ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Currents  (22)
  • American Meteorological Society  (22)
  • Reed Business Information
  • MDPI Publishing
  • 2010-2014  (22)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 27 (2014): 2405–2416, doi:10.1175/JCLI-D-13-00359.1.
    Description: Several recent studies utilizing global climate models predict that the Pacific Equatorial Undercurrent (EUC) will strengthen over the twenty-first century. Here, historical changes in the tropical Pacific are investigated using the Simple Ocean Data Assimilation (SODA) reanalysis toward understanding the dynamics and mechanisms that may dictate such a change. Although SODA does not assimilate velocity observations, the seasonal-to-interannual variability of the EUC estimated by SODA corresponds well with moored observations over a ~20-yr common period. Long-term trends in SODA indicate that the EUC core velocity has increased by 16% century−1 and as much as 47% century−1 at fixed locations since the mid-1800s. Diagnosis of the zonal momentum budget in the equatorial Pacific reveals two distinct seasonal mechanisms that explain the EUC strengthening. The first is characterized by strengthening of the western Pacific trade winds and hence oceanic zonal pressure gradient during boreal spring. The second entails weakening of eastern Pacific trade winds during boreal summer, which weakens the surface current and reduces EUC deceleration through vertical friction. EUC strengthening has important ecological implications as upwelling affects the thermal and biogeochemical environment. Furthermore, given the potential large-scale influence of EUC strength and depth on the heat budget in the eastern Pacific, the seasonal strengthening of the EUC may help reconcile paradoxical observations of Walker circulation slowdown and zonal SST gradient strengthening. Such a process would represent a new dynamical “thermostat” on CO2-forced warming of the tropical Pacific Ocean, emphasizing the importance of ocean dynamics and seasonality in understanding climate change projections.
    Description: EJDis supported by NSFGrantsOCE-1031971 and OCE-1233282. KBK is supported by NSF Grant OCE-1233282.
    Description: 2014-09-15
    Keywords: Tropics ; Currents ; Ocean dynamics ; Atmosphere-ocean interaction ; Climate variability ; Reanalysis data
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 21 (2014): 2015–2025, doi:10.1175/JTECH-D-13-00262.1.
    Description: The NOAA Tropical Atmosphere Ocean (TAO) moored array has, for three decades, been a valuable resource for monitoring and forecasting El Niño–Southern Oscillation and understanding physical oceanographic as well as coupled processes in the tropical Pacific influencing global climate. Acoustic Doppler current profiler (ADCP) measurements by TAO moorings provide benchmarks for evaluating numerical simulations of subsurface circulation including the Equatorial Undercurrent (EUC). Meanwhile, the Sea Education Association (SEA) has been collecting data during repeat cruises to the central equatorial Pacific Ocean (160°–126°W) throughout the past decade that provide useful cross validation and quantitative insight into the potential for stationary observing platforms such as TAO to incur sampling biases related to the strength of the EUC. This paper describes some essential sampling characteristics of the SEA dataset, compares SEA and TAO velocity measurements in the vicinity of the EUC, shares new insight into EUC characteristics and behavior only observable in repeat cross-equatorial sections, and estimates the sampling bias incurred by equatorial TAO moorings in their estimates of the velocity and transport of the EUC. The SEA high-resolution ADCP dataset compares well with concurrent TAO measurements (RMSE = 0.05 m s−1; R2 = 0.98), suggests that the EUC core meanders sinusoidally about the equator between ±0.4° latitude, and reveals a mean sampling bias of equatorial measurements (e.g., TAO) of the EUC’s zonal velocity of −0.14 ± 0.03 m s−1 as well as a ~10% underestimation of EUC volume transport. A bias-corrected monthly record and climatology of EUC strength at 140°W for 1990–2010 is presented.
    Description: The authors thank the NSF Physical Oceanography program (OCE-1233282) and the WHOI Academic Programs Office for funding.
    Description: 2015-03-01
    Keywords: Pacific Ocean ; Tropics ; Currents ; Ocean dynamics ; Buoy observations ; Sampling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 30 (2013): 2465–2477, doi:10.1175/JTECH-D-13-00032.1.
