ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Environment Pollution  (233)
  • Deutschland
  • 1995-1999  (233)
  • 1999  (233)
  • 1
    Publication Date: 2011-08-24
    Description: The Mayak Production Association was the first Russian site for the production and separation of plutonium. The extensive increase in plutonium production during 1948-1955, as well as the absence of reliable waste-management technology, resulted in significant releases of liquid radioactive effluent into the rather small Techa River. This resulted in chronic external and internal exposure of about 30,000 residents of riverside communities; these residents form the cohort of an epidemiologic investigation. Analysis of the available historical monitoring data indicates that the following reliable data sets can be used for reconstruction of doses received during the early periods of operation of the Mayak Production Association: Temporal pattern of specific beta activity of river water for several sites in the upper Techa region since July 1951; average annual values of specific beta activity of river water and bottom sediments as a function of downstream distance for the whole river since 1951; external gamma-exposure rates near the shoreline as a function of downstream distance for the whole Techa River since 1952; and external gamma-exposure rate as a function of distance from the shoreline for several sites in the upper and middle Techa since 1951.
    Keywords: Environment Pollution
    Type: Health physics (ISSN 0017-9078); Volume 76; 6; 605-18
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: The Techa River (Southern Urals, Russia) was contaminated in 1949-1956 by liquid radioactive wastes from the Mayak complex, the first Russian facility for the production of plutonium. The measurements of environmental contamination were started in 1951. A simple model describing radionuclide transport along the free-flowing river and the accumulation of radionuclides by bottom sediments is presented. This model successfully correlates the rates of radionuclide releases as reconstructed by the Mayak experts, hydrological data, and available environmental monitoring data for the early period of contamination (1949-1951). The model was developed to reconstruct doses for people who lived in the riverside communities during the period of the releases and who were chronically exposed to external and internal irradiation. The model fills the data gaps and permits reconstruction of external gamma-exposure rates in air on the river bank and radionuclide concentrations in river water used for drinking and other household needs in 1949-1951.
    Keywords: Environment Pollution
    Type: Health physics (ISSN 0017-9078); Volume 77; 2; 142-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: This presentation discusses the problem of local air quality as it is affected by modern aircraft engine exhaust and the objective of this workshop. It begins with a discussion on the nature and sources of particulates and aerosols. The problems, and the technical considerations of how to regulate the aircraft emissions, are reviewed. There is no local (i.e., state or county) regulations of the aircraft operations. Amongst the conclusions are: (1) there is an inadequate database of information regarding the emittants from aircrafts. (2) That data which does exist represents older engines and aircraft, it is not representative of the advanced and future fleet.
    Keywords: Environment Pollution
    Type: Workshop on Aerosols and Particulates from Aircraft Gas Turbine Engines; 21-44; NASA/CP-1999-208918
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: The assignments and charges to the three workgroups are discussed. The three workgroups were: (1) Trace Chemistry, (2) Instrumentation, (3) Venues and procedures.
    Keywords: Environment Pollution
    Type: Workshop on Aerosols and Particulates from Aircraft Gas Turbine Engines; 163-176; NASA/CP-1999-208918
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-12-03
    Description: We presented results from the SASS Near-Field Interactions Flight (SNIF-III) Experiment which was conducted during May and June 1997 in collaboration with the Vermont and New Jersey Air National Guard Units. The project objectives were to quantify the fraction of fuel sulfur converted to S(VI) species by jet engines and to gain a better understanding of particle formation and growth processes within aircraft wakes. Size and volatility segregated aerosol measurements along with sulfur species measurements were recorded in the exhaust of F-16 aircraft equipped with F-100 engines burning fuels with a range of fuel S concentrations at different altitudes and engine power settings. A total of 10 missions were flown in which F-16 exhaust plumes were sampled by an instrumented T-39 Sabreliner aircraft. On six of the flights, measurements were obtained behind the same two aircraft, one burning standard JP-8 fuel and the other either approximately 28 ppm or 1100 ppm S fuel or an equal mixture of the two (approximately 560 ppm S). A pair of flights was conducted for each fuel mixture, one at 30,000 ft altitude and the other starting at 35,000 ft and climbing to higher altitudes if contrail conditions were not encountered at the initial flight level. In each flight, the F-16s were operated at two power settings, approx. 80% and full military power. Exhaust emissions were sampled behind both aircraft at each flight level, power setting, and fuel S concentration at an initial aircraft separation of 30 m, gradually widening to about 3 km. Analyses of the aerosol data in the cases where fuel S was varied suggest results were consistent with observations from project SUCCESS, i.e., a significant fraction of the fuel S was oxidized to form S(VI) species and volatile particle emission indices (EIs) in comparably aged plumes exhibited a nonlinear dependence upon the fuel S concentration. For the high sulfur fuel, volatile particle EIs in 10-second-old-plumes were 2 to 3 x 10 (exp 17) / kg of fuel burned and exhibited no obvious trend with engine power setting or flight altitude. In contrast, about 8-fold fewer particles were observed in similarly aged plumes from the same aircraft burning fuel with 560 ppm S content and EIs of 1 x 10(exp 15)/ kg of fuel burned were observed in the 28 ppm S fuel case. Moreover, data recorded as a function of plume age indicates that formation and growth of the volatile particles proceeds more slowly as the fuel S level is reduced. For example, ultrafine particle concentrations appear to stabilize within 5 seconds after emission in the 1100 ppm S cases but are still increasing in 20-second old plumes produced from burning the 560 ppm S fuel.
    Keywords: Environment Pollution
    Type: Workshop on Aerosols and Particulates from Aircraft Gas Turbine Engines; 83-100; NASA/CP-1999-208918
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-12-03
    Description: The overall focus of our research is to document long-term elevation change of the Greenland ice sheet using satellite altimeter data. In addition, we are investigating seasonal and interannual variations in the ice-sheet elevations to place the long-term measurements in context. Specific objectives of this research include: 1) Developing new techniques to significantly improve the accuracy of elevation-change estimates derived from satellite altimetry. 2) Measuring the elevation change of the Greenland ice sheet over a 10-year time period using Seasat (1978) and Geosat GM (1985-86) and Geosat ERM (1986-88) altimeter data. 3) Quantifying seasonal/interannual variations in the elevation-change estimates using the continuous time series of surface elevations from the Geosat GM and ERM datasets. 4) Extending the long-term elevation change analysis to two decades by incorporating data from the ERS-1/2 missions (1991-99) and, if available, the Geosat-Follow On (GFO) mission (1998-??).
    Keywords: Environment Pollution
    Type: Program for Arctic Regional Climate Assessment (PARCA); 6-11; NASA/TM-1999-209205
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-12-03
    Description: The Second Workshop on Stratospheric Models and Measurements Workshop (M&M II) is the continuation of the effort previously started in the first Workshop (M&M I, Prather and Remsberg [1993]) held in 1992. As originally stated, the aim of M&M is to provide a foundation for establishing the credibility of stratospheric models used in environmental assessments of the ozone response to chlorofluorocarbons, aircraft emissions, and other climate-chemistry interactions. To accomplish this, a set of measurements of the present day atmosphere was selected. The intent was that successful simulations of the set of measurements should become the prerequisite for the acceptance of these models as having a reliable prediction for future ozone behavior. This section is divided into two: model experiment and model descriptions. In the model experiment, participant were given the charge to design a number of experiments that would use observations to test whether models are using the correct mechanisms to simulate the distributions of ozone and other trace gases in the atmosphere. The purpose is closely tied to the needs to reduce the uncertainties in the model predicted responses of stratospheric ozone to perturbations. The specifications for the experiments were sent out to the modeling community in June 1997. Twenty eight modeling groups responded to the requests for input. The first part of this section discusses the different modeling group, along with the experiments performed. Part two of this section, gives brief descriptions of each model as provided by the individual modeling groups.
    Keywords: Environment Pollution
    Type: Models and Measurements Intercomparison 2; 10-109; NASA/TM-1999-209554
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-12-03
    Description: Solid (soot) and liquid (presumed sulfate) particle emissions from aircraft engines may have serious impacts on the atmosphere. While the direct radiative impact of these particles is expected to be small relative to those from natural sources (Atmospheric Effects of Subsonic Aircraft: Interim Assessment of the Advanced Subsonic Technology Program, NASA Ref. Pub. 1400, 1997), their indirect effects on atmospheric chemistry and cloud formation may have a significant impact. The potential impacts of primary concern are the increase of sulfate surface area and accelerated heterogeneous chemical reactions, and the potential for either modified soot or sulfate particles to serve as cloud nuclei which would change the frequency or radiative characteristics of clouds. Volatile (sulfate) particle concentrations measured behind the Concorde aircraft in flight in the stratosphere were much higher than expected from near-field model calculations of particle formation and growth. Global model calculations constrained by these data calculate a greater level of stratospheric ozone depletion from the proposed High speed Civil Transport (HSCT) fleet than those without particle emission. Soot particles have also been proposed as important in heterogeneous chemistry but this remains to be substantiated. Aircraft volatile particle production in the troposphere has been shown by measurements to depend strongly on fuel sulfur content. Sulfate particles of sufficient size are known to provide a good nucleating surface for cloud growth. Although pure carbon soot is hydrophobic, the solid particle surface may incorporate more suitable nucleating sites. The non-volatile (soot) particles also tend to occupy the large end of aircraft particle size spectra. Quantitative connection between aircraft particle emissions and cloud modification has not been established yet, however, even small changes in cloud amount or properties could have a significant effect on the radiative balance of the atmosphere.
    Keywords: Environment Pollution
    Type: Workshop on Aerosols and Particulates from Aircraft Gas Turbine Engines; 55-60; NASA/CP-1999-208918
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: The objectives of this work are to measure the ice discharge of the Greenland Ice Sheet close to the grounding line and/or calving front, and compare the results with mass accumulation and ablation in the interior to estimate the ice sheet mass balance.
    Keywords: Environment Pollution
    Type: Program for Arctic Regional Climate Assessment (PARCA); 12-15; NASA/TM-1999-209205
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: The primary role of models in the assessment process is to predict changes to ozone. It is crucial therefore that the ability of the models to reproduce the actual distribution of ozone be tested. Historically, maps of the ozone column (latitude by month) have been used for this purpose. In MM I a climatology was developed for the vertical distribution of ozone for 15-60 km, based on SBUV data for 1979-80. SBUV profiles are reported with vertical resolution of approx. 5 km, but the true resolution is lower, approx. 8 km above the ozone maximum and approx. 15 km for 10-25 km. The climatology was considered valid to about 20-30% at 20 km and to 50% at 15 km. Comparisons were made with models in mixing ratio (ppm), which emphasizes the middle and upper stratosphere. A new ozone climatology was developed for the vertical distribution of ozone for MM II. Our goal was to develop a product that could be used to evaluate models in the lower stratosphere, the region where most of the ozone column resides and where most of the ozone loss is occurring, as well as the middle and upper stratosphere.
    Keywords: Environment Pollution
    Type: Models and Measurements Intercomparison 2; 307-362; NASA/TM-1999-209554
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2004-12-03
    Description: The Sampling Procedures and Venues Workgroup discussed the potential venues available and issues associated with obtaining measurements. Some of the issues included Incoming Air Quality, Sampling Locations, Probes and Sample Systems. The following is a summary of the discussion of the issues and venues. The influence of inlet air to the measurement of exhaust species, especially trace chemical species, must be considered. Analysis procedures for current engine exhaust emissions regulatory measurements require adjustments for air inlet humidity. As a matter of course in scientific investigations, it is recommended that "background" measurements for any species, particulate or chemical, be performed during inlet air flow before initiation of combustion, if possible, and during the engine test period as feasible and practical. For current regulatory measurements, this would be equivalent to setting the "zero" level for conventional gas analyzers. As a minimum, it is recommended that measurements of the humidity and particulates in the incoming air be taken at the start and end of each test run. Additional measurement points taken during the run are desirable if they can be practically obtained. It was felt that the presence of trace gases in the incoming air is not a significant problem. However, investigators should consider the ambient levels and influences of local air pollution for species of interest. Desired measurement locations depend upon the investigation requirements. A complete investigation of phenomenology of particulate formation and growth requires measurements at a number of locations both within the engine and in the exhaust field downstream of the nozzle exit plane. Desirable locations for both extractive and in situ measurements include: (1) Combustion Zone (Multiple axial locations); (2) Combustor Exit (Multiple radial locations for annular combustors); (3) Turbine Stage (Inlet and exit of the stage); (4) Exit Nozzle (Multiple axial locations downstream of the nozzle). Actual locations with potential for extractive or non-intrusive measurements depend upon the test article and test configuration. Committee members expressed the importance of making investigators aware of various ports that could allow access to various stages of the existing engines. Port locations are engine si)ecific and might allow extractive sampling or innovative hybrid optical-probe access. The turbine stage region was one the most desirable locations for obtaining samples and might be accessed through boroscope ports available in some engine designs. Discussions of probes and sampling systems quickly identified issues dependent on particular measurement quantities. With general consensus, the group recommends SAE procedures for measurements and data analyses of currently regulated exhaust species (CO2, CO, THC, NO(x),) using conventional gas sampling techniques. Special procedures following sound scientific practices must be developed as required for species and/or measurement conditions not covered by SAE standards. Several issues arose concerning short lived radicals and highly reactive species. For conventional sampling, there are concerns of perturbing the sample during extraction, line losses, line-wall reactions, and chemical reactions during the sample transport to the analyzers. Sample lines coated with quartz.or other materials should be investigated for minimization of such effects. The group advocates the development of innovative probe techniques and non-intrusive optical techniques for measurement of short lived radicals and highly reactive species that cannot be sampled accurately otherwise. Two innovative probe concepts were discussed. One concept uses specially designed probes to transfer optical beams to and from a region of flow inaccessible by traditional ports or windows. The probe can perturb the flow field but must have a negligible impact on the region to be optically sampled. Such probes are referred to as hybrid probes and are under development at AEDC for measurement in the high pressure, high temperature of a combustor under development for power generation. The other concept consists of coupling an instrument directly to the probe. The probe would isolate a representative sample stream, freeze chemical reactions and direct the sample into the analyzer portion of the probe. Thus, the measurement would be performed in situ without sample line losses due either to reactions or binding at the wall surfaces. This concept was used to develop a fast, in situ, time-of-flight mass spectrometer measurement system for temporal quantification of NO in the IMPULSE facility at AEDC. Additional work is required in this area to determine the best probe and sampling technique for each species measurement requirement identified by the Trace Chemistry Working Group. A partial list of Venues was used as a baseline for discussion. Additional venues were added to the list and the list was broken out into the following categories: (1)Engines (a) Sea Level Test Stands (b) Altitude Chambers; (2) Annular Combustor Test Stands, (3) Sector Flametube Test Stands, (4) Fundamentals Rigs/Experiments.
