ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Gravity, Geodesy and Tides  (19)
  • Oxford University Press  (19)
  • 2010-2014  (19)
  • 1980-1984
  • 1
    Publikationsdatum: 2014-12-17
    Beschreibung: Measurements of ground deformation can be used to identify and interpret geophysical processes occurring at volcanoes. Most studies rely on a single geodetic technique, or fit a geophysical model to the results of multiple geodetic techniques. Here we present a methodology that combines GPS, Total Station measurements and InSAR into a single reference frame to produce an integrated 3-D geodetic velocity surface without any prior geophysical assumptions. The methodology consists of five steps: design of the network, acquisition and processing of the data, spatial integration of the measurements, time series computation and finally the integration of spatial and temporal measurements. The most significant improvements of this method are (1) the reduction of the required field time, (2) the unambiguous detection of outliers, (3) an increased measurement accuracy and (4) the construction of a 3-D geodetic velocity field. We apply this methodology to ongoing motion on Arenal's western flank. Integration of multiple measurement techniques at Arenal volcano revealed a deformation field that is more complex than that described by individual geodetic techniques, yet remains consistent with previous studies. This approach can be applied to volcano monitoring worldwide and has the potential to be extended to incorporate other geodetic techniques and to study transient deformation.
    Schlagwort(e): Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Digitale ISSN: 1365-246X
    Thema: Geologie und Paläontologie
    Publiziert von Oxford University Press im Namen von The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2014-11-09
    Beschreibung: In autumn 2012, the new release 05 (RL05) of monthly geopotencial spherical harmonics Stokes coefficients (SC) from Gravity Recovery and Climate Experiment (GRACE) mission was published. This release reduces the noise in high degree and order SC, but they still need to be filtered. One of the most common filtering processing is the combination of decorrelation and Gaussian filters. Both of them are parameters dependent and must be tuned by the users. Previous studies have analyzed the parameters choice for the RL05 GRACE data for oceanic applications, and for RL04 data for global application. This study updates the latter for RL05 data extending the statistics analysis. The choice of the parameters of the decorrelation filter has been optimized to: (1) balance the noise reduction and the geophysical signal attenuation produced by the filtering process; (2) minimize the differences between GRACE and model-based data and (3) maximize the ratio of variability between continents and oceans. The Gaussian filter has been optimized following the latter criteria. Besides, an anisotropic filter, the fan filter, has been analyzed as an alternative to the Gauss filter, producing better statistics.
    Schlagwort(e): Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Digitale ISSN: 1365-246X
    Thema: Geologie und Paläontologie
    Publiziert von Oxford University Press im Namen von The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2014-10-23
    Beschreibung: The paper in question by Van Camp and co-authors [MVC] challenges previous work showing that ground gravity data arising from hydrology can provide a consistent signal for the comparison with satellite gravity data. The data sets used are similar to those used previously, that is, the gravity field as measured by the GRACE satellites versus ground-based data from superconducting gravimeters (SGs) over the same continental area, in this case Central Europe. One of the main impediments in this paper is the presentation that is frequently confusing and misleading as to what the data analysis really shows, for example, the irregular treatment of annual components that are first subtracted then reappear in the analysis. More importantly, we disagree on specific points. Two calculations are included in our comment to illustrate where we believe that the processing in [MVC] paper is deficient. The first deals with their erroneous treatment of the global hydrology using a truncated spherical harmonic approach which explains almost a factor 2 error in their computation of the loading. The second shows the effect of making the wrong assumption in the GRACE/hydrology/surface gravity comparison by inverting the whole of the hydrology loading for underground stations. We also challenge their claims that empirical orthogonal function techniques cannot be done in the presence of periodic components, and that SG data cannot be corrected for comparisons with GRACE data. The main conclusion of their paper, that there is little coherence between ground gravity stations and this invalidates GRACE comparisons, is therefore questionable. There is nothing in [MVC] that contradicts any of the previous papers that have shown clearly a strong relation between seasonal signals obtained from both ground gravity and GRACE satellite data.
