ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-12-13
    Description: We present two-dimensional numerical simulations for shortening a viscoelastoplastic lithosphere to quantify the impact of elasticity on strain localization due to thermal softening. The model conserves energy and mechanical work is converted into heat or stored as elastic strain energy. For a shear modulus G = 10 10 Pa, a prominent lithospheric shear zone forms and elastic energy release increases the localization intensity (strain rate amplification). For G = 5 x 10 10 Pa shear zones still form but deformation is less localized. For G = 10 12 Pa, the lithosphere behaves effectively viscoplastic and no shear zones form during homogeneous thickening. Maximal shearing-related increase of surface heat flux is 15–25 mW m –2 and of temperature at lower crustal depth is ~150 °C, whereby these peak values are transient (0.1–1 My). Elasticity and related energy release can significantly contribute to strain localization and plate-like behaviour of the lithosphere required for plate tectonics.
    Keywords: Express Letters, Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-11-25
    Description: Geodetic measurements of Antarctic solid Earth deformation include signals from plate rotation and glacial isostatic adjustment (GIA). Through simulation, we investigate the degree to which these signals are separable within horizontal GPS site velocities that commonly define plate rotation estimates and that promise new constraints on models of GIA. Using a suite of GIA model predictions that incorporate both 1-D and 3-D Earth rheologies, we show that, given the present location of GPS sites within East Antarctica, unmodelled or mismodelled GIA signal within GPS velocities produces biased estimates of plate rotation. When biased plate rotation is removed from the GPS velocities, errors as large as 0.8 mm yr –1 are introduced; a value commonly larger than the predicted GIA signal magnitude. In the absence of reliable forward models of plate rotation or GIA then Antarctic geodetic velocities cannot totally and unambiguously constrain either process, especially GIA.
    Keywords: Express Letters, Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-09-18
    Description: We map the complete surface deformation of 2015 M w 7.8 Gorkha Nepal earthquake and its M w 7.3 aftershock with two parallel ALOS2 descending ScanSAR paths’ and two ascending Stripmap paths’ images. The coseismic fault-slip model from a combined inversion of InSAR and GPS data reveals that this event is a reverse fault motion, with a slight right-lateral strike-slip component. The maximum thrust-slip and right-lateral strike-slip values are 5.7 and 1.2 m, respectively, located at a depth of 7–15 km, southeast to the epicentre. The total seismic moment 7.55 x 10 20 Nm, corresponding to a moment magnitude M w 7.89, is similar to the seismological estimates. Fault slips of both the main shock and the largest aftershock are absent from the upper thrust shallower than 7 km, indicating that there is a locking lower edge of Himalayan Main Frontal Thrust and future seismic disaster is not unexpected in this area. We also find that the energy released in this earthquake is much less than the accumulated moment deficit over the past seven centuries estimated in previous studies, so the region surrounding Kathmandu is still under the threaten of seismic hazards.
    Keywords: Express Letters, Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-04-16
    Description: Recent evidence suggests that a portion of the Canary plume travelled northeastwards below the lithosphere of the Atlas Mountains in North Africa towards the Alboran domain and was captured ~10 Ma ago by the Gibraltar subduction system in the Western Mediterranean. The capture would have been associated with the mantle return flow induced by the westward-retreating slab that would have dragged and trapped a portion of the plume material in the mantle wedge of the Gibraltar subduction zone. Such material eventually contaminated the subduction related volcanism in the Alboran region. In this work, we use scaled analogue models of slab–plume interaction to investigate the plausibility of the plume capture. An upper-mantle-scaled model combines a narrow (400 km) edge-fixed subduction plate with a laterally offset compositional plume. The subduction dominated by slab rollback and toroidal mantle flow is seen to increasingly impact on the plume dynamics as the area of influence of the toroidal flow cells at the surface is up to 500 x 1350 km 2 . While the plume head initially spreads axisymmetrically, it starts being distorted parallel to the plate in the direction of the trench as the slab trench approaches the plume edge at a separation distance of about 500 km, before getting dragged towards mantle wedge. When applied to the Canary plume–Gibraltar subduction system, our model supports the observationally based conceptual model that mantle plume material may have been dragged towards the mantle wedge by slab rollback-induced toroidal mantle flow. Using a scaling argument for the spreading of a gravity current within a channel, we also show that more than 1500 km of plume propagation in the sublithospheric Atlas corridor is dynamically plausible.
    Keywords: Express Letters, Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-02-27
    Description: On December 4, 2007, a three million cubic metres landslide impacted Chehalis Lake, 80 km east of Vancouver, Canada. The failed mass rushed into the lake and parented a tsunami that ran up 38 m on the opposite shore, destroyed trees, roads and campsite facilities. Armed with field surveys and multihigh-tech observations from SONAR, LiDAR and orthophotographs, we apply the newly developed ‘Tsunami Squares’ method to simulate the Chehalis Lake landslide and its generated tsunami. The landslide simulation shows a progressive failure, flow speeds up to ~60 m s –1 , and a slide mass stoppage with uniform repose angle on the lakebed. Tsunami products suggest that landslide velocity and spatial scale influence the initial wave size, while wave energy decay and inundation heights are affected by a combination of distance to the landslide, bathymetry and shoreline orientation relative to the wave direction.
    Keywords: Express Letters, Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-11-09
    Description: An intraplate slow earthquake was detected in northernmost Hokkaido, Japan, by a dense network of the global navigation satellite system. Transient abnormal acceleration of 〈12 mm was observed during the period 2012 July to 2013 January (~5.5 months) at several sites. The spatial displacement distribution suggests that a localized tectonic event caused localized deformation. Estimated fault parameter indicates very shallow-dip reverse faulting in the uppermost crust, with a total seismic moment of 1.75E + 17 N m ( M w 5.4). This fault geometry is probably consistent with detachment structure indicated by geological studies. A simultaneous earthquake swarm with the maximum magnitude M 4.1 suggests a possibility that the slow slip triggered the seismic activity for unknown reasons. This slow earthquake is slower than its moment would indicate, with a duration–magnitude scaling relationship unlike either regular earthquakes or subduction slow slip events. This result indicates that even if the area is under different physical property from subduction zones, slow earthquake can occur by some causes. Slow earthquakes exist in remote regions away from subduction zones and might play an important role in strain release and tectonic activity.
    Keywords: Express Letters, Geodynamics and Tectonics
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...