    Description: Seven current meters representing four models on a stiffly buoyed mooring were placed for an 11-month deployment to intercompare their velocity measurements: two vector-measuring current meters (VMCMs), two Aanderaa recording current meter (RCM) 11s, two Aanderaa SEAGUARDs, and a Nortek Aquadopp. The current meters were placed 6-m apart from each other at about 4000-m depth in an area of Drake Passage expected to have strong currents, nearly independent of depth near the bottom. Two high-current events occurred in bursts of semidiurnal pulses lasting several days, one with peak speeds up to 67 cm s−1 and the other above 35 cm s−1. The current-speed measurements all agreed within 7% of the median value when vector averaged over simultaneous time intervals. The VMCMs, chosen as the reference measurements, were found to measure the median of the mean-current magnitudes. The RCM11 and SEAGUARD current speeds agreed within 2% of the median at higher speeds (35–67 cm s−1), whereas in lower speed ranges (0–35 cm s−1) the vector-averaged speeds for the RCM11 and SEAGUARD were 4%–5% lower and 3%–5% higher than the median, respectively. The shorter-record Aquadopp current speeds were about 6% higher than the VMCMs over the range (0–40 cm s−1) encountered.
    Description: This work was supported by U.S. National Science Foundation Grants ANT-0635437 and ANT-0636493.
    Description: 2014-04-01
    Keywords: Currents ; Acoustic measurements/effects ; In situ oceanic observations ; Instrumentation/sensors
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 31 (2014): 945–966, doi:10.1175/JTECH-D-13-00146.1.
    Description: This study investigated the correspondence between the near-surface drifters from a mass drifter deployment near Martha’s Vineyard, Massachusetts, and the surface current observations from a network of three high-resolution, high-frequency radars to understand the effects of the radar temporal and spatial resolution on the resulting Eulerian current velocities and Lagrangian trajectories and their predictability. The radar-based surface currents were found to be unbiased in direction but biased in magnitude with respect to drifter velocities. The radar systematically underestimated velocities by approximately 2 cm s−1 due to the smoothing effects of spatial and temporal averaging. The radar accuracy, quantified by the domain-averaged rms difference between instantaneous radar and drifter velocities, was found to be about 3.8 cm s−1. A Lagrangian comparison between the real and simulated drifters resulted in the separation distances of roughly 1 km over the course of 10 h, or an equivalent separation speed of approximately 2.8 cm s−1. The effects of the temporal and spatial radar resolution were examined by degrading the radar fields to coarser resolutions, revealing the existence of critical scales (1.5–2 km and 3 h) beyond which the ability of the radar to reproduce drifter trajectories decreased more rapidly. Finally, the importance of the different flow components present during the experiment—mean, tidal, locally wind-driven currents, and the residual velocities—was analyzed, finding that, during the study period, a combination of tidal, locally wind-driven, and mean currents were insufficient to reliably reproduce, with minimal degradation, the trajectories of real drifters. Instead, a minimum combination of the tidal and residual currents was required.
    Description: I.R. was supported by the WHOI Coastal Ocean Institute Project 27040148 and by the WHOI Access to the Sea Program 27500036. I.R. and A.K. acknowledge support fromthe NSF project 83264600. A.K. acknowledges support from the Massachusetts Clean Energy Center (MassCEC) via the New England Marine Renewable Energy Center (MREC).
    Description: 2014-10-01
    Keywords: Coastal flows ; Currents ; Lagrangian circulation/transport ; Trajectories ; Radars/Radar observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 2234–2253, doi:10.1175/JPO-D-12-033.1.
    Description: Meridional velocity, mass, and heat transport in the equatorial oceans are difficult to estimate because of the nonapplicability of the geostrophic balance. For this purpose a steady-state model is utilized in the equatorial Indian Ocean using NCEP wind stress and temperature and salinity data from the World Ocean Atlas 2005 (WOA05) and Argo. The results show a Somali Current flowing to the south during the winter monsoon carrying −11.5 ± 1.3 Sv (1 Sv ≡ 106 m3 s−1) and −12.3 ± 0.3 Sv from WOA05 and Argo, respectively. In the summer monsoon the Somali Current reverses to the north transporting 16.8 ± 1.2 Sv and 19.8 ± 0.6 Sv in the WOA05 and Argo results. Transitional periods are considered together and in consequence, there is not a clear Somali Current present in this period. Model results fit with in situ measurements made around the region, although Argo data results are quite more realistic than WOA05 data results.