    Schlagwort(e): Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Digitale ISSN: 1365-246X
    Thema: Geologie und Paläontologie
    Publiziert von Oxford University Press im Namen von The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2014-10-23
    Beschreibung: The influence of changes in surface ice-mass redistribution and associated viscoelastic response of the Earth, known as glacial isostatic adjustment (GIA), on the Earth's rotational dynamics has long been known. Equally important is the effect of the changes in the rotational dynamics on the viscoelastic deformation of the Earth. This signal, known as the rotational feedback, or more precisely, the rotational feedback on the sea level equation, has been mathematically described by the sea level equation extended for the term that is proportional to perturbation in the centrifugal potential and the second-degree tidal Love number. The perturbation in the centrifugal force due to changes in the Earth's rotational dynamics enters not only into the sea level equation, but also into the conservation law of linear momentum such that the internal viscoelastic force, the perturbation in the gravitational force and the perturbation in the centrifugal force are in balance. Adding the centrifugal-force perturbation to the linear-momentum balance creates an additional rotational feedback on the viscoelastic deformations of the Earth. We term this feedback mechanism, which is studied in this paper, as the rotational feedback on the linear-momentum balance. We extend both the time-domain method for modelling the GIA response of laterally heterogeneous earth models developed by Martinec and the traditional Laplace-domain method for modelling the GIA-induced rotational response to surface loading by considering the rotational feedback on linear-momentum balance. The correctness of the mathematical extensions of the methods is validated numerically by comparing the polar-motion response to the GIA process and the rotationally induced degree 2 and order 1 spherical harmonic component of the surface vertical displacement and gravity field. We present the difference between the case where the rotational feedback on linear-momentum balance is considered against that where it is not. Numerical simulations show that the resulting difference in radial displacement and sea level change between these situations since the Last Glacial Maximum reaches values of ±25 and ±1.8 m, respectively. Furthermore, the surface deformation pattern is modified by up to 10 per cent in areas of former or ongoing glaciation, but by up to 50 per cent at the bottom of the southern Indian ocean. This also results in the movement of coastlines during the last deglaciation to differ between the two cases due to the difference in the ocean loading, which is seen for instance in the area around Hudson Bay, Canada and along the Chinese, Australian or Argentinian coastlines.
    Schlagwort(e): Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Digitale ISSN: 1365-246X
    Thema: Geologie und Paläontologie
    Publiziert von Oxford University Press im Namen von The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2014-09-20
    Beschreibung: During megathrust earthquakes, great ruptures are accompanied by large scale mass redistribution inside the solid Earth and by ocean mass redistribution due to bathymetry changes. These large scale mass displacements can be detected using the monthly gravity maps of the GRACE satellite mission. In recent years it has become increasingly common to use the long wavelength changes in the Earth's gravity field observed by GRACE to infer seismic source properties for large megathrust earthquakes. An important advantage of space gravimetry is that it is independent from the availability of land for its measurements. This is relevant for observation of megathrust earthquakes, which occur mostly offshore, such as the $M_{\text{w}} \sim 9$ 2004 Sumatra–Andaman, 2010 Maule (Chile) and 2011 Tohoku-Oki (Japan) events. In Broerse et al. , we examined the effect of the presence of an ocean above the rupture on long wavelength gravity changes and showed it to be of the first order. Here we revisit the implementation of an ocean layer through the sea level equation and compare the results with approximated methods that have been used in the literature. One of the simplifications usually lies in the assumption of a globally uniform ocean layer. We show that especially in the case of the 2010 Maule earthquake, due to the closeness of the South American continent, the uniform ocean assumption is not valid and causes errors up to 57 per cent for modelled peak geoid height changes (expressed at a spherical harmonic truncation degree of 40). In addition, we show that when a large amount of slip occurs close to the trench, horizontal motions of the ocean floor play a mayor role in the ocean contribution to gravity changes. Using a slip model of the 2011 Tohoku-Oki earthquake that places the majority of slip close to the surface, the peak value in geoid height change increases by 50 per cent due to horizontal ocean floor motion. Furthermore, we test the influence of the maximum spherical harmonic degree at which the sea level equation is performed for sea level changes occurring along coastlines, which shows to be important for relative sea level changes occurring along the shore. Finally, we demonstrate that ocean floor loading, self-gravitation of water and conservation of water mass are of second order importance for coseismic gravity changes. When GRACE observations are used to determine earthquake parameters such as seismic moment or source depth, the uniform ocean layer method introduces large biases, depending on the location of the rupture with respect to the continent. The same holds for interpreting shallow slip when horizontal motions are not properly accounted for in the ocean contribution. In both cases the depth at which slip occurs will be underestimated.