    Keywords: Environment Pollution
    Type: Workshop on Aerosols and Particulates from Aircraft Gas Turbine Engines; 187-237; NASA/CP-1999-208918
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: Although the importance of aerosols and their precursors are now well recognized, the characterization of current subsonic engines for these emissions is far from complete. Furthermore, since the relationship of engine operating parameters to aerosol emissions is not known, extrapolation to untested and unbuilt engines necessarily remains highly uncertain. 1997 NASA LaRC engine test, as well as the parallel 1997 NASA LaRC flight measurement, attempts to address both issues by expanding measurements of aerosols and aerosol precursors with fuels containing different levels of fuel sulfur content. The specific objective of the 1997 engine test is to obtain a database of sulfur oxides emissions as well as the non-volatile particulate emission properties as a function of fuel sulfur and engine operating conditions. Four diagnostic systems, extractive and non-intrusive (optical), will be assembled for the gaseous and particulate emissions characterization measurements study. NASA is responsible for the extractive gaseous emissions measurement system which contains an array of analyzers dedicated to examining the concentrations of specific gases (NO, NO(x), CO, CO2, O2, THC, SO2) and the smoke number. University of Missouri-Rolla uses the Mobile Aerosol Sampling System to measure aerosol/particulate total concentration, size distribution, volatility and hydration property. Air Force Research Laboratory uses the Chemical Ionization Mass Spectrometer to measure SO2, SO3/H2SO4, and HN03 Aerodyne Research, Inc. uses Infrared Tunable Diode Laser system to measure SO2, SO3, NO, H2O, and CO2.
    Keywords: Environment Pollution
    Type: Workshop on Aerosols and Particulates from Aircraft Gas Turbine Engines; 123-134; NASA/CP-1999-208918
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: The goals of the trace chemistry group were to identify the processes relevant to aerosol and aerosol precursor formation occurring within aircraft gas turbine engines; that is, within the combustor, turbine, and nozzle. The topics of discussion focused on whether the chemistry of aerosol formation is homogeneous or heterogeneous; what species are important for aerosol and aerosol precursor formation; what modeling/theoretical activities to pursue; what experiments to carry out that both support modeling activities and elucidate fundamental processes; and the role of particulates in aerosol and aerosol precursor formation. The consensus of the group was that attention should be focused on SO2, SO3, and aerosols. Of immediate concern is the measurement of the concentration of the species SO3, SO2, H2SO4 OH, HO2, H2O2, O, NO, NO2, HONO, HNO3, CO, and CO2 and particulates in various engines, both those currently in use and those in development. The recommendation was that concentration measurements should be made at both the combustor exit and the engine exit. At each location the above species were classified into one of four categories of decreasing importance, Priority I through IV, as follows: Combustor exit: Priority I species - SO3:SO2 ratio, SO3, SO2, and particulates; Priority II species: OH and O; Priority III species - NO and NO2; and Priority IV species - CO and CO2. For the Engine exit: Priority I species - SO3:SO2 ratio, SO3, SO2,H2SO4, and particulates; Priority II species: OH,HO2, H2O2, and O; Priority III species - NO, NO2, HONO, and HNO3; and Priority IV species - CO and CO2. Table I summarizes the anticipated concentration range of each of these species. For particulate matter, the quantities of interest are the number density, size distribution, and composition. In order to provide data for validating multidimensional reacting flow models, it would be desirable to make 2-D, time-resolved measurements of the concentrations of the above species and, in addition, of the pressure, temperature, and velocity. A near term goal of the experimental program should be to confirm the nonlinear effects of sulfur speciation, and if present, to provide an explanation for them. It is also desirable to examine if the particulate matter retains any sulfur. The recommendation is to examine the effects on SOx production of variations in fuel-bound sulfur and aromatic content (which may affect the amount of particulates formed). These experiments should help us to understand if there is a coupling between particulate formation and SO, concentration. Similarly, any coupling with NOx can be examined either by introducing NOx into the combustion air or by using fuel-bound nitrogen. Also of immediate urgency is the need to establish and validate a detailed mechanism for sulfur oxidation/aerosol formation, whose chemistry is concluded to be homogeneous, because there is not enough surface area for heterogeneous effects. It is envisaged that this work will involve both experimental and theoretical programs. The experimental work will require, in addition to the measurements described above, fundamental studies in devices such as flow reactors and shock tubes. Complementing this effort should be modeling and theoretical activities. One impediment to the successful modeling of sulfur oxidation is the lack of reliable data for thermodynamic and transport properties for several species, such as aqueous nitric acid, sulfur oxides, and sulfuric acid. Quantum mechanical calculations are recommended as a convenient means of deriving values for these properties. Such calculations would also help establish rate constants for several important reactions for which experimental measurements are inherently fraught with uncertainty. Efforts to implement sufficiently detailed chemistry into computational fluid dynamic codes should be continued. Zero- and one-dimensional flow models are also useful vehicles for elucidating the minimal set of species and reactions that must be included in two- and three-dimensional modeling studies.
    Keywords: Environment Pollution
    Type: Workshop on Aerosols and Particulates from Aircraft Gas Turbine Engines; 177-178; NASA/CP-1999-208918
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2004-12-03
    Description: This paper reviews the relationships of the programs and projects and reviews the purpose of the Engine Exhaust Trace Chemistry (EETC) Committee. The charges of the Committee are: (1) to prioritize the engine trace constituents for assessing impacts of aircraft; (2) Assess both extractive and insitu measurement techniques; and (3) Determine the best venues for performing the necessary measurements. A synopsis of evidence supporting and questions concerning the role(s) of aerosol/particulates was presented. The presentation also reviewed how sulfur oxidation kinetics interactions in the hot-section and nozzle play a role in the formation of aerosol precursors. The objective of the workshop, and its organization is reviewed.
    Keywords: Environment Pollution
    Type: Workshop on Aerosols and Particulates from Aircraft Gas Turbine Engines; 5-19; NASA/CP-1999-208918
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2011-08-23
    Description: Analyses of satellite, ground-based, and balloon measurements allow updated estimates of trends in the vertical profile of ozone since 1979. The results show overall consistency among several independent measurement systems, particularly for northern hemisphere midlatitudes where most balloon and ground-based measurements are made. Combined trend estimates over these latitudes for the period 1979-96 show statistically significant negative trends at ail attitudes between 10 and 45 km, with two local extremes: -7.4 +/- 2.0% per decade at 40 km and -7.3 +/- 4.6% per decade at 15 km attitude. There is a strong seasonal variation in trends over northern midlatitudes in the altitude range of 10 to 18 km, with the largest ozone loss during winter and spring. The profile trends are in quantitative agreement with independently measured trends in column ozone, the amount of ozone in a column above the surface. The vertical profiles of ozone trends provide a fingerprint for the mechanisms of ozone depletion over the last two decades.
    Keywords: Environment Pollution
    Type: Science; Volume 285; 1689-1692
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2011-08-23
    Description: We take advantage of the May 1998 biomass burning event in Southern Mexico to test the global applicability of a smoke aerosol size model developed from data observed in South America. The Mexican event is an unique opportunity to observe well-aged, residual smoke. Observations of smoke aerosol size distribution made from vertical profiles of airborne in situ measurements show an inverse relationship between concentration and particle size that suggests the aging process continues more than a week after the smoke is separated from its fire sources. The ground-based radiometer retrievals show that the column-averaged, aged, Mexican smoke particles are larger (diameter = 0.28 - 0.33 micrometers) than the mean smoke particles in South America (diameter = 0.22 - 0.30 micrometers). However, the difference (delta - 0.06 micrometer) translates into differences in backscattering coefficient of only 4-7% and an increase of direct radiative forcing of only 10%.
    Keywords: Environment Pollution
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2011-08-23
    Description: The SASS (Subsonic Assessment) Ozone and NO(x) Experiment (SONEX) was an airborne field campaign conducted in October-November 1997 in the vicinity of the North Atlantic Flight Corridor Lo study the impact of aircraft emissions on NOx and ozone (03). A fully instrumented NASA DC-8 aircraft was used as the primary SONEX platform. SONEX activities were closely coordinated with the European POLINAT-2 (Pollution from Aircraft Emissions in the North Atlantic Flight Corridor) program, which used a Falcon-20 aircraft and an instrumented in-service Swissair B-747. Both campaigns focused on the upper troposphere/"lowermost" stratosphere (UT/LS) as the region of greatest interest. Specific sampling goals were achieved with the aid of a state-of-the art modeling and meteorological support system, which allowed targeted sampling of air parcels with desired characteristics. A substantial impact of aircraft emissions on NO(x) and O3 in the UT/LS of the study region is shown to be present. It is further shown that the NO(x)- HO(x)-O3 relationships are highly nonlinear and must be accurately simulated to make meaningful future predictions with global models. SONEXIPOLINAT-2 results are being published in Special Sections of GRL and JGR. Here we provide a brief overview of SONEX design, implementation, and expected results to provide a context within which these publications can be understood.
    Keywords: Environment Pollution
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2011-08-23
    Description: To estimate the effect of subsonic and supersonic aircraft exhaust on the stratospheric concentration of NO(y), we employ a trajectory model initialized with air parcels based on the standard release scenarios. The supersonic exhaust simulations are in good agreement with 2D and 3D model results and show a perturbation of about 1-2 ppbv of NO(y) in the stratosphere. The subsonic simulations show that subsonic emissions are almost entirely trapped below the 380 K potential temperature surface. Our subsonic results contradict results from most other models, which show exhaust products penetrating above 380 K, as summarized. The disagreement can likely be attributed to an excessive vertical diffusion in most models of the strong vertical gradient in NO(y) that forms at the boundary between the emission zone and the stratosphere above 380 K. Our results suggest that previous assessments of the impact of subsonic exhaust emission on the stratospheric region above 380 K should be considered to be an upper bound.
    Keywords: Environment Pollution
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2013-08-31
    Description: To retrieve temperature and humidity profiles from SSM/T and AMSU, it is important to quantify the contribution of the Earth surface emission. So far, no global estimates of the land surface emissivities are available at SSM/T and AMSU frequencies and scanning conditions. The land surface emissivities have been previously calculated for the globe from the SSM/I conical scanner between 19 and 85 GHz. To analyze the feasibility of deriving SSM/T and AMSU land surface emissivities from SSM/I emissivities, the spectral and angular variations of the emissivities are studied, with the help of ground-based measurements, models and satellite estimates. Up to 100 GHz, for snow and ice free areas, the SSM/T and AMSU emissivities can be derived with useful accuracy from the SSM/I emissivities- The emissivities can be linearly interpolated in frequency. Based on ground-based emissivity measurements of various surface types, a simple model is proposed to estimate SSM/T and AMSU emissivities for all zenith angles knowing only the emissivities for the vertical and horizontal polarizations at 53 deg zenith angle. The method is tested on the SSM/T-2 91.655 GHz channels. The mean difference between the SSM/T-2 and SSM/I-derived emissivities is less than or equal to 0.01 for all zenith angles with an r.m.s. difference of approx. = 0.02. Above 100 GHz, preliminary results are presented at 150 GHz, based on SSM/T-2 observations and are compared with the very few estimations available in the literature.
    Keywords: Environment Pollution
    Type: IEEE Transactions on Geoscience and Remote Sensing; Volume 20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2013-08-31
    Description: This century, especially in the last few decades, Earth's history was marked by intense study and concern about our environment and how we affect it. Scientific studies show that the level of carbon dioxide in the atmosphere is rising, the ocean's productivity is changing, and the average global temperatures have risen by 0.511. What we do not completely understand is: What fraction of this variation is due to human interference with the environment? What fraction is due to natural phenomena? How do these changes correlate with each other? In order to obtain a better understanding of how land, atmosphere and ocean interact to produce changes on Earth's climate and how human intervention affects these changes, NASA started planning for the Earth Observing System (EOS) in the early 1980's. As a result, a series of satellites will be sent into orbit to monitor the Earth for the next 18 years, providing scientists with necessary data to help them answer these questions.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2013-08-29
    Description: Measurements of NO(x) and ozone performed during the NOXAR project are compared with results from the coupled chemistry-climate models ECHAM4.L39(DLR)/CHEM and GISS-model. The measurements are based on flights between Europe and the East coast of America and between Europe and the Far East in the latitude range 40 deg N to 65 deg N. The comparison concentrates on tropopause altitudes and reveals strong longitudinal variations of seasonal mean NO,, of 200 pptv. Either model reproduced strong variations 3 km below but not at the tropopause, indicating a strong missing NO(x) or NO(y) sink over remote areas, e.g. NO(x) to HNO3 conversion by OH from additional OH sources or HNO3 wash-out. Vertical profiles show maximum NO(x) values 2-3 km below the tropopause with a strong seasonal cycle. ECHAM4.L39(DLR)/CHEM reproduces a maximum, although located at the tropopause with a less pronounced seasonal cycle, whereas the GISS model reproduces the seasonal cycle but not the profile's shape due to its coarser vertical resolution. A comparison of NO(x) frequency distributions reveals that both models are capable of reproducing the observed variability, except that ECHAM4.L39(DLR)/CHEM shows no very high NO(x) mixing ratios. Ozone mean values, vertical profiles and frequency distributions are much better reproduced in either model, indicating that the NO(x) frequency distribution, namely the most frequent NO(x) mixing ratio, is more important for the tropospheric photochemical ozone production than its mean value. Both models show that among all sources, NO(x) from lightning contributes most to the seasonal cycle of NO(x) at tropopause altitudes. The impact of lightning in the upper troposphere on NO(x) does not vary strongly with altitude, whereas the impact of surface emissions decreases with altitude. However, the models show significant differences in lightning induced NO(x) concentrations, especially in winter, which may be related to the different treatment of the lower stratospheric coupling between dynamics and chemistry.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2013-08-29
    Description: Annual zonal averages of ozone amounts from Nimbus-7/TOMS (Total Ozone Mapping Spectrometer) (1979 to 1992) are used to estimate the interannual variability of ozone and UVB (290 - 315 nm) irradiance between plus or minus 60 deg. latitude. Clear-sky interannual ozone and UVB changes are mainly caused by the Quasi Biennial Oscillation (QBO) of stratospheric winds, and can amount to plus or minus 15% at 300 nm and plus or minus 5% at 310 nm (or erythemal irradiance) at the equator and at middle latitudes. Near the equator, the interannual variability of ozone amounts and UV irradiance caused by the combination of the 2.3 year QBO and annual cycles implies that there is about a 5-year periodicity in UVB variability. At higher latitudes, the appearance of the interannual UVB maximum is predicted by the QBO, but without the regular periodicity. The 5-year periodic QBO effects on UVB irradiance are larger than the currently evaluated long-term changes caused by the decrease in ozone amounts.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2013-08-29
    Description: Sea level has been rising for the past century, and inhabitants of the Earth's coastal regions will want to understand and predict future sea level changes. In this study we present results from new simulations of the Goddard Institute for Space Studies (GISS) global atmosphere-ocean model from 1950 to 2099. Model results are compared with observed sea level changes during the past 40 years at 17 coastal stations around the world. Using observed levels of greenhouse gases between 1950 and 1990 and a compounded 0.5% annual increase in Co2 after 1990, model projections show that global sea level measured from 1950 will rise by 61 mm in the year 2000, by 212 mm in 2050, and by 408 mm in 2089. By 2089, two thirds of the global sea level rise will be due to thermal expansion and one third will be due to ocean mass changes. The spatial distribution of sea level rise is different than that projected by rigid lid ocean models.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2013-08-29
    Description: An algorithm is presented for retrieving vertical profiles of O3 concentration using measurements of UV and visible light scattered from the limb of the atmosphere. The UV measurements provide information about the O3 profile in the upper and middle stratosphere, while only visible wavelengths are capable of probing the lower stratospheric O3 profile. Sensitivity to the underlying scene reflectance is greatly reduced by normalizing measurements at a tangent height high in the atmosphere (approximately 55 km), and relating measurements taken at lower altitudes to this normalization point. To decrease the effect of scattering by thin aerosols/clouds that may be present in the field of view, these normalized measurements are then combined by pairing wavelengths with strong and weak O3 absorption. We conclude that limb scatter can be used to measure O3 between 15 km and 50 km with 2-3 km vertical resolution and better than 10% accuracy.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2013-08-29
    Description: The stretched-grid approach provides an efficient down-scaling and consistent interactions between global and regional scales due to using one variable-resolution model for integrations. It is a workable alternative to the widely used nested-grid approach introduced over a decade ago as a pioneering step in regional climate modeling. A variable-resolution General Circulation Model (GCM) employing a stretched grid, with enhanced resolution over the US as the area of interest, is used for simulating two anomalous regional climate events, the US summer drought of 1988 and flood of 1993. The special mode of integration using a stretched-grid GCM and data assimilation system is developed that allows for imitating the nested-grid framework. The mode is useful for inter-comparison purposes and for underlining the differences between these two approaches. The 1988 and 1993 integrations are performed for the two month period starting from mid May. Regional resolutions used in most of the experiments is 60 km. The major goal and the result of the study is obtaining the efficient down-scaling over the area of interest. The monthly mean prognostic regional fields for the stretched-grid integrations are remarkably close to those of the verifying analyses. Simulated precipitation patterns are successfully verified against gauge precipitation observations. The impact of finer 40 km regional resolution is investigated for the 1993 integration and an example of recovering subregional precipitation is presented. The obtained results show that the global variable-resolution stretched-grid approach is a viable candidate for regional and subregional climate studies and applications.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2013-08-29
