ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Management  (92)
  • Chemistry
  • NOAA/National Centers for Coastal Ocean Science  (99)
  • Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
  • 1
    facet.materialart.
    Unknown
    NOAA/National Centers for Coastal Ocean Science | Silver Spring, MD
    In:  charles.menza@noaa.gov | http://aquaticcommons.org/id/eprint/14878 | 403 | 2014-03-06 21:23:01 | 14878 | United States National Ocean Service
    Publication Date: 2021-06-27
    Description: This protocol was developed by the Biogeography Branch of NOAA’s Center for Coastal Monitoring and Assessment to support invasive species research by the Papahānaumokuākea Marine National Monument. The protocol’s objective is to detect Carijoa riisei and Hypnea musciformis in deepwater habitats using visual surveys by technical divers.Note: This protocol is designed to detect the presence or absence of invasive species. A distinct protocol is required to collect information on abundance and impact, or monitor changes over time.
    Keywords: Fisheries ; Management
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Format: 6
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    NOAA/National Centers for Coastal Ocean Science | Beaufort, NC
    In:  http://aquaticcommons.org/id/eprint/14941 | 403 | 2014-03-17 18:26:25 | 14941 | United States National Ocean Service
    Publication Date: 2021-06-29
    Description: The impact of recent changes in climate on the arctic environment and its ecosystems appear to have a dramatic affect on natural populations (National Research Council Committee on the Bering Sea Ecosystem 1996) and pose a serious threat to the continuity of indigenous arctic cultures that are dependent on natural resources for subsistence (Peterson D. L., Johnson 1995). In the northeast Pacific, winter storms have intensified and shifted southward causing fundamental changes in sea surface temperature patterns (Beamish 1993, Francis et al. 1998). Since the mid 1970’s surface waters of the central basin of the Gulf of Alaska (GOA) have warmed and freshened with a consequent increase in stratification and reduced winter entrainment of nutrients (Stabeno et al. 2004). Such physical changes in the structure of the ocean can rapidly affect lower trophic levels and indirectly affect fish and marine mammal populations through impacts on their prey (Benson and Trites 2002). Alaskan natives expect continued and perhaps accelerating changes in resources due to global warming (DFO 2006).and want to develop strategies to cope with their changing environment.
    Keywords: Fisheries ; Management ; Oceanography ; Planning
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Format: 37
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    NOAA/National Centers for Coastal Ocean Science | Silver Spring, MD
    In:  http://aquaticcommons.org/id/eprint/14948 | 403 | 2014-03-14 23:02:39 | 14948 | United States National Ocean Service
    Publication Date: 2021-06-29
    Description: Gray’s Reef National Marine Sanctuary (GRNMS) is exploring the concept of a research area (RA) within its boundaries. The idea of a research area was first suggested in public scoping meetings held prior to the review of the Gray’s Reef Management Plan. An RA is a region specifically designed for conducting controlled scientific studies in the absence of confounding factors. As a result, a multidisciplinary group gathered by GRNMS was convened to consider the issue. This Research Area Working Group (RAWG) requested that a suite of analyses be conducted to evaluate the issue quantitatively. To meet this need, a novel selection procedure and geographic information system (GIS) was created to find the optimal location for an RA while balancing the needs of research and existing users. This report and its associated GIS files describe the results of the requested analyses and enable further quantitative investigation of this topic by the RAWG and GRNMS.
    Keywords: Conservation ; Fisheries ; Management
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Format: 51
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    NOAA/National Centers for Coastal Ocean Science | Silver Spring, MD
    In:  http://aquaticcommons.org/id/eprint/14935 | 403 | 2014-03-17 19:31:47 | 14935 | United States National Ocean Service
    Publication Date: 2021-06-29
    Description: The intent of this field mission was to continue ongoing efforts: (1) to spatially characterize and monitor the distribution, abundance and size of both reef fishes and conch within and around the waters of the Virgin Islands National Park (VIIS) and newly established Virgin Islands Coral Reef National Monument (VICR), (2) to correlate this information to in-situ data collected on associated habitat parameters, (3) to use this information to establish the knowledge base necessary for enacting management decisions in a spatial setting and to establish the efficacy of those management decisions. This work is supported by the National Park Service and NOAA’s Coral Reef Conservation Program’s Caribbean Coral Reef Ecosystem Monitoring Project. The report highlights the successes of this mission.