    Schlagwort(e): Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Digitale ISSN: 1365-246X
    Thema: Geologie und Paläontologie
    Publiziert von Oxford University Press im Namen von The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2014-09-07
    Beschreibung: Long-term volcanic subsidence provides insight into intereruptive processes, which comprise the longest portion of the eruptive cycle. Ground-based geodetic surveys of Medicine Lake Volcano (MLV), northern CA, document subsidence at rates of ~–10 mm yr –1 between 1954 and 2004. The long observation period plus the duration and stable magnitude of this signal presents an ideal opportunity to study long-term volcanic deformation, but this first requires accurate knowledge of the geometry and magnitude of the source. Best-fitting analytical source models to past levelling and GPS data sets show conflicting source parameters—primarily the model depth. To overcome this, we combine multiple tracks of InSAR data, each with a different look angle, to improve upon the spatial resolution of ground-based measurements. We compare the results from InSAR to those of past geodetic studies, extending the geodetic record to 2011 and demonstrating that subsidence at MLV continues at ~–10 mm yr –1 . Using geophysical inversions, we obtain the best-fitting analytical source model—a sill located at 9–10 km depth beneath the caldera. This model geometry is similar to those of past studies, providing a good fit to the high spatial density of InSAR measurements, while accounting for the high ratio of vertical to horizontal deformation derived from InSAR and recorded by existing levelling and GPS data sets. We discuss possible causes of subsidence and show that this model supports the hypothesis that deformation at MLV is driven by tectonic extension, gravitational loading, plus a component of volume loss at depth, most likely due to cooling and crystallization within the intrusive complex that underlies the edifice. Past InSAR surveys at MLV, and throughout the Cascades, are of variable success due to dense vegetation, snow cover and atmospheric artefacts. In this study, we demonstrate how InSAR may be successfully used in this setting by applying a suite of multitemporal analysis methods that account for atmospheric and orbital noise sources. These methods include: a stacking strategy based upon the noise characteristics of each data set; pixelwise rate-map formation (-RATE) and persistent scatterer InSAR (StaMPS).
    Schlagwort(e): Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Digitale ISSN: 1365-246X
    Thema: Geologie und Paläontologie
    Publiziert von Oxford University Press im Namen von The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2014-09-11
    Beschreibung: In the literature, the inverted coseismic slip models from seismological and geodetic data for the 2011 Tohoku-Oki earthquake portray significant discrepancies, in particular regarding the intensity and the distribution of the rupture near the trench. For a megathrust earthquake, it is difficult to discern the slip along the shallow part of the fault from the geodetic data, which are often acquired on land. In this paper, we discuss the uncertainties in the slip distribution inversion using the geodetic data for the 2011 Tohoku earthquake and the Fully Bayesian Inversion method. These uncertainties are due to the prior information regarding the boundary conditions at the edges of the fault, the dip subduction angle and the smoothing operator. Using continuous GPS data from the Japan Island, the results for the rigid and free boundary conditions show that they produce remarkably different slip distributions at shallow depths, with the latter producing a large slip exceeding 30 m near the surface. These results indicate that the smoothing operator (gradient or Laplacian schemes) does not severely affect the slip pattern. To better invert the coseismic slip, we then introduce the ocean bottom GPS (OB-GPS) data, which improve the resolution of the shallow part of the fault. We obtain a near-trench slip greater than 40 m that reaches the Earth's surface, regardless of which boundary condition is used. Additionally, we show that using a mean dip angle for the fault as derived from subduction models is adequate if the goal is to invert for the general features of the slip pattern of this megathrust event.