    Description: Two instruments were flown on shuttle flight STS-87 to test a new technique for inferring the ozone vertical profile using measurements of scattered sunlight from the Earth's limb. The instruments were an ultraviolet imaging spectrometer designed to measure ozone between 30 and 50 km, and a multi-filter imaging photometer that uses 600 nm radiances to measure ozone between 15 km and 35 km. Two orbits of limb data were obtained on December 2, 1997. For the scans analyzed the ozone profile was measured from 15 km to 50 km with approximately 3 km vertical resolution. Comparisons with a profile from an ozonesonde launched from Ascension Island showed agreement mostly within +/- 5%. The tropopause at 15 km was clearly detected.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2013-08-29
    Description: During the Aerosols99 trans-Atlantic cruise from Norfolk, VA, to Cape Town, South Africa, daily ozonesondes were launched from the NOAA R/V Ronald H Brown between 17 January and 6 February l999. A composite of tropospheric ozone profiles along the latitudinal transect shows 4 zones, which are interpreted using correlative shipboard ozone, CO, water vapor, and overhead aerosol optical thickness measurements. Elevated ozone associated with biomass burning north of the ITCZ (Intertropical Convergence Zone) is prominent at 3-5 km from 10-0N, but even higher ozone (100 ppbv, 7-10 km) occurred south of the ITCZ, where it was not burning. Column-integrated tropospheric ozone was 44 Dobson Units (DU) in one sounding, 10 DU lower than the maximum in a January-February 1993 Atlantic cruise with ozonesondes [Weller et al., 1996]. TOMS tropospheric ozone shows elevated ozone extending throughout the tropical Atlantic in January 1999. Several explanations are considered. Back trajectories, satellite aerosol observations and shipboard tracers suggest a combination of convection and interhemispheric transport of ozone and/or ozone precursors, probably amplified by a lightning NO source over Africa.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2013-08-29
    Description: The Goddard trajectory chemistry model was used with ER-2 aircraft data to test our current knowledge of radical photochemistry during the POLARIS (Polar Ozone Loss in the Arctic Region In Summer) campaign. The results of the trajectory chemistry model with and without trajectories are used to identify cases where steady state does not accurately describe the measurements. Over the entire mission, using trajectory chemistry reduces the variability in the modeled NO(x) comparisons to data by 25% with respect to the same model simulating steady state. Although the variability is reduced, NO(x)/NO(y) trajectory model results were found to be systematically low relative to the observations by 20-30% as seen in previous studies. Using new rate constants for reactions important in NO(y) partitioning improves the agreement of NO(x)/NO(y) with the observations but a 5-10% bias still exists. OH and HO2 individually are underpredicted by 15% of the standard steady state model and worsen with the new rate constants. Trajectory chemistry model results of OH/HO2 were systematically low by 10-20% but improve using the new rates constants because of the explicit dependence on NO. This suggests that our understanding of NO(x) is accurate to the 20% level and HO(x) chemistry is accurate to the 30% level in the lower stratosphere or better for the POLARIS regime. The behavior of the NO(x) and HO(x) comparisons to data using steady state versus trajectory chemistry and with updated rate coefficients is discussed in ten-ns of known chemical mechanisms and lifetimes.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2013-08-29
    Description: Using state-of-the-art satellite-gauge monthly rainfall estimate and optimally interpolated sea surface temperature (SST) data, we have assessed the 1997-98 AA-monsoon anomalies in terms of three basic causal factors: basin-scale SST, regional coupling, and internal variability. Singular Value Decomposition analyses of rainfall and SST are carried out globally over the entire tropics and regionally over the AA-monsoon domain. Contributions to monsoon rainfall predictability by various factors are evaluated from cumulative anomaly correlation with dominant regional SVD modes. Results reveal a dominant, large-scale monsoon-El Nino coupled mode with well-defined centers of action in the near-equatorial monsoon regions during the boreal summer and winter respectively. The observed 1997-98 AA-monsoon anomalies are found to be very complex with approximately 34% of the anomalies of the Asian (boreal) summer monsoon and 74% of the Australia (austral) monsoon attributable to basin-scale SST influence associated with El Nino. Regional coupled processes contribute an additional 19% and 10%, leaving about 47% and 16% due to internal dynamics for the boreal and austral monsoon respectively. For the boreal summer monsoon, it is noted that the highest monsoon predictability is not necessary associated with major El Nino events (e.g. 1997, 1982) but rather in non-El Nino years (e.g. 1980, 1988) when contributions from the regional coupled modes far exceed those from the basin-scale SST. The results suggest that in order to improve monsoon seasonal-to-interannual predictability, there is a need to exploit not only monsoon-El Nino relationship, but also intrinsic monsoon regional coupled processes.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2013-08-29
    Description: The impact of aircraft emissions on reactive nitrogen in the upper troposphere (UT) and lowermost stratosphere (LS) was estimated using the NO(y)-O3 correlation obtained during the SASS Ozone and NO(x) Experiment (SONEX) carried out over the US continent and North Atlantic Flight Corridor (NAFC) region in October and November 1997. To evaluate the large scale impact, we made a reference NO(y)-O3 relationship in air masses, upon which aircraft emissions were considered to have little impact. For this purpose, the integrated input of NO(x) from aircraft into an air mass along a 10-d back trajectory (DELTA-NO(y)) was calculated based on the ANCAT/EC2 emission inventory. The excess NO(y) (dNO(y)) was calculated from the observed NO(y) and the reference NO(y)-O3 relationship. As a result, a weak positive correlation was found between the dNO(y) and DELTA-NO(y), and dNO(y) and NO(x)/NO(y) values, while no positive correlation between the dNO(y) and CO values was found, suggesting that dNO(y) values can be used as a measure of the NO(x) input from aircraft emissions. The excess NO(y) values calculated from another NO(y)-O3 reference relationship made using in-situ CN data also agreed with these dNO(y) values, within the uncertainties. At the NAFC region (45 N - 60 N), the median value of dNO(y) in the troposphere increased with altitude above 9 km and reached 70 pptv (20% of NO(y)) at 11 km. The excess NO(x) was estimated to be about half of the dNO(y) values, corresponding to 30% of the observed NO(x) level. Higher dNO(y) values were generally found in air masses where O3 = 75 - 125 ppbv, suggesting a more pronounced effect around the tropopause. The median value of dNO(y) in the stratosphere at the NAFC region at 8.5 - 11.5 km was about 120 pptv. The higher dNO(y) values in the LS were probably due to the accumulated effect of aircraft emissions, given the long residence time of affected air in the LS. Similar dNO(y) values were also obtained in air masses sampled over the US continent.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2013-08-29
    Description: For the past decade, the NASA Atmospheric Effects of Aviation Project (AEAP) has been the U.S. focal point for research on aircraft effects. In conjunction with U.S. basic research programs, AEAP and concurrent European research programs have driven remarkable progress reports released in 1999 [IPCC, 1999; Kawa et al., 1999]. The former report primarily focuses on aircraft effects in the upper troposphere, with some discussion on stratospheric impacts. The latter report focuses entirely on the stratosphere. The current status of research regarding aviation effects on stratospheric ozone and climate, as embodied by the findings of these reports, is reviewed. The following topics are addressed: Aircraft Emissions, Pollution Transport, Atmospheric Chemistry, Polar Processes, Climate Impacts of Supersonic Aircraft, Subsonic Aircraft Effect on the Stratosphere, Calculations of the Supersonic Impact on Ozone and Sensitivity to Input Conditions.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2013-08-29
    Description: Chemical data from flight 8 of NASA's Subsonic Assessment (SASS) Ozone and Nitrogen Oxide Experiment (SONEX) exhibited signatures consistent with aircraft emissions, stratospheric air, and surface-based pollution. These signatures are examined in detail, focussing on the broad aircraft emission signatures that are several hundred kilometers in length. A mesoscale meteorological model provides high resolution wind data that are used to calculate backward trajectories arriving at locations along the flight track. These trajectories are compared to aircraft locations in the North Atlantic Flight Corridor over a 27-33 hour period. Time series of flight level NO and the number of trajectory/aircraft encounters within the NAFC show excellent agreement. Trajectories arriving within the stratospheric and surface-based pollution regions are found to experience very few aircraft encounters. Conversely, there are many trajectory/aircraft encounters within the two chemical signatures corresponding to aircraft emissions. Even many detailed fluctuations of NO within the two aircraft signature regions correspond to similar fluctuations in aircraft encountered during the previous 27-33 hours. Results indicate that high resolution meteorological modeling, when coupled with detailed aircraft location data, is useful for understanding chemical signatures from aircraft emissions at scales of several hundred kilometers.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2013-08-29
    Description: Flight 10 of NASA's Subsonic Assessment (SASS) Ozone and Nitrogen Oxide Experiment (SONEX) extended southwest of Lajes, Azores. A variety of chemical signatures were encountered. These signatures are examined in detail, relating them to meteorological data from a high resolution numerical model having horizontal grid spacing of 30 and 90 km and 26 vertical levels. The meteorological output at hourly intervals is used to create backward trajectories from the locations of the chemical signatures. Four major categories of chemical signatures are discussed-stratospheric, lightning, continental pollution, and a transition layer. The strong stratospheric signal is encountered just south of the Azores in a region of depressed tropopause height. Three chemical signatures at different altitudes in the upper troposphere are attributed to lightning. Backward trajectories arriving at locations of these signatures are related to locations of cloud-to-ground lightning. Results show that the trajectories pass through regions of lightning 1-2 days earlier over the eastern Gulf of Mexico and off the southeast coast of the United States. The lowest leg of the flight exhibits a chemical signature consistent with continental pollution. Trajectories arriving at this signature are found to pass over the highly populated Northeast Corridor of the United States. Surface based pollution apparently is lofted to the altitudes of the trajectories by convective clouds along the East Coast that did not contain lightning. Finally, a chemical transition layer is described. Its chemical signature is intermediate to those of lightning and continental pollution. Trajectories arriving in this layer pass between the trajectories of the lightning and pollution signatures. Thus, they probably are impacted by both sources.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2013-08-29
    Description: We present a study of the distribution of ozone in the lowermost stratosphere with the goal of characterizing the observed variability. The air in the lowermost stratosphere is divided into two population groups based on Ertel's potential vorticity at 300 hPa. High (low) potential vorticity at 300 hPa indicates that the tropopause is low (high), and the identification of these two groups is made to account for the dynamic variability. Conditional probability distribution functions are used to define the statistics of the ozone distribution from both observations and a three-dimensional model simulation using winds from the Goddard Earth Observing System Data Assimilation System for transport. Ozone data sets include ozonesonde observations from northern midlatitude stations (1991-96) and midlatitude observations made by the Halogen Occultation Experiment (HALOE) on the Upper Atmosphere Research Satellite (UARS) (1994- 1998). The conditional probability distribution functions are calculated at a series of potential temperature surfaces spanning the domain from the midlatitude tropopause to surfaces higher than the mean tropical tropopause (approximately 380K). The probability distribution functions are similar for the two data sources, despite differences in horizontal and vertical resolution and spatial and temporal sampling. Comparisons with the model demonstrate that the model maintains a mix of air in the lowermost stratosphere similar to the observations. The model also simulates a realistic annual cycle. Results show that during summer, much of the observed variability is explained by the height of the tropopause. During the winter and spring, when the tropopause fluctuations are larger, less of the variability is explained by tropopause height. This suggests that more mixing occurs during these seasons. During all seasons, there is a transition zone near the tropopause that contains air characteristic of both the troposphere and the stratosphere. The relevance of the results to the assessment of the environmental impact of aircraft effluence is also discussed.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2013-08-29
    Description: We describe the current GISS analysis of surface temperature change based primarily on meteorological station measurements. The global surface temperature in 1998 was the warmest in the period of instrumental data. The rate of temperature change is higher in the past 25 years than at any previous time in the period of instrumental data. The warmth of 1998 is too large and pervasive to be fully accounted for by the recent El Nino, suggesting that global temperature may have moved to a higher level, analogous to the increase that occurred in the late 1970s. The warming in the United States over the past 50 years is smaller than in most of the world, and over that period there is a slight cooling trend in the Eastern United States and the neighboring Atlantic ocean. The spatial and temporal patterns of the temperature change suggest that more than one mechanism is involved in this regional cooling.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2013-08-29
    Description: In the framework of the project POLINAT 2 (Pollution in the North Atlantic Flight Corridor) we measured NO(x) (NO and NO2) and ozone on 98 flights through the North Atlantic Flight Corridor (NAFC) with a fully automated system permanently installed aboard an in-service Swissair B-747 airliner in the period of August to November 1997. The averaged NO, concentrations both in the NAFC and at the U.S. east coast were similar to that measured in autumn 1995 with the same system. The patchy occurrence of NO(x), enhancements up to 3000 pptv over several hundred kilometers (plumes), predominately found over the U.S. east coast lead to a log-normal NO(x) probability density function. In three case-studies we examine the origins of such plumes by combining back-trajectories with brightness temperature enhanced (IR) satellite imagery, with lightning observations from the U.S. National Lightning Detection Network (NLDN) or with the Optical Transient Detector (OTD) satellite. For frontal activity above the continental U.S., we demonstrate that the location of NO(x) plumes can be well explained with maps of convective influence. For another case we show that the number of lightning flashes in a cluster of marine thunderstorms is proportional to the NO(x) concentrations observed several hundred kilometers downwind of the anvil outflows and suggest that lightning was the dominant source. From the fact that in autumn the NO, maximum was found several hundred kilometers off the U.S. east coast, it can be inferred that thunderstorms triggered over the warm Gulf Stream current are an important source for the regional upper tropospheric NO(x) budget in autumn.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2013-08-29
    Description: Key questions to which SONEX was directed were the following: Can aircraft corridors be detected? Is there a unique tracer for aircraft NO(x)? Can a "background" NO(x) (or NO(y) be defined? What fraction of NO(x) measured during SONEX was from aircraft? How representative was SONEX of the North Atlantic in 1997 and how typical of other years? We attempt to answer these questions through species-species correlations, probability distribution functions (PDFs), and meteorological history. There is not a unique aircraft tracer, largely due to the high variability of air mass origins and tracer ratios, which render "average" quantities meaningless. The greatest NO and NO(y) signals were associated with lightning and convective NO sources. Well-defined background CO, NO(y) and NO(y)/ozone ratio appear in subsets of two cross-track flights with subtropical origins and five flights with predominantly mid-latitude air. Forty percent of the observations on these 7 flights showed NO(y)/ozone to be above background, evidently due to unreacted NO(x). This NO(x) is a combination of aircraft, lightning and surface pollution injected by convection. The strongly subtropical signatures in SONEX observations, confirmed by pv (potential vorticity) values along flight tracks, argues for most of the unreacted NO(x) originating from lightning. Potential vorticity statistics along SONEX flight tracks in 1992-1998, and for the North Atlantic as a whole, show the SONEX meteorological environment to be representative of the North Atlantic flight corridor in the October-November period.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2013-08-29
    Description: Airborne measurements of NO(x) total reactive nitrogen (NO(y)), O3 and condensation nuclei (CN) were made within air traffic corridors over the U.S. and North Atlantic regions (35-60 deg N) in the fall of 1997. NO(x) and NO(y) data obtained in the lowermost stratosphere (LS) were examined using the calculated increase in NO(y) ((delta)NO(y)) along five-day back trajectories as a parameter to identify possible effects of aircraft on reactive nitrogen. It is very likely that aircraft emissions had a significant impact on the NO(x) levels in the LS inasmuch as the NO(s), mixing ratios at 8.5-12 km were significantly correlated with the independent parameters of aircraft emissions, i.e., (delta)NO(y) levels and CN values. In order to estimate quantitatively the impact of aircraft emissions on NO(x), and CN, the background levels of CN and NO(x) at O3 = 100-200 ppbv were derived from the correlations of these quantities with (delta)NO(y)). On average, the aircraft emissions are estimated to have increased the NO(x) and CN values by 130 pptv and 400 STP,cc, respectively, which corresponds to 70 -/+ 30 % and 30 -/+ 20 % of the observed median values.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2013-08-29
    Description: The American Geophysical Union (AGU), as a scientific organization devoted to research on the Earth and space sciences, provides current scientific information to the public on issues pertinent to geophysics. The Council of the AGU approved a position statement on Climate Change and Greenhouse Gases in December 1998. The statement, together with a short summary of the procedures that were followed in its preparation, review, and adoption were published in the February 2, 1999 issue of Eos ([AGU, 1999]. The present article reviews scientific understanding of this issue as presented in peer-reviewed publications that serves as the underlying basis of the position statement.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2013-08-29
    Description: The role of naturally varying vegetation in influencing the climate variability in the Sahel is explored in a coupled atmosphere-land-vegetation model. The Sahel rainfall variability is influenced by sea surface temperature (SST) variations in the oceans. Land-surface feedback is found to increase this variability both on interannual and interdecadal time scales. Interactive vegetation enhances the interdecadal variation significantly, but can reduce year to year variability due to a phase lag introduced by the relatively slow vegetation adjustment time. Variations in vegetation accompany the changes in rainfall, in particular, the multi-decadal drying trend from the 1950s to the 80s.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2011-08-23
    Description: Analyses of satellite, ground-based, and balloon measurements allow updated estimates of trends in the vertical profile of ozone since 1979. The results show overall consistency among several independent measurement systems, particularly for northern hemisphere midlatitudes where most balloon and ground-based measurements are made. Combined trend estimates over these latitudes for the period 1979-96 show statistically significant negative trends at all altitudes between 10 and 45 km, with two local extremes: -7.4 plus or minus 2.0% per decade at 40 km and -7.3 plus or minus -4.6% per decade at 15 km altitude. There is a strong seasonal variation in trends over northern midlatitudes in the attitude range of 10 to 18 km, with the largest ozone loss during winter and spring. The profile trends are in quantitative agreement with independently measured trends in column ozone, the amount of ozone in a column above the surface. The vertical profiles of ozone trends provide a fingerprint for the mechanisms of ozone depletion over the last two decades.