    Keywords: Ecology ; Fisheries ; Management
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Format: 10
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    NOAA/National Centers for Coastal Ocean Science | Silver Spring, MD
    In:  matt.kendall@noaa.gov | http://aquaticcommons.org/id/eprint/14938 | 403 | 2014-03-17 18:48:02 | 14938 | United States National Ocean Service
    Publication Date: 2021-06-29
    Description: Digital maps of the shallow (〈~30m deep) coral reef ecosystems of Majuro Atoll, Republic of the Marshall Islands, were created through visual interpretation of remote sensing imagery acquired between 2004 and 2006. Reef ecosystem features were digitized directly into a Geographic Information System. Benthic features were categorized according to a classification scheme with attributes including zone (location such as lagoon or forereef, etc.), structure (bottom type such as sand or patch reef, etc.) and percent hard bottom. This atlas consists of 27 detailed maps displaying reef zone and structure of coral ecosystems around Majuro. Adjacent maps in the atlas overlap slightly to ensure complete coverage. Maps and associated products can be used to support science and management activities on Majuro reef ecosystems including inventory, monitoring, conservation, and sustainable development applications. Maps are not to be used for navigation.
    Keywords: Environment ; Management ; Planning
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Format: 55
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    NOAA/National Centers for Coastal Ocean Science | Charleston, SC
    In:  http://aquaticcommons.org/id/eprint/14951 | 403 | 2014-03-14 22:35:59 | 14951 | United States National Ocean Service
    Publication Date: 2021-06-29
    Description: A meeting was convened on February 22-24, 2005 in Charleston, South Carolina to bring together researchers collaborating on the Bottlenose Dolphin Health and Risk Assessment (HERA) Project to review and discuss preliminary health-related findings from captured dolphins during 2003 and 2004 in the Indian River Lagoon (IRL), FL and Charleston (CHS), SC. Over 30 researchers with diverse research expertise representing government, academic and marine institutions participated in the 2-1/2 day meeting.The Bottlenose Dolphin HERA Project is a comprehensive, integrated, multi-disciplinary research program designed to assess environmental and anthropogenic stressors, as well as the health and long-term viability of Atlantic bottlenose dolphins (Tursiops truncatus). Standardized and comprehensive protocols are being used to evaluate dolphin health in the coastal ecosystems in the IRL and CHS. The Bottlenose Dolphin Health and Risk Assessment (HERA) Project was initiated in 2003 by Dr. Patricia Fair at the National Oceanic and Atmospheric Administration/National Ocean Service/Center for Coastal Environmental Health and Biomolecular Research and Dr. Gregory Bossart at the Harbor Branch Oceanographic Institution under NMFS Scientific Research Permit No. 998-1678-00 issued to Dr. Bossart. Towards this end, this study focuses on developing tools and techniques to better identify health threats to these dolphins, and to develop links to possible environmental stressors. Thus, the primary objective of the Dolphin HERAProject is to measure the overall health and as well as the potential health hazards for dolphin populations in the two sites by performing screening-level risk assessments using standardized methods. The screening-level assessment involves capture, sampling and release activities during which physical examinations are performed on dolphins and a suite of nonlethal morphologic and clinicopathologic parameters, to be used to develop indices of dolphin health, are collected. Thus far, standardized health assessments have been performed on 155 dolphins during capture-release studies conducted in Years 2003 and 2004 at the two sites. A major collaboration has been established involving numerous individuals and institutions, which provide the project with a broad assessment capability toward accomplishing the goals and objectives of this project.