    Description: This study has been partly funded by the MOC Project (CTM 2008- 06438) and the Spanish contribution to the Argo network (AC2009 ACI2009-0998), financed by the Spanish Government and Feder.
    Description: 2013-06-01
    Keywords: Indian Ocean ; Subtropics ; Currents ; Ocean circulation ; Transport ; Wind stress
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 29 (2012): 1377–1390, doi:10.1175/JTECH-D-11-00160.1.
    Description: Estimates of surface currents over the continental shelf are now regularly made using high-frequency radar (HFR) systems along much of the U.S. coastline. The recently deployed HFR system at the Martha’s Vineyard Coastal Observatory (MVCO) is a unique addition to these systems, focusing on high spatial resolution over a relatively small coastal ocean domain with high accuracy. However, initial results from the system showed sizable errors and biased estimates of M2 tidal currents, prompting an examination of new methods to improve the quality of radar-based velocity data. The analysis described here utilizes the radial metric output of CODAR Ocean Systems’ version 7 release of the SeaSonde Radial Site Software Suite to examine both the characteristics of the received signal and the output of the direction-finding algorithm to provide data quality controls on the estimated radial currents that are independent of the estimated velocity. Additionally, the effect of weighting spatial averages of radials falling within the same range and azimuthal bin is examined to account for differences in signal quality. Applied to two month-long datasets from the MVCO high-resolution system, these new methods are found to improve the rms difference comparisons with in situ current measurements by up to 2 cm s−1, as well as reduce or eliminate observed biases of tidal ellipses estimated using standard methods.
    Description: 2013-03-01
    Keywords: Coastal flows ; Currents ; Data processing ; Data quality control ; In situ atmospheric observations ; Remote sensing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 41 (2011): 889–910, doi:10.1175/2010JPO4496.1.
    Description: This paper examines interaction between a barotropic point vortex and a steplike topography with a bay-shaped shelf. The interaction is governed by two mechanisms: propagation of topographic Rossby waves and advection by the forcing vortex. Topographic waves are supported by the potential vorticity (PV) jump across the topography and propagate along the step only in one direction, having higher PV on the right. Near one side boundary of the bay, which is in the wave propagation direction and has a narrow shelf, waves are blocked by the boundary, inducing strong out-of-bay transport in the form of detached crests. The wave–boundary interaction as well as out-of-bay transport is strengthened as the minimum shelf width is decreased. The two control mechanisms are related differently in anticyclone- and cyclone-induced interactions. In anticyclone-induced interactions, the PV front deformations are moved in opposite directions by the point vortex and topographic waves; a topographic cyclone forms out of the balance between the two opposing mechanisms and is advected by the forcing vortex into the deep ocean. In cyclone-induced interactions, the PV front deformations are moved in the same direction by the two mechanisms; a topographic cyclone forms out of the wave–boundary interaction but is confined to the coast. Therefore, anticyclonic vortices are more capable of driving water off the topography. The anticyclone-induced transport is enhanced for smaller vortex–step distance or smaller topography when the vortex advection is relatively strong compared to the wave propagation mechanism.
    Description: Y. Zhang acknowledges the support of theMIT-WHOI Joint Programin Physical Oceanography, NSF OCE-9901654 and OCE-0451086. J. Pedlosky acknowledges the support of NSF OCE- 9901654 and OCE-0451086.
    Keywords: Transport ; Eddies ; Barotropic flow ; Topographic effects ; Vortices ; Currents ; Potential vorticity ; Rossby waves
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 40 (2010): 2768–2777, doi:10.1175/2010JPO4461.1.
    Description: Although sustained observations yield a description of the mean equatorial current system from the western Pacific to the eastern terminus of the Tropical Atmosphere Ocean (TAO) array, a comprehensive observational dataset suitable for describing the structure and pathways of the Equatorial Undercurrent (EUC) east of 95°W does not exist and therefore climate models are unconstrained in a region that plays a critical role in ocean–atmosphere coupling. Furthermore, ocean models suggest that the interaction between the EUC and the Galápagos Islands (92°W) has a striking effect on the basic state and coupled variability of the tropical Pacific. To this end, the authors interpret historical measurements beginning with those made in conjunction with the discovery of the Pacific EUC in the 1950s, analyze velocity measurements from an equatorial TAO mooring at 85°W, and analyze a new dataset from archived shipboard ADCP measurements. Together, the observations yield a possible composite description of the EUC structure and pathways in the eastern equatorial Pacific that may be useful for model validation and guiding future observation.