    Schlagwort(e): Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Digitale ISSN: 1365-246X
    Thema: Geologie und Paläontologie
    Publiziert von Oxford University Press im Namen von The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2014-10-16
    Beschreibung: Complications arise in the interpretation of gravity fields because of interference from systematic degradations, such as boundary blurring and distortion. The major sources of these degradations are the various systematic errors that inevitably occur during gravity field data acquisition, discretization and geophysical forward modelling. To address this problem, we evaluate deconvolution method that aim to detect the clear horizontal boundaries of anomalous sources by the suppression of systematic errors. A convolution-based multilayer projection model, based on the classical 3-D gravity field forward model, is innovatively derived to model the systematic error degradation. Our deconvolution algorithm is specifically designed based on this multilayer projection model, in which three types of systematic error are defined. The degradations of the different systematic errors are considered in the deconvolution algorithm. As the primary source of degradation, the convolution-based systematic error is the main object of the multilayer projection model. Both the random systematic error and the projection systematic error are shown to form an integral part of the multilayer projection model, and the mixed norm regularization method and the primal-dual optimization method are therefore employed to control these errors and stabilize the deconvolution solution. We herein analyse the parameter identification and convergence of the proposed algorithms, and synthetic and field data sets are both used to illustrate their effectiveness. Additional synthetic examples are specifically designed to analyse the effects of the projection systematic error, which is caused by the uncertainty associated with the estimation of the impulse response function.
    Schlagwort(e): Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Digitale ISSN: 1365-246X
    Thema: Geologie und Paläontologie
    Publiziert von Oxford University Press im Namen von The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2014-06-21
    Beschreibung: We propose to test if gravimetry can prove useful in discriminating different models of long-term deep crustal processes in the case of the Taiwan mountain belt. We discuss two existing tectonic models that differ in the deep processes proposed to sustain the long-term growth of the orogen. One model assumes underplating of the uppermost Eurasian crust with subduction of the deeper part of the crust into the mantle. The other one suggests the accretion of the whole Eurasian crust above crustal-scale ramps, the lower crust being accreted into the collisional orogen. We compute the temporal gravity changes caused only by long-term rock mass transfers at depth for each of them. We show that the underplating model implies a rate of gravity change of –6 x 10 –2 μGal yr –1 , a value that increases to 2 x 10 –2 μGal yr –1 if crustal subduction is neglected. If the accretion of the whole Eurasian crust occurs, a rate of 7 x 10 –2 μGal yr –1 is obtained. The two models tested differ both in signal amplitude and spatial distribution. The yearly gravity changes expected by long-term deep crustal mass processes in Taiwan are two orders of magnitude below the present-day uncertainty of land-based gravity measurements. Assuming that these annually averaged long-term gravity changes will linearly accumulate with ongoing mountain building, multidecadal time-series are needed to identify comparable rates of gravity change. However, as gravity is sensitive to any mass redistribution, effects of short-term processes such as seismicity and surface mass transfers (erosion, sedimentation, ground-water) may prevent from detecting any long-term deep signal. This study indicates that temporal gravity is not appropriate for deciphering the long-term deep crustal processes involved in the Taiwan mountain belt.
    Schlagwort(e): Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Digitale ISSN: 1365-246X
    Thema: Geologie und Paläontologie
    Publiziert von Oxford University Press im Namen von The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2014-06-21
    Beschreibung: The computation of quasi-static deformation for axisymmetric viscoelastic structures on a gravitating spherical earth is addressed using the spectral element method (SEM). A 2-D spectral element domain is defined with respect to spherical coordinates of radius and angular distance from a pole of symmetry, and 3-D viscoelastic structure is assumed to be azimuthally symmetric with respect to this pole. A point dislocation source that is periodic in azimuth is implemented with a truncated sequence of azimuthal order numbers. Viscoelasticity is limited to linear rheologies and is implemented with the correspondence principle in the Laplace transform domain. This leads to a series of decoupled 2-D problems which are solved with the SEM. Inverse Laplace transform of the independent 2-D solutions leads to the time-domain solution of the 3-D equations of quasi-static equilibrium imposed on a 2-D structure. The numerical procedure is verified through comparison with analytic solutions for finite faults embedded in a laterally homogeneous viscoelastic structure. This methodology is applicable to situations where the predominant structure varies in one horizontal direction, such as a structural contrast across (or parallel to) a long strike-slip fault.
    Schlagwort(e): Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Digitale ISSN: 1365-246X
    Thema: Geologie und Paläontologie
    Publiziert von Oxford University Press im Namen von The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...