    Keywords: Environment Pollution
    Type: Science; Volume 285; 1689-1692
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2016-02-04
    Description: Results are presented for six simulations of the Goddard Institute for Space Studies (GISS) global atmosphere-ocean model for the years 1950 to 2099. There are two control simulations with constant 1950 atmospheric composition from different initial states, two GHG experiments with observed greenhouse gases up to 1990 and compounded .5% CO2 annual increases thereafter, and two GHG+SO4 experiments with the same varying greenhouse gases plus varying tropospheric sulfate aerosols. Surface air temperature trends in the two GHG experiments are compared between themselves and with the observed temperature record from 1960 and 1998. All comparisons show high positive spatial correlation in the northern hemisphere except in summer when the greenhouse signal is weakest. The GHG+SO4 experiments show weaker correlations. In the southern hemisphere, correlations are either weak or negative which in part are due to the model's unrealistic interannual variability of southern sea ice cover. The model results imply that temperature changes due to forcing by increased greenhouse gases have risen above the level of regional interannual temperature variability in the northern hemisphere over the past 40 years. This period is thus an important test of reliability of coupled climate models.
    Keywords: Environment Pollution
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2011-08-23
    Description: We discuss the methodology of interpreting channel 1 and 2 AVHRR radiance data to retrieve tropospheric aerosol properties over the ocean and describe a detailed analysis of the sensitivity of monthly average retrievals to the assumed aerosol models. We use real AVHRR data and accurate numerical techniques for computing single and multiple scattering and spectral absorption of light in the vertically inhomogeneous atmosphere-ocean system. Our analysis shows that two-channel algorithms can provide significantly more accurate retrievals of the aerosol optical thickness than one-channel algorithms and that imperfect cloud screening is the largest source of errors in the retrieved optical thickness. Both underestimating and overestimating aerosol absorption as well as strong variability of the aerosol refractive index may lead to regional and/or seasonal biases in optical thickness retrievals. The Angstrom exponent appears to be the most invariant aerosol size characteristic and should be retrieved along with optical thickness as the second aerosol parameter.
    Keywords: Environment Pollution
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2016-06-07
    Description: The purpose of this presentation is to discuss the developmental approach to the Environmental Impact Statement regarding the X-33 vehicle.
    Keywords: Environment Pollution
    Type: Third Aerospace Environmental Technology Conference; 43-53; NASA/CP-1999-209258
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: Opto-Knowledge Systems, Inc. was founded in 1991 specifically to take advantage of the emergence of a new technology field related to spectral imaging. The technology has applications in diverse areas such as Earth remote sensing, agriculture, geology, medical diagnosis, manufacturing, forensics, and more. Under the NASA/Goddard Space Flight Center STTR project, OKSI developed several major aspects to further the state of the art, resulting in several commercial products.
    Keywords: Environment Pollution
    Type: Spinoff 1999; 70; NASA/NP-1999-10-254-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2018-06-05
    Description: The Environmental Health activity for the Extended Duration Orbiter Medical Project (EDOMP) was formed to develop an overall strategy for safeguarding crew members from potential airborne hazards anticipated on missions of extended duration. These efforts were necessary because of major modifications to the air revitalization system of the U.S. Space Shuttle and an increased potential for environmental health risks associated with longer space flights. Degradation of air quality in the Shuttle during a space flight mission has the potential to affect the performance of the crew not only during piloting, landing, or egress, but also during space flight. It was anticipated that the risk of significant deterioration in air quality would increase with extended mission lengths and could result from: (1) a major chemical contamination incident, such as a thermodegradation event or toxic leak, (2) continual accumulation of volatile organic compounds to unacceptable levels, (3) excessive levels of airborne particles, (4) excessive levels of microorganisms, or (5) accumulation of airborne pathogens.
    Keywords: Environment Pollution
    Type: Extended Duration Orbiter Medical Project; 4-1 - 4-12; NASA/SP-1999-534
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-27
    Description: The backscattered ultraviolet (BUV) technique has been used for almost 3 decades to monitor global total ozone and the distribution of ozone in the stratosphere. Satellite BUV measurements in the 250-340 mn wavelength region are technically challenging because the Earth's radiance varies by approximately 4 orders of magnitude during a single scan. Further, the observed signal increases by over three orders of magnitude in about 2 minutes as the satellite emerges into daylight. The gain of the instrument's photomultiplier tube (PMT) detector is low when the spacecraft first emerges into the sunlit portion of the orbit relative to the gain observed after the PMT has experienced moderately high current levels. This "hysteresis" effect was first observed on the Nimbus-7 SBUV and TOMS instruments. The effect is difficult to characterize prelaunch because of the high signal levels and rapid variations required. We have recently observed and quantified the hysteresis effect for the NOAA-9 SBUV/2 instrument, which collected ozone data from February 1985 to February 1998. The instrument gain is observed to be up to 3% low at high solar zenith angles [Chi = 85-90 degrees] in the emergent hemisphere (i.e. Southern Hemisphere at launch). The gain error decreases as the SZA decreases and average PMT current increases, and is generally negligible for Chi 〈 65 degrees. The magnitude of the hysteresis effect varies with season, and exhibits long-term changes as the NOAA-9 sun-synchronous orbit drifts. In the latter portion of the record, when the spacecraft emerged from the dark in the Northern Hemisphere, hysteresis effects were then observed in the North. NOAA-9 total ozone errors due to the hysteresis effect are typically on the order of 2%, but can reach 5% in extreme cases. We have developed a quantitative correction for the hysteresis effect that incorporates both seasonal and long-term variations in magnitude. Results of similar analyses for the NOAA-11 and NOAA-14 SBUV/2 instruments will also be discussed. The characterization of the hysteresis effect in high solar zenith angle SBUV/2 ozone data represents a significant step towards reconciling polar ozone measurements from different satellite instruments.
    Keywords: Environment Pollution
    Type: NEWRAD 1999; 25-27 O t. 1999; Madrid; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-17
    Description: A chemical analysis of soil-water mixtures and the first microscopic images of martian soil will be among the results to be returned by the Mars Environmental Compatibility Assessment (MECA) payload on the Mars Surveyor Program 2001 Lander. Sponsored by the Human Exploration and Development of Space (HEDS) enterprise, MECA's primary goal is to evaluate potential geochemical and environmental hazards that may confront future martian explorers, and to guide HEDS scientists in the development of high fidelity Mars soil simulants. As a survey of soil properties, the MECA data set will also be rich in information relevant to basic geology, paleoclimate, and exobiology. The integrated MECA payload contains a wet-chemistry laboratory, a microscopy station, an electrometer to characterize the electrostatics of the soil and its environment, and arrays of material patches to study the abrasive and adhesive properties of soil grains. MECA is allocated a mass of 10 kg and a peak power usage of 15 W within an enclosure of 35 x 25 x 15 cm. The Wet Chemistry Laboratory (WCL) consists of four identical cells that will accept samples from surface and subsurface regions accessible to the Lander's robotic arm, mix them with water, and perform extensive analysis of the solution. Ion-selective electrodes and related sensors will evaluate total dissolved solids, redox potential, pH, and the concentration of many soluble ions and gases. Cyclic voltammetry will address oxidants, and anodic stripping voltammetry will probe potentially hazardous trace metals. MECA's microscopy station combines optical and atomic-force microscopy (AFM) in a controlled illumination environment to image dust and soil particles from millimeters to nanometers in size. Careful selection of substrates and an abrasion tool allows experimental study of size distribution, adhesion, abrasion, hardness, color, shape, aggregation, magnetic and other properties. Mounted on the end of the robot arm, MECA's electrometer consists of four types of sensors: an electric field meter, several triboelectricity monitors, an ion gauge, and a thermometer. Tempered only by ultra-violet- light-induced ions and a low-voltage break-down threshold, the dry, cold, dusty martian environment presents an imposing electrostatic hazard to both robots and humans. In addition, the electrostatic environment is key to transport of dust and, consequently, martian meteorology. MECA will also observe natural dust accumulation on engineering materials. Viewed with the robot arm camera, the abrasion and adhesion plates are strategically placed to allow direct observation of the inter-action between materials and soils on a macroscopic scale. Materials of graded hardness are placed directly under the robot arm scoop to sense wear and soil hardness. A second array, placed on the lander deck, is deployed after the dust plume of landing has settled. It can be manipulated in a primitive fashion by the arm, first having dirt deposited on it from the scoop and subsequently shaken clean. Dust accumulation as a function of conductivity, magnetic field strength, and other parameters will be explored. The MECA instruments described above will assess potential hazards that the Martian soil might present to human explorers and their equipment. In addition, MECA will provide information on the composition of ancient surface water environments, observing microscopic evidence of geological (and biological?) processes, inferring soil and dust transport, comminution and weathering mechanisms, and characterizing soil horizons that might be encountered during excavation. Additional information is contained in the original extended abstract.
    Keywords: Environment Pollution
    Type: The Fifth International Conference on Mars; LPI-Contrib-972
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-17
    Description: The observation that the Mars Pathfinder landing site probably looks very similar to when it was deposited by catastrophic floods some 1.8-3.5 Ga allows quantitative constraints to be placed on the rate of change at the landing site since that time. When combined with interpretations of data recently returned by the Mars Pathfinder and Global Surveyor missions and perspectives drawn from 20 years of analysis and interpretation of Viking data, these observations and inferences suggest an early warmer and wetter environment with vastly different erosion rates and a major climatic change on Mars. Additional information is contained in the original extended abstract.
    Keywords: Environment Pollution
    Type: The Fifth International Conference on Mars; LPI-Contrib-972
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-17
    Description: A new model is presented for the coupled evolution of climate and rotation, as applied to Mars. It has long been appreciated that changes in the orbital and rotational geometry of Mars will influence the seasonal and latitudinal pattern of insolation, and this will likely dominate climatic fluctuations on time scales of 10(exp 5) to 10(exp 7) years. Equally important, but less widely appreciated, is the influence climatic change can have on rotational dynamics. The primary means by which climate influences rotation is via its influence on transport of mass (volatiles and dust) into and out of the polar regions. Many important issues remain unresolved: What are the ages of the polar caps? What climatic periods are recorded in the polar layered deposits? What is the long term obliquity history? Additional information is contained in the original extended abstract.
    Keywords: Environment Pollution
    Type: The Fifth International Conference on Mars; LPI-Contrib-972
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-17
    Description: Some CFF-Xe (Chemically Fractionated Fission Xenon), whose isotopic composition is established by simultaneous decay and migration of radioactive fission products, is probably present in the Earth's lithosphere, a conclusion based on available Xe data from various crustal and mantle rocks . Our recent isotopic analysis of Xe in alumophosphate from zone 13 of Okelobondo (southern extension of Oklo), along with the independent estimation of the isotopic composition of atmospheric fission Xe , supports the hypothesis that CFF-Xe was produced on a planetary scale. Additional information is contained in the original extended abstract.
