ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (15,855)
  • FLUID MECHANICS AND HEAT TRANSFER  (8,825)
  • METEOROLOGY AND CLIMATOLOGY  (7,030)
  • 1
    Publication Date: 2004-12-03
    Description: Basic algorithms for unstructured mesh generation and fluid flow calculation are discussed. In particular the following are addressed: preliminaries of graphs and meshes; duality and data structures; basic graph operations important in CFD (Computational Fluid Dynamics); triangulation methods, including Varonoi diagrams and Delaunay triangulation; maximum principle analysis; finite volume schemes for scalar conservation law equations; finite volume schemes for the Euler and Navier-Stokes equations; and convergence acceleration for steady state calculations.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: VKI, Computational Fluid Dynamics, Volume 1; 141 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-12-09
    Description: Transient solutions were obtained for a square region of heat conducting semitransparent material cooling by thermal radiation. The region is in a vacuum environment, so energy is dissipated only by radiation from within the medium leaving through its boundaries. The effect of heat conduction during the transient is to partially equalize the internal temperature distribution. As the optical thickness of the region is increased, the temperature gradients increase near the boundaries and corners, unless heat conduction is large. The solution procedure must provide accurate temperature distributions in these regions to prevent error in the calculated radiation losses. Two-dimensional numerical Gaussian integration is used to obtain the local radiative source term. A finite difference procedure with variable space and time increments is used to solve the transient energy equation. Variable spacing was used to concentrate grid points in regions with large temperature gradients.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: International Journal of Heat and Mass Transfer (ISSN 0017-9310); 35; 10; p. 2579-2592.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: A preliminary comparison of the GEOS-1 (Goddard Earth Observing System) data assimilation system convective cloud mass fluxes with fluxes from a cloud-resolving model (the Goddard Cumulus Ensemble Model, GCE) is reported. A squall line case study (10-11 June 1985 Oklahoma PRESTORM episode) is the basis of the comparison. Regional (central U. S.) monthly total convective mass flux for June 1985 from GEOS-1 compares favorably with estimates from a statistical/dynamical approach using GCE simulations and satellite-derived cloud observations. The GEOS-1 convective mass fluxes produce reasonable estimates of monthly-averaged regional convective venting of CO from the boundary layer at least in an urban-influenced continental region, suggesting that they can be used in tracer transport simulations.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Geophysical Research Letters (ISSN 0094-8276); 22; 9; p. 1089-1092
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: Solar variability is examined in search of implications for global change. The topics covered include the following: solar variation modification of global surface temperature; the significance of solar variability with respect to future climate change; and methods of reducing the uncertainty of the potential amplitude of solar variability on longer time scales.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: EOS (ISSN 0096-3941); 75; 1; p. 1, 5-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: We study the onset of a pure Marangoni convection in a liquid layer with two deformable interfaces in the no-gravity environment. Both oscillatory and stationary instabilities are considered for a wide range of parameters. It is shown that only stationary instability is possible when surface tension at the colder interface is lower than that at the hotter one. Oscillatory instability tends to disappear and to be replaced by the stationary instability with increase of the Prandtl number and decrease of surface tension at the colder interface.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Advances in Space Research (ISSN 0273-1177); 16; 7; p. (7)83-(7)86
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-24
    Description: It is shown that to satisfy the general accepted compressible law of the wall derived from the Van Driest transformation, turbulence modeling coefficients must actually be functions of density gradients. The transformed velocity profiles obtained by using standard turbulence model constants have too small a value of the effective von Karman constant kappa in the log-law region (inner layer). Thus, if the model is otherwise accurate, the wake component is overpredicted and the predicted skin friction is lower than the expected value.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA Journal (ISSN 0001-1452); 32; 4; p. 735-740
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-24