    Keywords: Fisheries ; Health ; Management ; Policies ; Pollution
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Format: 93
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    NOAA/National Centers for Coastal Ocean Science | Beaufort, NC
    In:  http://aquaticcommons.org/id/eprint/14939 | 403 | 2014-03-17 18:38:51 | 14939 | United States National Ocean Service
    Publication Date: 2021-06-29
    Description: Boat wakes in the Atlantic Intracoastal Waterway (AIWW) of North Carolina occur in environments not normally subjected to (wind) wave events, making sections of AIWW potentially vulnerable to extreme wave events generated by boat wakes. The Snow’s Cut area that links the Cape Fear River to the AIWW is an area identified by the Wilmington District of the U.S. Army Corps of Engineers as having significant erosion issues; it was hypothesized that this erosion could be being exacerbated by boat wakes. We compared the boat wakes for six combinations of boat length and speed with the top 5% wind events. We also computed the benthic shear stress associated with boat wakes and whether sediment would move (erode) under those conditions. Finally, we compared the transit time across Snow’s Cut for each speed. We focused on two size classes of V-hulled boats (7 and 16m) representative of AIWW traffic and on three boat speeds (3, 10 and 20 knots). We found that at 10 knots when the boat was plowing and not yet on plane, boat wake height and potential erosion was greatest. Wakes and forecast erosion were slightly mitigated at higher, planing speeds. Vessel speeds greater than 7 knots were forecast to generate wakes and sediment movement zones greatly exceeding that arising from natural wind events. We posit that vessels larger than 7m in length transiting Snow’s Cut (and likely many other fetch-restricted areas of the AIWW) frequently generate wakes of heights that result in sediment movement over large extents of the AIWW nearshore area, substantially in exceedance of natural wind wave events. If the speed, particularly of large V-hulled vessels (here represented by the 16m length class), were reduced to pre-plowing levels (~ 7 knots down from 20), transit times for Snow’s Cut would be increased approximately 10 minutes but based on our simulations would likely substantially reduce the creation of erosion-generating boat wakes. It is likely that boat wakes significantly exceed wind wave background for much of the AIWW and similar analyses may be useful in identifying management options.
    Keywords: Earth Sciences ; Management ; Oceanography
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Format: 24
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    NOAA/National Centers for Coastal Ocean Science | Silver Spring, MD
    In:  http://aquaticcommons.org/id/eprint/14918 | 403 | 2014-03-10 20:45:21 | 14918 | United States National Ocean Service
    Publication Date: 2021-06-28
    Description: Coral reefs throughout their circumtropical range are declining at an accelerating rate. Recent predictions indicate that 20% of the world’s reefs have been degraded, another 24% are under imminent risk of collapse, and if current estimates hold, by 2030, 26% of the world’s reefs will be lost (Wilkinson 2004). Recent changes to these ecosystems have included losses of apex predators, reductions of important herbivorous fishes and invertebrates, and precipitous declines in living coral cover, with many reefs now dominated by macroalgae. Causes have been described in broad sweeping terms: global climate change, over-fishing and destructive fishing, land-based sources of pollution, sedimentation, hurricanes, mass bleaching events and disease. Recognition that corals can succumb to disease was first reported in the early 1970’s. Then it was a unique observation, with relatively few isolated reports until the mid 1990’s. Today disease has spread to over 150 species of coral, reported from 65 countries throughout all of the world’s tropical oceans (WCMC Global Coral Disease Database). While disease continues to increase in frequency and distribution throughout the world, definitive causes of coral diseases have remained elusive for the most part, with reef managers not sufficiently armed to combat it.