    Keywords: Environment Pollution
    Type: Ninth Annual V. M. Goldschmidt Conference; LPI-Contrib-971
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-17
    Description: Synthetic aperture radar (SAR) interferometry and GPS have shown that during the quiescent period from 1993-1995 Mt. Etna volcano, Italy, inflated. Since the initiation of eruptive activity since late 1995 the deformation has been more contentious. We will explore the detailed deformation during the period from 1995-1996 spanning the late stages of inflation and the beginning of eruptive activity. We use SAR interferometry and GPS data to measure the volcano deformation. We invert the observed deformation for both simple point source. le crack elastic sources or if warranted for a spheroidal pressure So In particular, we will examine the evolution of the inflation and the transition to a lesser deflation observed at the end of 1995. We use ERS-1/2 SAR data from both ascending and descending passes to allow for dense temporal 'sampling of the deformation and to allow us to critically assess atmospheric noise. Preliminary results from interferometry suggest that the inflation rate accelerated prior to resumption of activity in 1995, while GPS data suggest a more steady inflation with some fluctuation following the start of activity. This study will compare and contrast the interferometric SAR and GPS results and will address the strengths and weaknesses of each technique towards volcano deformation studies.
    Keywords: Environment Pollution
    Type: IUGG99; Jan 01, 1999; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-18
    Description: As part of the second Aerosol Characterization Experiment (ACE-2) during June and July of 1997, aerosol-size distributions were measured on board the CIRPAS Pelican aircraft through the use of a Differential Mobility Analyzer (DMA) and 2 Optical Particle Counters (OPCs). During the campaign, the boundary-layer aerosol typically possessed characteristics representative of a background marine aerosol or a continentally influenced aerosol, while the free-tropospheric aerosol was characterized by the presence or absence of a Saharan dust layer. A range of radiative closure comparisons were made using the data obtained during vertical profiles flown on 4 missions. Of particular interest here are the comparisons made between the optical properties as determined through the use of measured aerosol-size distributions and those measured directly by an airborne 14-wavelength sunphotometer and 3 nephelometers. Variations in the relative humidity associated with each of the direct measurements required consideration of the hygroscopic properties of the aerosol for size-distribution-based calculations. Simultaneous comparison with such a wide range of directly-measured optical parameters not only offers evidence of the validity of the physicochemical description of the aerosol when closure is achieved, but also provides insight into potential sources of error when some or all of the comparisons result in disagreement. Agreement between the derived and directly-measured optical properties varied for different measurements and for different cases. Averaged over the 4 case studies, the derived extinction coefficient at 525 nm exceeded that measured by the sunphotometer by 2.5% in the clean boundary layer, but underestimated measurements by 13% during pollution events. For measurements within the free troposphere, the mean derived extinction coefficient was 3.3% and 17% less than that measured by the sunphotometer during dusty and non-dusty conditions, respectively. Likewise, averaged discrepancies between the derived and measured scattering coefficient were -9.6%, +4.7%, +17%, and -41% for measurements within the clean boundary layer, polluted boundary layer, free troposphere with a dust layer, and free troposphere without a dust layer, respectively. Each of these quantities, as well as the majority of the more than 100 individual comparisons from which they were averaged, were within estimated uncertainties.
    Keywords: Environment Pollution
    Type: TELLUS (ISSN 0280-6509); 52B; 2; 498-525
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-17
    Description: The Earth's rotation is not constant but exhibits minute changes on all observable time scales ranging from subdaily to secular. This rich spectrum of observed Earth rotation changes reflects the rich variety of astronomical and geophysical phenomena that are causing the Earth's rotation to change, including, but not limited to, ocean and solid body tides, atmospheric wind and pressure changes, oceanic current and sea level height changes, post-glacial rebound, and torques acting at the core-mantle boundary. In particular, the decadal-scale variations of the Earth's rotation are thought to be largely caused by interactions between the Earth's outer core and mantle. Comparing the inferred Earth rotation variations caused by the various core-mantle interactions to observed variations requires Earth rotation observations spanning decades, if not centuries. During the past century many different techniques have been used to observe the Earth's rotation. By combining the individual Earth rotation series determined by each of these techniques, a series of the Earth's rotation can be obtained that is based upon independent measurements spanning the greatest possible time interval. In this study, independent observations of the Earth's rotation are combined to generate a length-of-day series spanning 1832-1997. The observations combined include lunar occultation measurements spanning 1832-1955, optical astrometric measurements spanning 1956-1982, lunar laser ranging measurements spanning 1970-1997, and very long baseline interferometric measurements spanning 1978-1998. These series are combined using a Kalman filter developed at JPL for just this purpose. The resulting combined length-of-day series will be presented and compared with other available length-of-day series of similar duration.
    Keywords: Environment Pollution
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-17
    Description: Heterogeneous reactions on the surface of aerosols lead to a decrease in the concentration of nitrogen radicals and an increase in the concentration of chlorine and hydrogen radical species. As a consequence, enhanced sulfate aerosol levels in the lower stratosphere resulting from volcanic eruptions lead to lower concentrations of ozone due to more rapid loss by chlorine and hydrogen radicals. This study focuses on continuing the effort to quantify the effect of sulfate aerosols on the partitioning of inorganic chlorine species at midlatitudes. The study begins with an examination of balloon-borne measurements of key chlorine species obtained by the JPL MkIV interferometer for different aerosol loading conditions. A detailed comparison of the response of HCl to variations in aerosol surface area observed by MkIV, ER-2 instruments, HALOE, and ATMOS is carried out by examining HCl vs CH4 correlation diagrams, since CH4 is the only tracer measured on each platform. Finally, the consistency between theory and observed changes in ClO and HCl due to variations in aerosol surface area is examined.
    Keywords: Environment Pollution
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-13
    Description: The objectives of this project were: (1) To incorporate into an existing version of the University of Maryland Surface Radiation Budget (SRB) model, optical parameters of forest fire aerosols, using best available information, as well as optical properties of other aerosols, identified as significant. (2) To run the model on regional scales with the new parametrization and information on forest fire occurrence and plume advection, as available from NASA LARC, and test improvements in inferring surface fluxes against daily values of measured fluxes. (3) Develop strategy how to incorporate the new parametrization on global scale and how to transfer modified model to NASA LARC.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-13
    Description: This is the final report. The overall objective of this project is to improve the understanding of coupling processes among atmospheric chemistry, aerosol and climate, all important for quantitative assessments of global change. Among our priority are changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The work emphasizes two important aspects: (1) AER's continued participation in preparation of, and providing scientific input for, various scientific reports connected with assessment of stratospheric ozone and climate. These include participation in various model intercomparison exercises as well as preparation of national and international reports. and (2) Continued development of the AER three-wave interactive model to address how the transport circulation will change as ozone and the thermal properties of the atmosphere change, and assess how these new findings will affect our confidence in the ozone assessment results.
    Keywords: Environment Pollution
    Type: P698
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-13
    Description: The importance of quantitative knowledge of tropical rainfall, its associated latent heating and variability is summarized in the context of the global hydrologic cycle. Much of the tropics is covered by oceans. What land exists, is covered largely by rainforests that are only thinly populated. The only way to adequately measure the global tropical rainfall for climate and general circulation models is from space. The TRMM orbit is inclined 35 degrees leading to good sampling in the tropics and a rapid precession to study the diurnal cycle of precipitation. The precipitation instrument complement consists of the first rain radar to be flown in space (PR), a multi-channel passive microwave sensor (TMI) and a five-channel VIS/IR (VIRS) sensor. The precipitation radar operates at a frequency of 13.6 GHz. The swath width is 220 km, with a horizontal resolution of 4 km and the vertical resolution of 250 m. The minimum detectable signal from the precipitation radar has been measured at 17 dBZ. The TMI instrument is designed similar to the SSM/I with two important changes. The 22.235 GHz water vapor absorption channel of the SSM/I was moved to 21.3 GHz in order to avoid saturation in the tropics and 10.7 GHz V&H polarized channels were added to expand the dynamic range of rainfall estimates. The resolution of the TMI varies from 4.6 km at 85 GHz to 36 km at 10.7 GHz. The visible and infrared sensor (VIRS) measures radiation at 0.63, 1.6, 3.75, 10.8 and 12.0 microns. The spatial resolution of all five VIRS channels is 2 km at nadir. In addition to the three primary rainfall instruments, TRMM will also carry a Lightning Imaging Sensor (LIS) and a Clouds and the Earth's Radiant Energy System (CERES) instrument. This presentation will focus primarily on the advances in our understanding of tropical rain systems needed to interpret the TRMM data. Global averages, as well as case studies from TRMM radar (PR), the TRMM Microwave Imager (TMI) and Visible and Infrared Sensor (VIRS) will be presented. Comparisons and contrasts among the different sensors will be drawn. Results will also be compared to previous rainfall climatologies generated from the SSM/I instrument. In particular this paper will focus on the synergy between the TRMM radar and passive microwave radiometer and what we have learned from is synergy.
    Keywords: Environment Pollution
    Type: Climate, Environmental Change and Regional Impacts: Seasonal-to-Interannual Climate Variability; Sep 21, 1999 - Sep 24, 1999; Beijing; China|Impacts of Ocean Variability on Climate Change; Sep 23, 1999 - Sep 24, 1999; Beijing; China
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-13
    Description: High spectral resolution (0.003 per cm) infrared solar absorption measurements of CO, C2H6, and HCN have been recorded at the Network for the Detection of Stratospheric Change station on Mauna Loa, Hawaii, (19.5N, 155.6W, altitude 3.4 km). The observations were obtained on over 250 days between August 1995 and February 1998. Column measurements are reported for the 3.4-16 km altitude region, which corresponds approximately to the free troposphere above the station. Average CO mixing ratios computed for this layer have been compared with flask sampling CO measurements obtained in situ at the station during the same time period. Both show asymmetrical seasonal cycles superimposed on significant variability. The first 2 years of observations exhibit a broad January-April maximum and a sharper CO minimum during late summer. The C2H6 and CO 3.4-16 km columns were highly correlated throughout the observing period with the C2H6/CO slope intermediate between higher and lower values derived from similar infrared spectroscopic measurements at 32'N and 45'S latitude, respectively. Variable enhancements in CO, C2H6, and particularly HCN were observed beginning in about September 1997. The maximum HCN free tropospheric monthly mean column observed in November 1997 corresponds to an average 3.4-16 km mixing ratio of 0.7 ppbv (1 ppbv = 10(exp -9) per unit volume), more than a factor of 3 above the background level. The HCN enhancements continued through the end of the observational series. Back-trajectory calculations suggest that the emissions originated at low northern latitudes in southeast Asia. Surface CO mixing ratios and the C2H6 tropospheric columns measured during the same time also showed anomalous autumn 1997 maxima. The intense and widespread tropical wild fires that burned during the strong El Nino warm phase of 1997- 1998 are the likely source of the elevated emission products.
    Keywords: Environment Pollution
    Type: Paper-1999JD900366 , Journal of Geophysical Research (ISSN 0148-0227); 104; D15; 18,667-18,680
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-13
    Description: The first Clouds and the Earth's Radiant Energy System (CERES) instrument has been returning useful data on Earth's radiation budget from the Tropical Rainfall Measuring Mission (TRMM) spacecraft since late 1997. Validation of the initial data is now intensively underway. As one component of this validation, the CERES Students' Cloud Observations On-Line (S'COOL) project has been operational since April 1998 - the 2nd CERES validation month. S'COOL involves school children in over 140 schools in 15 countries on 5 continents in making and reporting observations and measurements which they and CERES scientists can then compare to the satellite retrievals. The project is planned to continue through the life of the CERES Project (nominally 15 years), and new participants are invited to join on a continuous basis. This paper will report on the first year of the operational phase of the project, during which a number of exciting events occurred (a demonstration of the project to First Lady Hillary Rodham Clinton, and visits by CERES personnel to participating schools, among others). It will further report on some of the noteworthy observations and comparisons which have been made possible by this project. We have found that schools are often located in interesting places, in terms of the clouds found there and the satellite's ability to observe these clouds. The paper will also report on the learning opportunities delivered by this project, and on new questions about the planet and its climate which arise in the students' minds as a result of their active participation.
    Keywords: Environment Pollution
    Type: Education; Jan 10, 1999 - Jan 15, 1999; Dallas, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-13
    Description: The objective of the research was the development of a new small, lightweight instrument for the detection of ClONO2, NO2, ClO, and BrO, carried aboard a robotic aircraft, specifically the NASA ER-2. The schematic of the instrument is shown. Some of the observations which this instrument is designed to make are discussed. The observations of the instrument during the Photochemistry of Ozone Loss in the Arctic Region in Summer (POLARIS) mission are also reviewed.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-13
    Description: We examine the horizontal wavenumber spectra of horizontal velocity and potential temperature collected by aircraft above the Pacific Ocean to determine whether gravity waves, quasi-two-dimensional (Q-2-D) turbulence, or vortical modes dominate atmospheric fluctuations at scale sizes of 1-100 km and altitudes of 2-12 km. We conclude from the study of Doppler-shifting effects that Q-2-D turbulence and/or vortical modes are more prevalent than gravity waves over the ocean, except in the equatorial zone. The results are consistent with recent numerical simulations of Q-2-D turbulence, which show that the characteristic inverse cascade of energy is greatly facilitated by the presence of background rotation. Furthermore, a Stokes-parameter analysis reveals the general paucity of coherent wavelike motions, although specific cases of gravity-wave propagation are observed. Finally, a case study of a long flight segment displays a k(sup -3) horizontal velocity variance spectrum at scales longer than about 100 km. A Stokes-parameter analysis indicates that these large-scale fluctuations were likely due to vortical modes rather than inertio-gravity waves.
    Keywords: Environment Pollution
    Type: Journal of Geophysical Research (ISSN 0148-0227); 104; D13; 16,297-16,308
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-13
    Description: This report documents the research performed under NASA Ames Cooperative Agreement NCC 2-991, which covered the period 1 April 1997 through 31 March 1999. Previously, an interim technical report (Technical Report No. 1, 20 March 1998) summarized the work completed during the period 1 April 1997 through 31 March 1998. The objective of the proposed research was to advance our understanding of atmospheric aerosol behavior, aerosol-induced climatic effects, and the remote measurement and retrieval capabilities of spaceborne sensors such as SAGE II by combining and comparing data from these instruments and from airborne and ground-based instruments.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-13
    Description: Measuring and understanding the distribution of ozone through the lower levels of Earth's atmosphere are high priorities in global change and climate research. Of particular interest now is the global distribution of ozone in the upper troposphere and lower stratosphere. Global coverage of the stratospheric ozone is feasible only via remote sensing instruments on a space-based platform. And though extensive monitoring tropospheric ozone is possible using instruments flown aboard conventional aircraft, a space-based system would be significantly less costly and provide information over a much broader area and produce more uniform coverage. Here we describe the prototype of an instrument being developed to monitor, from an orbiting spacecraft, the ozone found in Earth's upper troposphere and lower stratosphere. Our new spectrometer is an infrared Fabry-Perot interferometer which uses two synchrounously tuned etalons: a high resolution narrow band device and a lower resolution broader band filtering etalon. The prototype is a scanning device making use of nearly collimated input radiation and a single element detector. As presently configured, it is capable of providing a resolution better than 0.07/cm with a spectral band width approximately 5/cm wide and centered at 1054.7/cm. For the future space-based emission device a modification of the the prototype was to be made to employ innovative circle-to-line detector optics, those developed or in development at UM/SPRL, and a focal plane array detector. These enhancements would enable a simultaneous recording of the entire spectral range of interest, but with simple detection electronics and a significant gain in signal-to-noise over that of the scanning version.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-13
    Description: In response to the National Research Council (NRC) recommendations, the Workshop on Aerosols and Particulates from Aircraft Gas Turbine Engines was organized by the NASA Lewis Research Center and held on July 29-30, 1997 at the Ohio Aerospace Institute in Cleveland, Ohio. The objective is to develop consensus among experts in the field of aerosols from gas turbine combustors and engines as to important issues and venues to be considered. Workshop participants' expertise included engine and aircraft design, combustion processes and kinetics, atmospheric science, fuels, and flight operations and instrumentation.
