-eddy simulations of a drizzling stratocumulus field. A forward simulator that produces Doppler spectra from the large-eddy simulation results is used to compare the model output directly with radar observations. The scheme with pronounced numerical diffusion predicts excessively large mean Doppler velocities and overly broad and negatively skewed spectra compared with observations, consistent with numerical diffusion demonstrated in the box model. Statistics obtained using the recommended scheme are closer to observations, but notable differences remain, indicating that factors other than SCE scheme accuracy are limiting simulation fidelity.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN62751 , Journal of the Atmospheric Sciences (ISSN 0022-4928) (e-ISSN 1520-0469); 76; 1; 247-263
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2020-01-03
    Description: Falling snow is a key component for the global atmospheric, hydrological and energy cycles, and its retrieval from space-based observations represents the best current capability to evaluate it globally. The Global Precipitation Measurement (GPM) Mission Core Observatory, launched in 2014, together with its constellation sensors, can provide quasi-global precipitation estimates every 30 minutes (for level 3 products). Evaluation and validation efforts for such products are crucial, and for global evaluations, one of the most suitable instruments is the Cloud Profiling Radar (CPR) on board CloudSat, which is sensitive to light rain and falling snow. However, due to a battery anomaly in 2011, during its period of overlapping observations with GPM the CPR has operated in a Daylight Only Operations mode (DO-Op) in which it makes measurements primarily during only the daylit portion of its orbit. The goal of this work is to estimate biases inherent in global snowfall amounts derived from CPR measurements due to this shift to DO-Op mode. We use CloudSat's snowfall measurements during its Full Operations (Full-Op) period from 2006 to 2010 to evaluate the impact DO-Op mode would have had during this period. Results indicate that omitting the nocturnal component of the diurnal cycle of snowfall has nonnegligible impact on snowfall amounts in some regions. The lack of nighttime data during DO-Op biases the latitudinally averaged mean snowfall rates as well as some regional values. Hemispheric differences in bias may be due to more pronounced diurnal variability in the northern hemisphere owing to more prevalent land surface versus the southern hemisphere. The results highlight the need to sample consistently with the CloudSat observations or to adjust snowfall estimates derived from CloudSat when using DO-Op data to evaluate other precipitation products.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN76627 , AGU 2019 Fall Meeting; Dec 09, 2019 - Dec 13, 2019; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2020-01-03
    Description: The Ground Validation (GV) component of the Global Precipitation Measurement (GPM) mission involved several field campaigns, involving aircraft, ground radars, and other instrument networks designed to measure various aspects of precipitation. In many cases, these instruments are still in operation at ongoing data collection sites at Wallops Flight Facility, VA and Marquette, MI. The data collected has been used for algorithm formulation and validation, but in many cases has been under-utilized. This presentation describes aspects of GPM algorithms that could benefit from GV data that has been collected and announces a workshop to be held for that purpose in March 2020.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN76604 , 2019 PMM Science Team Meeting; Nov 04, 2019 - Nov 08, 2019; Indianapolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2020-01-03
    Description: Cloud and precipitation systems over the tropics and subtropics are simulated with a multi-scale modeling framework (MMF) and compared against the TRMM radar precipitation features (RPFs) product. A methodology, in close analogy to the TRMM RPFs, is developed to analyze simulated cloud precipitating structures from the embedded two-dimensional cloud-resolving models (CRMs) within an MMF. Despite the two-dimensionality of the CRMs, the simulated RPFs population distribution, and horizontal and vertical structure are in good agreement with TRMM observations. However, some deficits are also found in the model simulations. The model tends to overestimate mean convective precipitation rates for RPFs with a size less than 100 km, contributing to the excessive precipitation biases in the warm pool and western Pacific, western and northern India Ocean, and eastern Pacific commonly found in most MMFs. For large features with a size greater than 150 km, both convective and stratiform rain rates are underestimated. The distribution of maximum radar echo top heights as a function of RPF size is well simulated except the model tends to underestimate the occurrence frequency of maximum heights greater than 15 km. The maximum echo top heights for convective cells embedded within large RPFs with a size greater than 150 km are also underestimated. The cyclic lateral boundary with a limited model domain generates artificial occurrences for RPFs with a size close to the model domain size, producing a significant contribution to the total rainfall due to their sizes. This cyclic lateral boundary effect can be easily identified and quantified in both probability and cumulative distribution functions of RPFs. The geophysical distribution of the population of the largest RPFs in the control experiment shows they are mainly located in the Subtropics but also partially contribute to the common MMF biases of excessive precipitation in the Tropics. Sensitivity experiments using CRMs with different domain sizes and different grid spacings show larger domains (higher resolution) tend to shift the RPFs distribution to large (small) sizes. The cyclic lateral boundary biases increase as CRM domain size decreases. The impacts of model horizontal and vertical resolution on simulated convective systems are also investigated.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN76642 , AGU 2019 Fall Meeting; Dec 09, 2019 - Dec 13, 2019; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2020-01-03
    Description: Explosive volcanic eruptions are one of the largest natural climate perturbations, but few observational constraints exist on either the climate responses to eruptions or the properties (size, hemispheric aerosol distribution, etc.) of the eruptions themselves. Paleoclimate records are thus important sources of information on past eruptions, often through the measurement of oxygen isotopic ratios (18O) in natural archives. However, since many processes affect 18O, the dynamical interpretation of these records can be quite complex. Here we present results from new, isotope-enabled members of the Community Earth System Model Last Millennium Ensemble, documenting eruption-induced 18O variations throughout the climate system. Eruptions create significant perturbations in the 18O of precipitation and soil moisture in central/eastern North America, via excitation of the Atlantic Multidecadal Oscillation. Monsoon Asia and Australia also exhibit strong precipitation and soil 18O anomalies; in these cases, 18O may reflect changes to El Nio-Southern Oscillation phase following eruptions. Salinity and seawater 18O patterns demonstrate the importance of both local hydrologic shifts and the phasing of the El Nio-Southern Oscillation response, both along the equator and in the subtropics. In all cases, the responses are highly sensitive to eruption latitude, which points to the utility of isotopic records in constraining aerosol distribution patterns associated with past eruptions. This is most effective using precipitation 18O; all Southern eruptions and the majority (66%) of Northern eruptions can be correctly identified. This work thus serves as a starting point for new, quantitative uses of isotopic records for understanding volcanic impacts on climate.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN76212 , Paleoceanography and Paleoclimatology (ISSN 2572-4517); 34; 8; 1534-1552
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...