    Description: NOAA Technical Memorandum Coral Reef Conservation Program 6
    Keywords: Fisheries ; Health ; Management ; Pollution
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Format: 81
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    NOAA/National Centers for Coastal Ocean Science | Silver Spring, MD
    In:  http://aquaticcommons.org/id/eprint/14637 | 403 | 2014-02-23 00:18:47 | 14637 | United States National Ocean Service
    Publication Date: 2021-06-30
    Description: Coastal and marine ecosystems support diverse and important fisheries throughout the nation’s waters, hold vast storehouses of biological diversity, and provide unparalleled recreational opportunities. Some 53% of the total U.S. population live on the 17% of land in the coastal zone, and these areas become more crowded every year. Demands on coastal and marine resources arerapidly increasing, and as coastal areas become more developed, the vulnerability of human settlements to hurricanes, storm surges, and flooding events also increases.Coastal and marine environments are intrinsically linked to climate in many ways. The ocean is an important distributor of the planet’s heat, and this distribution could be strongly influenced by changes in global climate over the 21st century. Sea-level rise is projected to accelerate during the 21st century, with dramatic impacts in low-lying regions where subsidence and erosion problems already exist. Many other impacts of climate change on the oceans are difficult to project, such as the effects on ocean temperatures and precipitation patterns, although the potential consequences of various changes can be assessed to a degree. In other instances, research is demonstrating that global changes may already be significantly impacting marine ecosystems, such as the impact of increasing nitrogen on coastal waters and the direct effect of increasing carbon dioxide on coral reefs.Coastal erosion is already a widespread problem in much of the country and has significant impacts on undeveloped shorelines as well as on coastal development and infrastructure. Along the Pacific Coast, cycles of beach and cliff erosion have been linked to El Niño events that elevate average sea levels over the short term and alter storm tracks that affect erosion and wave damage along thecoastline. These impacts will be exacerbated by long-term sea-level rise. Atlantic and Gulf coastlines are especially vulnerable to long-term sea-level rise as well as any increase in the frequency of storm surges or hurricanes. Most erosion events here are the result of storms and extreme events, and the slope of these areas is so gentle that a small rise in sea level produces a large inland shiftof the shoreline. When buildings, roads and seawalls block this natural migration, the beaches and shorelines erode, threatening property and infrastructure as well as coastal ecosystems.
    Keywords: Ecology ; Environment ; Fisheries ; Management
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Format: 163
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    NOAA/National Centers for Coastal Ocean Science | Silver Spring, MD
    In:  http://aquaticcommons.org/id/eprint/14636 | 403 | 2014-02-23 00:18:09 | 14636 | United States National Ocean Service
    Publication Date: 2021-06-30
    Description: Southeast Bering Sea Carrying Capacity (SEBSCC, 1996–2002) was a NOAA Coastal Ocean Program project that investigated the marine ecosystem of the southeastern Bering Sea. SEBSCC was co-managed by the University of Alaska Fairbanks, NOAA Alaska Fisheries Science Center, and NOAA Pacific Marine Environmental Laboratory. Project goals were to understandthe changing physical environment and its relationship to the biota of the region, to relate that understanding to natural variations in year-class strength of walleye pollock (Theragra chalcogramma), and to improve theflow of ecosystem information to fishery managers.In addition to SEBSCC, the Inner Front study (1997–2000), supported by the National Science Foundation (Prolonged Production and Trophic Transfer to Predators: Processes at the Inner Front of the S.E. Bering Sea), was active in the southeastern Bering Sea from 1997 to 1999. The SEBSCC andInner Front studies were complementary. SEBSCC focused on the middle and outer shelf. Inner Front worked the middle and inner shelf. Collaboration between investigators in the two programs was strong, and the joint results yielded a substantially increased understanding of the regional ecosystem.SEBSCC focused on four central scientific issues: (1) How does climate variability influence the marine ecosystem of the Bering Sea? (2) What determines the timing, amount, and fate of primary and secondary production? (3) How do oceanographic conditions on the shelf influence distributions of fish and other species? (4) What limits the growth of fish populations on the eastern Bering Sea shelf? Underlying these broad questions was a narrowerfocus on walleye pollock, particularly a desire to understand ecological factors that affect year-class strength and the ability to predict the potential of a year class at the earliest possible time. The Inner Front programfocused on the role of the structural front between the well-mixed waters of the coastal domain and the two-layer system of the middle domain. Of special interest was the potential for prolonged post-spring-bloom productionat the front and its role in supporting upper trophic level organisms such as juvenile pollock and seabirds. Of concern to both programs was the role of interannual and longer-term variability in marine climates and their effectson the function of sub-arctic marine ecosystems and their ability to support upper trophic level organisms.
    Keywords: Biology ; Ecology ; Fisheries ; Management
    Repository Name: AquaDocs
    Type: monograph
    Format: application/pdf
    Format: application/pdf
    Format: 192
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...