    Keywords: Environment Pollution
    Type: NASA/CP-1999-208918 , E-11676 , NAS 1.55:208918 , Jul 29, 1997 - Jul 30, 1997; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: This report discusses the work done in validation the Lidar Atmospheric Sensing Experiment (LASE) data. This data was analyzed and compared to data from the RS-80 radiosonde. After an error was found and corrected in the programs used to analyze the LASE data, the results were closer to the results expected. The interpretation of the LASE measurements was based on the use of the Goddard Cumulus Ensemble model. This work is further described in the report.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-07-13
    Description: Current uncertainties in the effects of clouds and aerosols on the Earth radiation budget limit our understanding of the climate system and the potential for global climate change. Pathfinder Instruments for Cloud and Aerosol Spaceborne Observations - Climatologie Etendue des Nuages et des Aerosols (PICASSO-CENA) is a recently approved satellite mission within NASA's Earth System Science Pathfinder (ESSP) program which will address these uncertainties with a unique suite of active and passive instruments. The Lidar In-space Technology Experiment (LITE) demonstrated the potential benefits of space lidar for studies of clouds and aerosols. PICASSO-CENA builds on this experience with a payload consisting of a two-wavelength polarization-sensitive lidar, an oxygen A-band spectrometer (ABS), an imaging infrared radiometer (IIR), and a wide field camera (WFC). Data from these instruments will be used to measure the vertical distributions of aerosols and clouds in the atmosphere, as well as optical and physical properties of aerosols and clouds which influence the Earth radiation budget. PICASSO-CENA will be flown in formation with the PM satellite of the NASA Earth Observing System (EOS) to provide a comprehensive suite of coincident measurements of atmospheric state, aerosol and cloud optical properties, and radiative fluxes. The mission will address critical uncertainties iin the direct radiative forcing of aerosols and clouds as well as aerosol influences on cloud radiative properties and cloud-climate radiation feedbacks. PICASSO-CENA is planned for a three year mission, with a launch in early 2003. PICASSO-CENA is being developed within the framework of a collaboration between NASA and CNES.
    Keywords: Environment Pollution
    Type: 10th Conference on Atmospheric Radiation; 290-293|Atmospheric Radiation; Jun 28, 1999 - Jul 02, 1999; Madison, WI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: The primary constituents of the Earth's atmosphere are molecular nitrogen and molecular oxygen. Ozone is created when ultraviolet light from the sun photodissociates molecular oxygen into two oxygen atoms. The oxygen atoms undergo many collisions but eventually combine with a molecular oxygen to form ozone (O3). The ozone molecules absorb ultraviolet solar radiation, primarily in the wavelength region between 200 and 300 nanometers, resulting in the dissociation of ozone back into atomic oxygen and molecular oxygen. The oxygen atom reattaches to an O2 molecule, reforming ozone which can then absorb another ultraviolet photon. This sequence goes back and forth between atomic oxygen and ozone, each time absorbing a uv photon, until the oxygen atom collides with and ozone molecule to reform two oxygen molecules.
    Keywords: Environment Pollution
    Type: UNISPACE; Jul 19, 1999 - Jul 30, 1999; Vienna; Austria
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-13
    Description: In a 1994 National Research Council report, "Atmospheric Effects of Stratospheric Aircraft: An Evaluation of NASA's Interim Assessment", the assessment panel's key issues for better determining the atmospheric effects of stratospheric aircraft, particularly on ozone, were presented.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-13
    Description: Since the pioneer works of Bjerknes (1966,1969) many studies have been conducted to understand the El Nino and Southern Oscillation (ENSO) phenomenon. These studies have led to a basic understanding of the dynamics of El Nino. Central to the couple dynamics of ENSO is the delayed action oscillator theory (Suarez and Schopf 1988), which successfully describes the cyclic feature of El Nino. While the oscillatory feature of El Nino is reasonably well understood, the irregularity of El Nino, the effect of monsoon on ENSO, and the response of coupled system to the global warming are still under debate. In the present study, we attempt to provide some theoretical understanding of possible impacts of seasonal cycle, monsoon, and climate changes on ENSO using intermediate coupled model.
    Keywords: Environment Pollution
    Type: Jan 10, 1999 - Jan 15, 1999; Dallas, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-18
    Description: Analysis of the aerosol properties during 3 recent international field campaigns ACE-1, TARFOX and ACE-2 are described using satellite retrievals from NOAA AVHRR data. Validation of the satellite retrieval procedure is performed with airborne, shipboard, and land-based sunphotometry during ACE-2. The intercomparison between satellite and surface optical depths has a correlation coefficient of 0.93 for 630 nm wavelength and 0.92 for 860 nm wavelength, The standard error of estimate is 0.025 for 630 nm wavelength and 0.023 for 860 nm wavelength. Regional aerosol properties are examined in composite analysis of aerosol optical properties from the ACE-1, TARFOX and ACE-2 regions. ACE-1 and ACE-2 regions have strong modes in the distribution of optical depth around 0.1, but the ACE-2 tails toward higher values yielding an average of 0.16 consistent with pollution and dust aerosol intrusions. The TARFOX region has a noticeable mode of 0.2, but has significant spread of aerosol optical depth values consistent with the varied continental aerosol constituents off the eastern North American Coast.
    Keywords: Environment Pollution
    Type: Tellus (ISSN 0280-6509); 52B; 2; 484-497
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-17
    Description: Evidence for relatively mild climates on ancient Earth and Mars has been a puzzle in light of the faint early sun. The geologic evidence, although far from conclusive, would appear to indicate that the surfaces of both planets were, if anything, warmer ca. 3-4 Ga than they are now. The astrophysical argument that the sun ought to have brightened approx. 30% since it reached the main sequence is hard to refute. There results a paradox between the icehouse we expect and the greenhouse we think we see. The usual fix has been to posit massive CO2 atmospheres, although reduced gases (e.g., NH3 or CH4 ) have had their partisans. Evidence against siderite in paleosols dated 2.2-2.75 Ga sets a rough upper limit of 30 PAL (present atmospheric levels) on pCO2 at that time. This is an order of magnitude short of what is needed to defeat the fainter sun. We present here an independent argument against high pCO2 on early Earth that applies not only to the Archean but yet more forcefully to the Hadean era. Additional information is contained in the original extended abstract.
    Keywords: Environment Pollution
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-17
    Description: The role of aerosol forcing remains one of the largest uncertainties in estimating man's impact on the global climate system. One school of thought suggests that remote sensing by satellite sensors will provide the data necessary to narrow these uncertainties. While satellite measurements of direct aerosol forcing appear to be straightforward, satellite measurements of aerosol indirect forcing will be more complicated. Pioneering studies identified indirect aerosol forcing using AVHRR data in the biomass burning regions of Brazil. We have expanded this analysis with AVHRR to include an additional year of data and assimilated water vapor fields. The results show similar latitudinal dependence as reported by Kaufman and Fraser, but by using water vapor observations we conclude that latitude is not a proxy for water vapor and the strength of the indirect effect is not correlated to water vapor amounts. In addition to the AVHRR study we have identified indirect aerosol forcing in Brazil at much smaller spatial scales using the MODIS Airborne Simulator. The strength of the indirect effect appears to be related to cloud type and cloud dynamics. There is a suggestion that some of the cloud dynamics may be influenced by smoke destabilization of the atmospheric column. Finally, this study attempts to quantify remote sensing limitations due to the accuracy limits of the retrieval algorithms. We use a combination of numerical aerosol transport models, ground-based AERONET data and ISCCP cloud climatology to determine how much of the forcing occurs in regions too clean to determine from satellite retrievals.
    Keywords: Environment Pollution
    Type: Aerosol-Cloud; Dec 01, 1999 - Dec 03, 1999; Kyoto; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-17
    Description: After two decades of active research, a much better understanding of the broader role of biospheric processes on the local climate has emerged. A surface-albedo increase, particularly in desert border regions of the subtropics (as well as the deforested tropical regions), leads to a net surface energy deficit, which in turn leads to a relative sinking and reduced rainfall. On the other hand, studies of the influence of altered ratios of evapotranspiration and sensible fluxes, in situations where the net solar income is unchanged, show that evapotranspiration is a more desirable flux for increased precipitation and vitality of the biosphere. Besides providing water vapor and convective available potential energy (CAPE) to the lower troposphere, evapotranspiration helps in building larger CAPE before "turning on" the moist-convection. Larger CAPE in the lower troposphere enables convection to reach into the deeper atmosphere thereby heating the upper troposphere; indeed, moist-convection is also accompanied by the evaporation of falling precipitation that cools and moistens the lower atmosphere. While convective, as opposed to stratiform, precipitation reduces the fractional cloud cover; it also allows more solar radiation to reach the surface thereby invigorating surface fluxes. These, together with moist convection and associated downdrafts help to maintain the characteristic upper temperature limit(s) of the moist-land as well as oceanic regions. Regardless of the above understanding, several important problems continue to hinder the accurate simulation of a realistic land atmosphere interaction in a numerical model (both GCM and/or Meso-scale models). Among the unsolved problems are parameterization of sub-grid scale land processes that include small-scale variability of soil moisture, snow-cover and snow-physics, the biodiversity of the biosphere, orography, local drainage characteristics under natural conditions, and surface flow over the natural terrain. A well-known non-linear response of surface fluxes to these variations makes the problem of parameterizing land-atmosphere interaction processes hard-to-address and simulate, particularly in a GCM. In our presentation, we will discuss how orographic, snow-cover, and water table interactions can be included into a Simple Biosphere Model such as SiB/SSiB. Figure I shows how, in the Russian region, spring snowmelt affects the soil moisture profile. Corresponding figure 2 shows how interaction with the water table decreases the natural evapotranspiration in the Sahel region simulation. While these simulations need better validation with data, the simulations reveal that surface processes are sensitive to these parameterizations. With these developments, we continue to advance our understanding of the interaction of land with the atmosphere aloft, but the intrinsic variability of the newer parameters, e. g., hydraulic properties of the soil, diminish the positive influences of these advances on the improved climate simulation with GCMs.
    Keywords: Environment Pollution
    Type: Paper J1.12 , Jan 09, 2000 - Jan 14, 2000; Long Beach, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-17
    Description: This paper presents the first detailed characterization of interannual variability in tropical tropospheric column ozone (TCO) to delineate the relative importance of biomass burning and large-scale transport. TCO time series are derived from 20 years (1979-1998) of total ozone mapping spectrometer (TOMS) data using the convective cloud differential (CCD) method. Our study identifies three regions in the tropics with distinctly different characteristics related to interannual variability. These three regions are the eastern Pacific, Atlantic, and western Pacific. The Atlantic region indicates a quasi-biennial oscillation (QBO) in TCO which is out of phase with the QBO in stratospheric ozone. This is consistent with the photochemical control of this region by ozone-producing precursors. The observed pattern however does not seem to be related to interannual variability in ozone precursors related to biomass burning. Instead it appears to be a manifestation of the UV modulation of upper tropospheric chemistry on a QBO time scale caused by stratospheric ozone. During El Nino events there is anomalously low TCO in the eastern Pacific and high values in the western Pacific, indicating the effects of convectively-driven transport. The observed increase of 10-20 DU in TCO in the Indonesian region in the western Pacific during the recent 1997-1998 El Nino was associated with large-scale fires which may have contributed 5-10 DU of the total increase.
    Keywords: Environment Pollution
    Type: May 31, 1999 - Jun 04, 1999; Boston, MA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-17
    Description: Since the beginning of the World Climate Research Program's Global Precipitation Climatology Project (GPCP) satellite remote sensing of precipitation has made dramatic improvements, particularly for tropical regions. Data from microwave and infrared sensors now form the most critical input to precipitation data sets and can be calibrated with surface gauges to so that the strengths of each data source can be maximized in some statistically optimal sense. It is clear however that there still remain significant uncertainties with satellite precipitation retrievals which limit their usefulness for many purposes. Systematic differences i'A tropical precipitation estimates have been brought to light in comparison activities such as the GPCP Algorithm Intercomparison Project and more recent Wetnet Precipitation Intercomparison Project 3. These uncertainties are assuming more importance because of the demands for validation associated with global climate modeling and data assimilation methodologies. The objective of the present study is to determine the physical basis for systematic differences in spatial structure of tropical precipitation as portrayed by several different satellite-based data sets. The study is limited to oceanic regions only and deals primarily with aspects of spatial variability. We are specifically interested in why MSU channel 1 and GPI precipitation differences are so striking over the Eastern Pacific ITCZ and why they both differ from other microwave emission-based precipitation estimates from SSM/I and a scattering-based deep convective ice index from MSU channel 2. Our results to date have shown that MSU channel I precipitation estimates are biased high over the Eastern Pacific ITCZ because of two factors: (1) the hypersensitivity of this frequency to cloud water in contrast to falling rain drops, and (2) unaccounted for scattering effects by precipitation-size ice which depresses the signal of the liquid water emission. Likewise, cold cloud top climatologies such as the GPI show an excess (a deficit) in estimated rainfall over the E. Pacific ITCZ (Warm Pool region). We show that these algorithms need to account for regionally varying heights (or temperatures) at which tropical convection detrains to form cirrus shields. A second objective we pursue is to identify variations in the macroscale cloud physical and thermodynamic properties of precipitation regimes" and relate these differences to tropical dynamical mechanisms of tropical heat and moisture balance. Finally, we interpret the algorithm differences and their associations with tropical dynamics in terms of WCRP GPCP goals for constructing precipitation climatologies.
    Keywords: Environment Pollution
    Type: Jan 10, 1999 - Jan 15, 1999; Dallas, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-17
    Description: This paper presents an overview of Project ATLANTA (ATlanta Land use ANalysis: Temperature and Air-quality) which is an investigation that seeks to observe, measure, model, and analyze how the rapid growth of the Atlanta, Georgia metropolitan area since the early 1970's has impacted the region's climate and air quality. The primary objectives for this research effort are: (1) To investigate and model the relationships between land cover change in the Atlanta metropolitan, and the development of the urban heat island phenomenon through time; (2) To investigate and model the temporal relationships between Atlanta urban growth and land cover change on air quality; and (3) To model the overall effects of urban development on surface energy budget characteristics across the Atlanta urban landscape through time. Our key goal is to derive a better scientific understanding of how land cover changes associated with urbanization in the Atlanta area, principally in transforming forest lands to urban land covers through time, has, and will, effect local and regional climate, surface energy flux, and air quality characteristics. Allied with this goal is the prospect that the results from this research can be applied by urban planners, environmental managers and other decision-makers, for determining how urbanization has impacted the climate and overall environment of the Atlanta area. Multiscaled remote sensing data, particularly high resolution thermal infrared data, are integral to this study for the analysis of thermal energy fluxes across the Atlanta urban landscape.