    Description: The U.S. upper Midwest was subjected to severe flooding during the summer of 1993. Heavy rainfall in the Mississippi River basin from April through July caused flooding on many Midwest rivers, including the Mississippi, Illinois, Missouri, and Kansas Rivers. The flood crest of 15.1 m at St. Louis, Missouri, on 1 August 1993 was the highest ever measured, surpassing the previous record of 13.2 m set on 28 April 1973. Damage estimates include at least 47 flood-related deaths and a total damage cost of $12 billion. Remotely sensed imagery of severe flooding in the U.S. Midwest was obtained under cloud-free skies on 29 July 1993 by the MODIS (Moderate Resolution Imaging Spectroradiometer) Airborne Simulator (MAS). The MAS is a newly developed scanning spectrometer with 50 spectral bands in the wavelength range 0.55-14.3 micrometers. Estimation of the total flooded area in the MAS scene acquired near St. Louis was accomplished by comparing the MAS scene to a Landsat-5 thematic mapper (TM) scene of the same area acquired on 14 April 1984 in nonflood conditions. For comparison, the MAS band centered at 0.94 micrometers and the TM band centered at 1.65 micrometers were selected because of the high contrast seen in these bands between land and water-covered surfaces. An estimate of the area covered by water in the MAS and TM scenes was obtained by developing land/water brightness thresholds from histograms of the MAS and TM digital image data. Afetr applying the thresholds, the difference between the area covered by water in the MAS and TM scenes, and hence the flooded area in the MAS scene, was found to be about 396 sq km, or about 153 square miles.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: American Meteorological Society, Bulletin (ISSN 0003-0007); 76; 6; p. 933-943
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-24
    Description: Shortwave radiative fluxes that reach the earth's surface are key factors that influence atmospheric and oceanic circulations as well as surface climate. Yet, information on these fluxes is meager. Surface site data are generally available from only a limited number of observing stations over land. Much less is known about the large-scale variability of the shortwave radiative fluxes over the oceans, which cover most of the globe. Recognizing the need to produce global-scale fields of such fluxes for use in climate research, the World Climate Research Program has initiated activities that led to the establishment of the Surface Radiation Budget Climatology Project with the ultimate goal to determine various components of the surface radiation budget from satellite data. In this paper, the first global products that resulted from this activity are described. Monthly and daily data on a 280-km grid scale are available. Samples of climate parameters obtainable from the dataset are presented. Emphasis is given to validation and limitations of the results. For most of the globe, satellite estimates have bias values between +/- 20 W/sq m and root mean square (rms) values are around 25 W/sq m. There are specific regions with much larger uncertainties however.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: American Meteorological Society, Bulletin (ISSN 0003-0007); 76; 6; p. 905-922
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-24
    Description: The deployment of a space-based Doppler lidar would provide information that is fundamental to advancing the understanding and prediction of weather and climate. This paper reviews the concepts of wind measurement by Doppler lidar, highlights the results of some observing system simulation experiments with lidar winds, and discusses the important advances in earth system science anticipated with lidar winds. Observing system simulation experiments, conducted using two different general circulation models, have shown (1) that there is a significant improvement in the forecast accuracy over the Southern Hemisphere and tropical oceans resulting from the assimilation of simulated satellite wind data, and (2) that wind data are significantly more effective than temperature or moisture data in controlling analysis error. Because accurate wind observations are currently almost entirely unavailable for the vast majority of tropical cyclones worldwide, lidar winds have the potential to substan- tially improve tropical cyclone forecasts. Similarly, to improve water vapor flux divergence calculations, a direct measure of the ageostrophic wind is needed since the present level of uncer- tainty cannot be reduced with better temperature and moisture soundings alone.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: American Meteorological Society, Bulletin (ISSN 0003-0007); 76; 6; p. 869-888
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-24
    Description: The 'satellite-gauge model' (SGM) technique is described for combining precipitation estimates from microwave satellite data, infrared satellite data, rain gauge analyses, and numerical weather prediction models into improved estimates of global precipitation. Throughout, monthly estimates on a 2.5 degrees x 2.5 degrees lat-long grid are employed. First, a multisatellite product is developed using a combination of low-orbit microwave and geosynchronous-orbit infrared data in the latitude range 40 degrees N - 40 degrees S (the adjusted geosynchronous precipitation index) and low-orbit microwave data alone at higher latitudes. Then the rain gauge analysis is brougth in, weighting each field by its inverse relative error variance to produce a nearly global, observationally based precipitation estimate. To produce a complete global estimate, the numerical model results are used to fill data voids in the combined satellite-gauge estimate. Our sequential approach to combining estimates allows a user to select the multisatellite estimate, the satellite-gauge estimate, or the full SGM estimate (observationally based estimates plus the model information). The primary limitation in the method is imperfections in the estimation of relative error for the individual fields. The SGM results for one year of data (July 1987 to June 1988) show important differences from the individual estimates, including model estimates as well as climatological estimates. In general, the SGM results are drier in the subtropics than the model and climatological results, reflecting the relatively dry microwave estimates that dominate the SGM in oceanic regions.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Climate (ISSN 0894-8755); 8; 5, pt; p. 1284-1295
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...