    Description: Karnauskas acknowledges the WHOI Penzance Endowed Fund in Support of Assistant Scientists.
    Keywords: Atmosphere-ocean interaction ; Currents ; In situ observations ; Model evaluation/performance ; Pacific Ocean ; Tropics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 40 (2010): 2679–2695, doi:10.1175/2010JPO4395.1.
    Description: Observations of stratification and currents between June 2007 and March 2009 reveal a strong overflow between 400- and 570-m depth from the Panay Strait into the Sulu Sea. The overflow water is derived from approximately 400 m deep in the South China Sea. Temporal mean velocity is greater than 0.75 m s−1 at 50 m above the 570-m Panay Sill. Empirical orthogonal function analysis of a mooring time series shows that the flow is dominated by the bottom overflow current with little seasonal variance. The overflow does not descend below 1250 m in the Sulu Sea but rather settles above high-salinity deep water derived from the Sulawesi Sea. The mean observed overflow transport at the sill is 0.32 × 106 m3 s−1. The observed transport was used to calculate a bulk diapycnal diffusivity of 4.4 × 10−4 m2 s−1 within the Sulu Sea slab (575–1250 m) ventilated from Panay Strait. Analysis of Froude number variation across the sill shows that the flow is hydraulically controlled. A suitable hydraulic control model shows overflow transport equivalent to the observed overflow. Thorpe-scale estimates show turbulent dissipation rates up to 5 × 10−7 W kg−1 just downstream of the supercritical to subcritical flow transition, suggesting a hydraulic jump downstream of the sill.
    Description: This work was supported by the Office of Naval Research Grant N00014-09-1-0582 to Lamont-Doherty Earth Observatory of Columbia University; Grants ONR-13759000 and N00014-09-1-0582 to the Woods Hole Oceanographic Institution; Grant ONR-N00014-06-1-0690 to Scripps Institute of Oceanography; and a National Defense Science and Engineering Graduate Fellowship.
    Keywords: Transport ; Dynamics ; Topographic effects ; Currents ; Empirical orthogonal functions
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 41 (2011): 911–925, doi:10.1175/2011JPO4498.1.
    Description: Motivated by discrepancies between Eulerian transport estimates and the behavior of Lagrangian surface drifters, near-surface transport pathways and processes in the North Atlantic are studied using a combination of data, altimetric surface heights, statistical analysis of trajectories, and dynamical systems techniques. Particular attention is paid to the issue of the subtropical-to-subpolar intergyre fluid exchange. The velocity field used in this study is composed of a steady drifter-derived background flow, upon which a time-dependent altimeter-based perturbation is superimposed. This analysis suggests that most of the fluid entering the subpolar gyre from the subtropical gyre within two years comes from a narrow region lying inshore of the Gulf Stream core, whereas fluid on the offshore side of the Gulf Stream is largely prevented from doing so by the Gulf Stream core, which acts as a strong transport barrier, in agreement with past studies. The transport barrier near the Gulf Stream core is robust and persistent from 1992 until 2008. The qualitative behavior is found to be largely independent of the Ekman drift.
    Description: This work was supported by the National Science Foundation Grants CMG-82469600 and CMG-82579600 and by the Office of Naval Research Grant ONR-13108700.
    Keywords: Atlantic Ocean ; Transport ; Gyres ; Lagrangian circulation/transport ; Tracers ; Currents ; Meridional overturning circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 24 (2011): 762-777, doi:10.1175/2010JCLI3731.1.