    Keywords: Environment Pollution
    Type: Mar 23, 1999; Honolulu, HI; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-17
    Description: Simultaneous spaceborne and ground based measurements of the scattered solar radiation, create a powerful tool for determination of dust absorption and scattering properties. Absorption of solar radiation is a key component in understanding dust impact on radiative forcing at the top of the atmosphere, on the temperature profile and on cloud formation. We use Landsat spaceborne measurements at seven spectral channels in the range of 0.47 to 2.2 microns over Senegal with corresponding measurements of the aerosol spectral optical thickness by ground based sunphotometers, to find that Saharan dust absorption of solar radiation is two to four times smaller than measured in situ and represented in models. Though dust was found to absorb in the blue (single scattering albedo w = 0.88), almost no absorption, w = 0.98, was found for wavelengths 〉 0.6 microns. The new finding increases by 50% recently estimated solar radiative forcing by dust at the top of the atmosphere and decreases the estimated dust heating of the lower troposphere due to absorption of solar radiation. Dust transported from Asia shows slightly higher absorption for wavelengths under 1 micron, that can be explained by the presence of black carbon from urban/industrial pollution associated with the submicron size mode. In the talk I shall also discuss recent observation of the impact of dust shape on the dust scattering properties.
    Keywords: Environment Pollution
    Type: Sep 09, 1999 - Sep 10, 1999; Rome; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-17
    Description: The diagram, which attests the El Nino teleconnection observed by the NASA Scatterometer (NSCAT) in 1997, is an example of the results of our research in air-sea interaction - the core component of our three-part contribution to the Climate Variability Program. We have established an interplay among scientific research, which turns spacebased data into knowledge, a push in instrument technology, which improves observations of climate variability, and an information system, which produces and disseminates new data to support our scientific research. Timothy Liu led the proposal for advanced technology, in response to the NASA Post-2002 Request for Information. The sensor was identified as a possible mission for continuous ocean surface wind measurement at higher spatial resolution, and with the unique capability to measure ocean surface salinity. He is participating in the Instrument Incubator Program to improve the antenna technology, and is initiating a study to integrate the concept on Japanese missions. He and his collaborators have set up a system to produce and disseminate high level (gridded) ocean surface wind/stress data from NSCAT and European missions. The data system is being expanded to produce real-time gridded ocean surface winds from Quikscat, and precipitation and evaporation from the Tropical Rain Measuring Mission. It will form the basis for a spacebased data analysis system which will include momentum, heat and water fluxes. The study on 1997 El Nino teleconnection illustrates our interdisciplinary and multisensor approach to study climate variability. The diagram shows that the collapse of trade wind and the westerly wind anomalies in the central equatorial Pacific led to the equatorial ocean warming. The equatorial wind anomalies are connected to the anomalous cyclonic wind pattern in the northeast Pacific. The anomalous warming along the west coast of the United States is the result of the movement of the pre-existing warm sea surface temperature anomalies with the cyclonic wind anomalies toward the coast. The results led to a new study which identifies decadal ocean variations in the Northeast Pacific. Three studies of oceanic responses to wind forcing caused by the seasonal change of monsoons, the passage of a typhoon, and the 1997 El Nino, were successfully conducted. Besides wind forcing, we continue to examine new techniques for estimating thermal and hydrologic fluxes, through the inverse ocean mixed-layer model, through divergence of atmospheric water transport, and by direct retrieval from radiances observed by microwave radiometers. Greenhouse warming has been linked to water vapor measured by two spaceborne sensors in two studies. In the first study, strong baroclinicity and deep convection were found to transport water vapor to the upper atmosphere and increase greenhouse trapping over the storm tracks of the North Pacific and Atlantic. In another study, the annual cycle of greenhouse warming were related to sea surface temperature (SST) and integrated water vapor, and the latitudinal dependence of the magnitudes and phases of the annual cycles were compared.
    Keywords: Environment Pollution
    Type: Climate Variability Program; 31; JPL-Publ-99-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-17
    Description: We compared zonal mean specific humidity derived from the 21 June-4 July 1995 Global Positioning System (GPS)/MET occultation observations with that derived from the European Center for Medium-Range Weather Forecasts (ECMWF) global analyses. The GPS/MET results indicate a drier troposphere, especially near the subtropical tradewind inversion. A small, moist bias in the GPS/MET upper northern-hemisphere troposphere compared to ECMWF may be due to a small radiosonde temperature bias. A diagram shows the difference (g/kg) between the GPS/MET zonal mean specific humidity and that for June-August derived from 1963-1973 radiosondes. Although the observing period is short, GPS and ECMWF results both indicate a significantly wetter boundary layer at most latitudes consistent with decadal trends observed in radiosonde data. GPS/MET results exhibit higher tropical convective available potential energy (CAPE), suggesting a more vigorous tropical Hadley circulation. Drier, free troposphere air in the descending branches of the Hadley circulation is due in part to a moist radiosonde bias but may also reflect some negative moisture feedback. Using 1992-1997 ground GPS observations and recent advancements in GPS technology, we removed an apparent altimetric drift (-1.2 +/- 0.4 mm/yr) due to columnar water vapor from the Topography (Ocean) Experiment (TOPEX) microwave radiometer, which brought the TOPEX mean sea level change estimates into better agreement with historical tide gauge records, suggesting global mean sea level is rising at a rate of 1.5-2.0 mm/yr. We can also discern a statistically significant increase of 0.2 +/- 0.1 kg/square m/yr in mean columnar water vapor over the ocean from 1992-1997. Optimal fingerprinting can be used for the detection and attribution of tropospheric warming due to an anthropogenic greenhouse. Optimal fingerprinting distinguishes between different types of signals according to their spatial and temporal patterns, while minimizing the influence of natural climate variability. S. Leroy concludes that the signal-to-noise ratio of global warming detection increases by unity approximately every 10 years if a single oceanic region is chosen. Less time for detection is likely when many global regions are considered simultaneously. GPS occultation constellations allow the possibility of detecting small changes in upper air temperature with inconsequential calibration errors, making occultation an ideal data type for global warming detection studies. Our initial study of a 22-GHz satellite-satellite occultation system predicts upper troposphere moisture sensitivities of 3-5 ppmv and 1-2 percent in the middle and lower troposphere. Additional information contained in original.
    Keywords: Environment Pollution
    Type: Climate Variability Program; 26; JPL-Publ-99-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-17
    Description: The variable resolution stretched grid (SG) version of the Goddard Earth Observing System (GEOS) GCM has been recently developed and tested in a regional climate simulation mode. The SG-approach is an alternative to the widely used nested grid approach introduced a decade ago as a pioneering step to regional climate modeling. The region of interest with a uniform about 60 km resolution used in experiments is a rectangle over the U.S. The results of one annual as well as two-month simulations for the anomalous climate event of the U.S. drought of 1988, are validated against data analysis fields and diagnostics. The efficient regional down-scaling as well as the positive impact of fine regional resolution, are obtained. The SG-concept appeared to be a promising candidate for regional and subregional climate studies and applications.
    Keywords: Environment Pollution
    Type: General Assembly; Apr 18, 1999 - Apr 24, 1999; The Hague; Netherlands
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-17
    Description: The GCM-Reality Intercomparison Project for SPARC (GRIPS) is assessing and monitoring the performance of state-of-the-art general circulation models (GCMs). A wide variety of tasks have been initiated. These are designed to: (1) assess the ability of the GCMs to represent the current climatological structure of the troposphere and middle atmosphere,(2) to compare their response to imposed forcing anomalies, and (3) to estimate the certainty with which future climate perturbations can be predicted. This paper is concerned with assessments of the climatological states in the GCM simulations. Comparing the simulations with observational datasets reveals considerable discrepancies in the modelled fields. While it might be anticipated that certain types of biases in the model simulations might be related to the formulation of different aspects of the numerical package (dynamical schemes, cloud schemes, radiation transfer, inclusion of gravity wave drag), there is no clear relationship between these features. This paper attempts to draw a more comprehensive picture of the GCMs'performance than has previously been shown, by comparing the dominant forcing mechanisms in the models with observational estimates, and relating model deficiencies to the differences in the physical mechanisms in the GCMS.
    Keywords: Environment Pollution
    Type: General Assembly; Jul 01, 1999; Birmingham; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-17
    Description: Current global analyses contain significant errors in primary hydrological fields such as precipitation, evaporation, and related cloud and moisture in the tropics. Work has been underway at NASA's Data Assimilation Office to explore the use of TRMM and SSM/I-derived rainfall and total precipitable water (TPW) data in global data assimilation to directly constrain these hydrological parameters. We found that assimilating these data types improves not only the precipitation and moisture estimates but also key climate parameters directly linked to convection such as the outgoing longwave radiation, clouds, and the large-scale circulation in the tropics. We will present results showing that assimilating TRMM and SSM/I 6-hour averaged rain rates and TPW estimates significantly reduces the state-dependent systematic errors in assimilated products. Specifically, rainfall assimilation improves cloud and latent heating distributions, which, in turn, improves the cloudy-sky radiation and the large-scale circulation, while TPW assimilation reduces moisture biases to improve radiation in clear-sky regions. Rainfall and TPW assimilation also improves tropical forecasts beyond 1 day.
    Keywords: Environment Pollution
    Type: May 31, 1999 - Jun 04, 1999; Boston, MA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-17
    Description: Water vapor and precipitation are two important parameters confining the hydrological cycle in the atmosphere and over the ocean surface. In the extratropical areas, due to variations of midlatitude storm tracks and subtropical jetstreams, water vapor and precipitation have large variability. Recently, a concept of water recycling rate defined previously by Chahine et al. (GEWEX NEWS, August, 1997) has drawn increasing attention. The recycling rate of moisture is calculated as the ratio of precipitation to total precipitable water (its inverse is the water residence time). In this paper, using multi-sensor spacebased measurements we will study the role of sea surface temperature and ocean surface wind in determining the water recycling rate over oceans and coastal lands. Response of water recycling rate in midlatitudes to the El Nino event will also be discussed. Sea surface temperature data are derived from satellite observations from the Advanced Very High Resolution Radiometer (AVHRR) blended with in situ measurements, available for the period 1982-1998. Global sea surface wind observations are obtained from spaceborne scatterometers aboard on the European Remote-Sensing Satellite (ERS1 and 2), available for the period 1991-1998. Global total precipitable water provided by the NASA Water Vapor Project (NVAP) is available for the period 1988-1995. Global monthly mean precipitation provided by the Global Precipitation Climatology Project (GPCP) is available for the period 1987-1998.
    Keywords: Environment Pollution
    Type: 3rd International Scientific Conference on the Global Energy and Water Cycle (GEWEX); Jun 16, 1999 - Jun 19, 1999; Beijing; China
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-17
    Description: Using GCM simulations of the troposphere-stratosphere circulation in different climate regimes, the sensitivity of the Brewer-Dobson Circulation to climate change will be discussed. Included will be simulations of the stratosphere with increasing/doubled C02 as done with different versions of the GISS Global Climate Middle Atmosphere Model, with and without ozone response. To put the results in a broader perspective, stratospheric circulation changes from several paleoclimate simulations will also be presented, including the Last Glacial Maximum and the Paleocene, each with several different (plausible) latitudinal sea surface temperature gradients. Hence the climate changes investigated will include strong variations in baroclinic and topographic tropospheric planetary wave and gravity wave forcing, as well as global mean temperature and atmospheric C02 levels. Results will be analyzed in terms of wave driving via E-P flux convergences and gravity wave effects, and will be shown to be strongly dependent on wave propagation characteristics.
    Keywords: Environment Pollution
    Type: Brewer-Dobson Stratospheric/Modelling Workshop; United Kingdom
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-17
    Description: The direct-beam spectral extinction of solar radiation contains information on atmospheric composition in a form that is essentially free from the data analysis complexities that often arise from multiple scattering. Ground based Multi-Filter Shadowband Radiometer (MFRSR) measurements provide such information for the vertical atmospheric column path, while solar occultation measurements from a satellite platform provide horizontal slices through the atmosphere. We describe application of a Multi-Spectral Atmospheric Column Extinction (MACE) analysis technique used to analyze MFRSR data also to occultation measurements made by SAGE 11. For analysis, we select the 1985 Nevado del Ruiz volcanic eruption period to retrieve atmospheric profiles of ozone and NO2, and changes in the stratospheric aerosol size and optical depth. The time evolution of volcanic aerosol serves as a passive tracer to study stratospheric dynamics, and changes in particle size put constraints on the sulfur chemistry modeling of volcanic aerosols.
    Keywords: Environment Pollution
    Type: 19999 Kyoto Aerosol-Cloud Workshop; Dec 01, 1999 - Dec 03, 1999; Kyoto; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-17
    Description: After the last extreme El Nino in 1982-1983, an extensive in situ observing system was deployed in the tropical Pacific Ocean in support of monitoring and predicting El Nino. Within the past ten years a series of ocean and atmosphere remote sensing satellites have been launched that serve to supplement and enhance the observations being taken at the surface, and at depth, in the equatorial Pacific Ocean. The 1997-1998 "El Nino Event of the Century" has been the best monitored El Nino on record. The 1997-1998 El Nino will be the first time a major El Nino event and subsequent La Nina will have been observed from start to finish from a combination of remotely-sensed measurements of sea surface temperature, sea surface topography, sea surface winds, ocean color, and precipitation. Among some of the lessons learned to date from the 1997-1998 event have been the need for global observations in addition to just those in the equatorial Pacific Ocean. In this presentation the evolution of the 1997-1998 El Nino will be depicted from the unique vantage point provided by these space-based observations as analyzed separately, and together as a representation of the coupled system. Comparisons and contrasts with the evolution 1982-1983 El Nino and how the in situ and space-based observations complement each other will be discussed.
    Keywords: Environment Pollution
    Type: El Nino; Apr 07, 1999 - Apr 08, 1999; Tallahassee, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-17
    Description: I compare and contrast climate forcings due to solar variability with climate forcings due to other mechanisms of climate change, interpretation of the role of the sun in climate change depends upon climate sensitivity and upon the net forcing by other climate change mechanisms. Among the potential indirect climate forcings due to solar variability, only that due to solar cycle induced ozone changes has been well quantified. There is evidence that the sun has been a significant player in past climate change on decadal to century time scales, and that it has the potential to contribute to climate change in the 21st century.
    Keywords: Environment Pollution
    Type: Climatic Effects on a Changing Sun; Jan 01, 1998; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-17
    Description: The Madden Julian Oscillations (MJO) and associated westerly wind (WW) events account for much of the tropical intraseasonal variability (TISV). The TISV has been suggested as an important stochastic forcing that may be one of the underlying causes for the observed irregularities of the El Nino-Southern Oscillation (ENSO). Recent observational studies and theories of interannual to interdecadal-scale variability suggest that ENSO may arise from different mechanisms depending on the basic states. The Pacific warming event of 1997, being associated with a period of strong MJO and WW events, serves as a natural experiment for studying the possible role of TISV in triggering an ENSO event. We have performed a combined statistical and composite analysis of surface WW events based on the assimilated surface wind and sea level pressure for the period of 1980-1993, the SSM/I wind for the period of 1988-1997, and OLR. Results indicates that extratropical forcing contribute significantly to the evolution of MJO and establishment of WW events over the Pacific warm pool. Following the major WW events, there appeared an eastward extension of equatorial warm SST anomalies from the western Pacific warm pool. Such tropical-extratropical interaction is particularly clear in the winter of 96-97 that leads to the recent warming event in 1997/98. From the above discussion, our current study on this subject is based on the hypothesis that 1) there is an enhanced air-sea interaction associated with TISV and the northerly surges from the extratropics in the initial phase of the 97/98 warming event, and 2) the relevant mechanisms are functions of the basic state of the coupled system (in terms of SST distribution and atmospheric mean circulation) that varies at the interannual and interdecadal time scale. We are analyzing the space-time structure of the northerly surges, their association with air-sea fluxes and upper ocean responses during the period of September 1996 to June 1997. The estimate of daily values of latent heat fluxes is based on NSCAT wind, SST, and ECMWF surface air temperature and SSM/I water vapor data (Chou et al. 1997). To understand the relevant mechanisms, we will analyze the origin of the northerly surges in terms of atmospheric instability associated with the extratropical circulation, and the mutual influence between the tropical heating and the extratropical circulation. In this meeting, we will report the analysis addressing the first part of the above hypothesis.
