ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-07-17
    Description: According to general relativity, a clock experiencing a shift in the gravitational potential U will measure a frequency change given by f / f    U / c 2 . The best clocks are optical clocks. After about 7 hr of integration they reach stabilities of f / f  ~ 10 –18 and can be used to detect changes in the gravitational potential that correspond to vertical displacements of the centimetre level. At this level of performance, ground-based atomic clock networks emerge as a tool that is complementary to existing technology for monitoring a wide range of geophysical processes by directly measuring changes in the gravitational potential. Vertical changes of the clock's position due to magmatic, post-seismic or tidal deformations can result in measurable variations in the clock tick rate. We illustrate the geopotential change arising due to an inflating magma chamber using the Mogi model and apply it to the Etna volcano. Its effect on an observer on the Earth's surface can be divided into two different terms: one purely due to uplift (free-air gradient) and one due to the redistribution of matter. Thus, with the centimetre-level precision of current clocks it is already possible to monitor volcanoes. The matter redistribution term is estimated to be 3 orders of magnitude smaller than the uplift term. Additionally, clocks can be compared over distances of thousands of kilometres over short periods of time, which improves our ability to monitor periodic effects with long wavelength like the solid Earth tide.
    Keywords: Express Letters, Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-05-31
    Description: Geodetic vertical velocities derived from data as short as 3 yr are often assumed to be representative of linear deformation over past decades to millennia. We use two decades of surface loading deformation predictions due to variations of atmospheric, oceanic and continental water mass to assess the effect on secular velocities estimated from short time-series. The interannual deformation is time-correlated at most locations over the globe, with the level of correlation depending mostly on the chosen continental water model. Using the most conservative loading model and 5-yr-long time-series, we found median vertical velocity errors of 0.5 mm yr –1 over the continents (0.3 mm yr –1 globally), exceeding 1 mm yr –1 in regions around the southern Tropic. Horizontal velocity errors were seven times smaller. Unless an accurate loading model is available, a decade of continuous data is required in these regions to mitigate the impact of the interannual loading deformation on secular velocities.
    Keywords: Express Letters, Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-09-20
    Description: Secular motion of Earth's rotation pole results in large-scale secular deformation of Earth. Here, we investigate the magnitude of the deformation that has resulted from the rapid motion of the rotation pole to the east since ~2005. We show that geodetic (GNSS, DORIS, VLBI and SLR) estimates of vertical velocity since ~2005 have been biased by up to ±0.38 mm yr –1 relative to the longer-term deformation pattern. The largest signals occur within regions that include the U.S. Pacific Coast, Europe and South Pacific islands where geodetic measurements provide essential measurements of tide-gauge vertical movement and important constraints on models of glacial isostatic adjustment. Consequently, geodetic vertical velocities based on recent data should not be interpreted as being identical to centennial or longer term vertical land movement. Since 2010 the effect is further amplified by the overprediction of the IERS polar motion model relative to the ongoing secular change in pole position—during this time geodetic vertical velocities based on the IERS pole tide model are not just biased relative to the long-term rates but also from actual post-2010 Earth deformation. For geophysical or reference frame studies seeking geodetic vertical velocities that are representative of decadal timescales, where interannual variation is considered noise, the correction for this non-linear effect is straightforward, requiring an elastic computation using a reference rate of polar motion that is linear over the timescales of interest.
    Keywords: Express Letters, Gravity, Geodesy and Tides
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...