    Keywords: Environment Pollution
    Type: Jan 10, 1999 - Jan 15, 1999; Dallas, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-17
    Description: Chou (1998) produced daily mean surface net shortwave and longwave radiative fluxes for the westem Pacific warm pool (from the Japan GMS data) for the COARE IOP (intensive observing period). In addition, daily mean air-sea turbulent fluxes have been produced from the SSM/I data using the method of Chou (1997). In this paper, we focus on three areas. The first area is to further assess accuracy of the retrieved daily mean surface fluxes using those from the IMET buoy, RV Moana Wave, and RV IWecoma. The second area is to describe the temporal and spatial variability of the surface heat budget (as well as the related parameters) over the warm pool during the IOP. The third area is to discuss the relation of SST (sea surface temperature) change to surface fluxes, including the tranmission of solar flux through the ocean mix-layer.
    Keywords: Environment Pollution
    Type: American Meteorological Society Annual Meeting; Jan 10, 1999 - Jan 15, 1999; Dallas, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-17
    Description: Langley's remarkable solar and lunar spectra collected from Mt. Whitney inspired Arrhenius to develop the first quantitative climate model in 1896. In 1999, NASA's Earth Observing AM Satellite (EOS-Terra) will repeat Langley's experiment, but for the entire planet, thus pioneering a wide array of calibrated spectral observations from space of the Earth System. Conceived in response to real environmental problems, EOS-Terra, in conjunction with other international satellite efforts, will fill a major gap in current efforts by providing quantitative global data sets with a resolution of few kilometers on the physical, chemical and biological elements of the earth system. Thus, like Langley's data, EOS-Terra can revolutionize climate research by inspiring a new generation of climate system models and enable us to assess the human impact on the environment. In the talk I shall review the historical developments that brought to the Terra mission, its objectives and example of application to biomass burning.
    Keywords: Environment Pollution
    Type: Jul 16, 1999; Canada
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-17
    Description: Global distribution of dust in the atmosphere has been simulated using the NASA Goddard chemical transport model (GEOS-CTM) to help retrieve the aerosol optical thickness from TOMS absorbing aerosol index. The model contains a dust module which accounts for sources and removal processes. The transport is driven by the assimilated meteorological fields generated by the NASA Goddard Earth Observing System Data Assimilation System (GEOS DAS). One of the key parameters, in the retrieval algorithm of optical thickness from Total Ozone Mapping Spectrometer (TOMS) data, is the vertical profile of aerosols. During the period 10- 19 September 1994, Lidar on-space Technology Experiment (LITE) was flown on space shuttle Discovery. The 53 hours of data collected cover the lower atmosphere from the earth surface to 20 kilometers altitude and from 57 N to 57 S with a high resolution of about 15 meters. The model results are compared with LITE data over the source regions of dust (Africa, Middle East, Asia, Australia) and in the remote troposphere (Atlantic and Pacific). The simulated horizontal distribution is compared with TOMS absorbing aerosol index. Finally the calculated optical thickness will be assessed with ground based sun-photometers (AERONET).
    Keywords: Environment Pollution
    Type: May 31, 1999 - Jun 04, 1999; Boston, MA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-17
    Description: A simple extension of the Held-Suarez (H-S) forcing that is capable of producing a realistic general circulation not only in the troposphere but also the stratosphere and the mesosphere will be presented. Similar to the original H-S forcing, an annual-mean like radiative equilibrium temperature is used. This extension is an ideal test bed for gravity wave drag parameterizations. It is also an inexpensive test bed for studying the mechanism of the Quasi-Biannual oscillations (QBO) and the "age spectrum" of the dynamical core formulation. The "mean climate" as well as the natural variability of the middle atmosphere as simulated by the NASA Data Assimilation Office finite-volume dynamical core under this forcing will be shown.
    Keywords: Environment Pollution
    Type: Solution of Partial Differential Equations on the Sphere; Nov 30, 1999 - Dec 03, 1999; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-17
    Description: The importance of quantitative knowledge of tropical rainfall, its associated latent heating and variability is summarized in the context of the global hydrologic cycle. Much of the tropics is covered by oceans. What land exists, is covered largely by rainforests that are only thinly populated. The only way to adequately measure the global tropical rainfall for climate and general circulation models is from space. The TRMM orbit is inclined 35' leading to good sampling in the tropics and a rapid precession to study the diurnal cycle of precipitation. The precipitation instrument complement consists of the first rain radar to be flown in space (PR), a multi-channel passive microwave sensor (TMI) and a five-channel VIS/IR (VIRS) sensor. The precipitation radar operates at a frequency of 13.6 GHz. The swath width is 220 km, with a horizontal resolution of 4 km and the vertical resolution of 250 in. The minimum detectable signal from the precipitation radar has been measured at 17 dBZ. The TMI instrument is designed similar to the SSM/I with two important changes. The 22.235 GHz water vapor absorption channel of the SSM/I was moved to 21.3 GHz in order to avoid saturation in the tropics and 10.7 GHz V&H polarized channels were added to expand the dynamic range of rainfall estimates. The resolution of the TMI varies from 4.6 km at 85 GHz to 36 km at 10.7 GHz. The visible and infrared sensor (VIRS) measures radiation at 0.63, 1.6, 3.75, 10.8 and 12.0 microns. The spatial resolution of all five VIRS channels is 2 km at nadir. In addition to the three primary rainfall instruments, TRMM will also carry a Lightning Imaging Sensor (LIS) and a Clouds and the Earth's Radiant Energy System (CERES) instrument.
    Keywords: Environment Pollution
    Type: Jan 09, 2000 - Jan 14, 2000; Long Beach, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-17
    Description: Simultaneous spaceborne and ground based measurements of the scattered solar radiation, create a powerful tool for determination of dust absorption. Absorption of solar radiation is a key component in understanding dust impact on radiative forcing at the top of the atmosphere, on the temperature profile and on cloud formation. We use Landsat spaceborne measurements at seven spectral channels in the range of 0.47 to 2.2 microns over Senegal with corresponding measurements of the aerosol spectral optical thickness by ground based sunphotometers, to find that Saharan dust absorption of solar radiation is two to four times smaller than measured in situ and represented in models. Though dust was found to absorb in the blue (single scattering albedo wo = 0.88), almost no absorption, wo = 0.98, was found for 1 greater than 0.6 microns. The results are in agreement with dust radiative measurements reported in the literature, and explain some previously reported but unexplained dust radiative properties. Therefore, the new finding should be of general relevance. The new finding increases by 50% recently estimated solar radiative forcing by dust at the top of the atmosphere and decreases the estimated dust heating of the lower troposphere due to absorption of solar radiation. Dust transported from Asia shows slightly higher absorption for wavelengths under 1 @im, that can be explained by the presence of black carbon from urban/industrial pollution associated with the submicron size mode.
    Keywords: Environment Pollution
    Type: Oct 06, 1999; NY; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-17
    Description: Remote sensing of aerosol and aerosol radiative forcing of climate is going through a major transformation. The launch in next few years of new satellites designed specifically for remote sensing of aerosol is expected to further revolutionized aerosol measurements: until five years ago satellites were not designed for remote sensing of aerosol. Aerosol optical thickness was derived as a by product, only over the oceans using one AVHRR channel with errors of approx. 50%. However it already revealed a very important first global picture of the distribution and sources of aerosol. In the last 5 years we saw the introduction of polarization and multi-view observations (POLDER and ATSR) for satellite remote sensing of aerosol over land and ocean. Better products are derived from AVHRR using its two channels. The new TOMS aerosol index shows the location and transport of aerosol over land and ocean. Now we anticipate the launch of EOS-Terra with MODIS, MISR and CERES on board for multi-view, multi-spectral remote sensing of aerosol and its radiative forcing. This will allow application of new techniques, e.g. using a wide spectral range (0.55-2.2 microns) to derive precise optical thickness, particle size and mass loading. Aerosol is transparent in the 2.2 microns channel, therefore this channel can be used to detect surface features that in turn are used to derive the aerosol optical thickness in the visible part of the spectrum. New techniques are developed to derive the aerosol single scattering albedo, a measure of absorption of sunlight, and techniques to derive directly the aerosol forcing at the top of the atmosphere. In the last 5 years a global network of sun/sky radiometers was formed, designed to communicate in real time the spectral optical thickness from 50-80 locations every day, every 15 minutes. The sky angular and spectral information is also measured and used to retrieve the aerosol size distribution, refractive index, single scattering albedo and the spectral flux reaching the surface. Effort to introduce remote sensing from lidars will literally additional dimension to aerosol remote sensing. The vertical dimension is a critical link between the global satellite observations and modeling of aerosol transport. Lidars are also critical to study aerosol impact on cloud microphysics and reflectance. Both lidar ground networks and satellite systems are in development. This new capability is expected to put remote sensing in the forefront of aerosol and climate studies. Together with field experiments, chemical analysis and chemical transport models we anticipate, in the next decade, to be able to resolve some of the outstanding questions regarding the role of aerosol in climate, in atmospheric chemistry and its influence on human health and life on this planet.
    Keywords: Environment Pollution
    Type: Oct 11, 1999; Tacoma, WA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-17
    Description: We calculate vortex-averaged ozone loss rates at 465-K potential temperature during the Aug.-Sept. time period in the southern hemisphere and Feb.-Mar. time period in the northern hemisphere. Ozone loss rates are calculated two ways. First, from the time series of measurements of 03. Second, from measurements of ClO, from which ozone loss is inferred based on our theories of Cl-catalyzed ozone destruction. Both measurement sets are from the Upper Atmosphere Research Satellite (UARS) Microwave Limb Sounder (MLS) instrument. We find good agreement between vortex-averaged ozone loss rates calculated from these methods. Our analysis provides no support for recent work suggesting that current theories of Cl-catalyzed ozone loss underestimate the observed decrease in polar ozone during the ozone "hole" period.
    Keywords: Environment Pollution
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-17
    Description: An ozone data assimilation system has been developed at the Data Assimilation Office of the NASA/Goddard Space Flight Center to provide global three-dimensional analyzed ozone mixing ratio and total column ozone. The Total Ozone Mapping Spectrometer (TOMS) total column ozone and the Solar Backscatter Ultraviolet (SBUV) or SBUV/2 partial ozone profile data are assimilated. The analyzed winds from the Goddard Earth Observing System Data Assimilation System (GEOS-DAS) drive the ozone transport. Following every transport model timestep, the model prediction is combined with the observations using a global, physical-space based, statistical analysis scheme. Due to the smaller size of the ozone system than that of a global meteorological data assimilation system, new statistical analysis methodology, including anisotropic and flow-dependent forecast error correlation models, can be implemented and tested in the ozone system more easily. Sample results from the winter 1992 validation period are presented. There is a close agreement between the analyzed fields and the independent observations from ozone sondes and the Halogen Occultation Experiment (HALOE).
    Keywords: Environment Pollution
    Type: Apr 19, 1999 - Apr 23, 1999; Hague; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-17
    Description: An ozone simulation from the Goddard three-dimensional chemistry and transport model for the 1995-96 northern hemisphere winter is compared with ozone observations from airborne Differential Absorption Lidar (DIAL), from the Polar Ozone and Aerosol Measurement (POAM), from the Microwave Limb Sounder (MLS), and from the Halogen Occultation Experiment (HALOE). The 3D model uses winds from the Goddard Data Assimilation System. The 3D model reproduces the latitude dependence of the horizontal and vertical ozone gradients of the subtropical DIAL observations. Comparisons with subtropical satellite observations, which lack the spatial resolution of DIAL but provide near continuous coverage throughout the subtropics, show that the model also reproduces longitude and temporal dependence in the tropical-midlatitude boundary. At polar latitudes, observations from DIAL flights on December 9 and January 30, and POAM and MLS between late December and late January are compared with the 3D model. Data from the three platforms consistently show that the observed ozone has a negative trend relative to the modeled ozone, and that the trend is uniform in time between early and mid winter, with no obvious dependence on proximity to the vortex edge.
    Keywords: Environment Pollution
    Type: May 31, 1999 - Jun 04, 1999; Boston, MA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-17
    Description: A new 20-year, monthly, globally complete precipitation analysis has been completed as part of the World Climate Research Program's (WCRP/GEWEX) Global Precipitation Climatology Project (GPCP). This Version 2 of the community generated data set is a result of combining the procedures and data sets as described. The global, monthly, 2.5x 2.5 degree latitude-longitude product utilizes precipitation estimates from low-orbit microwave sensors (SSM/1) and geosynchronous IR sensors and raingauge information over land. The low-orbit microwave estimates are used to adjust or correct the geosynchronous IR estimates, thereby maximizing the utility of the more physically-based microwave estimates and the finer time sampling of the geosynchronous observations. Information from raingauges is blended into the analyses over land. In the 1986-present period TOVS-based precipitation estimates are adjusted to GPCP fields and used in polar regions to produce globally-complete results. The extension back to 1979 utilizes the procedures of Xie and Arkin and their OLR Precipitation Index (OPI). The 20-year climatology of the Version 2 GPCP analysis indicates the expected features of a very strong Pacific Ocean ITCZ and SPCZ with maximum 20-year means approaching 10 mm/day. A similar strength maximum over land is evident over Borneo. Weaker maxima in the tropics occur in the Atlantic ITCZ and over South America and Africa. In mid-latitudes of the Northern Hemisphere the Western Pacific and Western Atlantic maxima have values of approximately 7 mm/day, while in the Southern Hemisphere the mid-latitude maxima are located southeast of Africa, in mid-Pacific as an extension of the SPCZ and southeast of South America. In terms of global totals the GPCP analysis shows 2.7 mm/day (3.0 mm/day over ocean; 2.1 mm/day over land), similar to the Jaeger climatology, but not other climatologies. Zonal averages peak at 6 mm/day at 7*N with mid-latitude peaks of about 3 mm/day at 40-45* latitude. Poleward of 45* the GPCP analysis shows larger zonally-averaged values than most previous satellite-based estimates, although the values are similar to tl,ie Jaeger climatology. Over both ocean areas and at high latitudes the analysis requires additional validation and comparison with special, independent data sets from field experiments and from the Tropical Rain Measuring Mission (TRMM) to confirm the absolute magnitude and variations of precipitation seen in the analysis. Interannual and other variations of the global fields will be shown focusing on the recent ('97-'99) ENSO event compared with previous events, including teleconnections at mid and high latitudes. An ENSO Precipitation Index (ESPI) calculated using the new data set will be described and related to the evolution of the ENSO events during the 20-year period.
    Keywords: Environment Pollution
    Type: Paper 6704 , Global Change Studies; Jan 09, 2000 - Jan 14, 2000; Long Beach, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...