    Description: The meridional shifts of the Oyashio Extension (OE) and of the Kuroshio Extension (KE), as derived from high-resolution monthly sea surface temperature (SST) anomalies in 1982–2008 and historical temperature profiles in 1979–2007, respectively, are shown based on lagged regression analysis to significantly influence the large-scale atmospheric circulation. The signals are independent from the ENSO teleconnections, which were removed by seasonally varying, asymmetric regression onto the first three principal components of the tropical Pacific SST anomalies. The response to the meridional shifts of the OE front is equivalent barotropic and broadly resembles the North Pacific Oscillation/western Pacific pattern in a positive phase for a northward frontal displacement. The response may reach 35 m at 250 hPa for a typical OE shift, a strong sensitivity since the associated SST anomaly is 0.5 K. However, the amplitude, but not the pattern or statistical significance, strongly depends on the lag and an assumed 2-month atmospheric response time. The response is stronger during fall and winter and when the front is displaced southward. The response to the northward KE shifts primarily consists of a high centered in the northwestern North Pacific and hemispheric teleconnections. The response is also equivalent barotropic, except near Kamchatka, where it tilts slightly westward with height. The typical amplitude is half as large as that associated with OE shifts.
    Description: This work was supported in part by the L’Institut universitaire de France (CF), the WHOI Heyman fellowship, and the NASAGrant withAwardNNX09AF35G(Y.-O. K), and grants through NOAA’s Climate Variability and Predictability Program (MAA).
    Keywords: Atmospheric circulation ; Currents
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 41 (2011): 241-246, doi:10.1175/2010JPO4557.1.
    Description: The vertical dispersion of a tracer released on a density surface near 1500-m depth in the Antarctic Circumpolar Current west of Drake Passage indicates that the diapycnal diffusivity, averaged over 1 yr and over tens of thousands of square kilometers, is (1.3 ± 0.2) × 10−5 m2 s−1. Diapycnal diffusivity estimated from turbulent kinetic energy dissipation measurements about the area occupied by the tracer in austral summer 2010 was somewhat less, but still within a factor of 2, at (0.75 ± 0.07) × 10−5 m2 s−1. Turbulent diapycnal mixing of this intensity is characteristic of the midlatitude ocean interior, where the energy for mixing is believed to derive from internal wave breaking. Indeed, despite the frequent and intense atmospheric forcing experienced by the Southern Ocean, the amplitude of finescale velocity shear sampled about the tracer was similar to background amplitudes in the midlatitude ocean, with levels elevated to only 20%–50% above the Garrett–Munk reference spectrum. These results add to a long line of evidence that diapycnal mixing in the interior middepth ocean is weak and is likely too small to dictate the middepth meridional overturning circulation of the ocean.
    Description: This material is based upon work supported by the National Science Foundation Grants OCE-0622825,OCE-0622670, OCE-0622630, and OCE-0623177.
    Keywords: Diapycnal mixing ; Currents ; Antarctica ; Ocean circulation ; Meridional overturning circulation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 39 (2009): 1541-1550, doi:10.1175/2008JPO3999.1.
    Description: The response of a zonal channel to a uniform, switched-on but subsequently steady poleward outflow is presented. An eastward coastal current with a Kelvin wave’s cross-shore structure is found to be generated instantly upon initiation of the outflow. The current is essentially in geostrophic balance everywhere except for the vicinity of the outflow channel mouth, where the streamlines must cross planetary vorticity contours to feed the current. The adjustment of this region generates a plume that propagates westward at Rossby wave speeds. The cross-shore structure of the plume varies with longitude, and at any given longitude it evolves with time. The authors show that the plume evolution can be understood both conceptually and quantitatively as the westward propagation of the Kelvin current’s meridional spectrum, with each spectral element propagating at its own Rossby wave group velocity.
    Description: This work was completed at Woods Hole Oceanographic Institution while T.S. Durland was supported by the Ocean and Climate Change Institute. M.A. Spall was supported by NSF Grant OCE-0423975, and J. Pedlosky by NSF Grant OCE-0451086. T.S. Durland acknowledges additional report preparation support from NASA Grant NNG05GN98G.
    Keywords: Coastal flows ; Estuaries ; Currents ; Vorticity ; Plumes
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 37 (2007): 148–161, doi:10.1175/JPO3003.1.
    Description: As part of a program aimed at developing a long-duration, subsurface mooring, known as Ultramoor, several modern acoustic current meters were tested. The instruments with which the authors have the most experience are the Aanderaa RCM11 and the Nortek Aquadopp, which measure currents using the Doppler shift of backscattered acoustic signals, and the Falmouth Scientific ACM, which measures changes in travel time of acoustic signals between pairs of transducers. Some results from the Doppler-based Sontek Argonaut and the travel-time-based Nobska MAVS are also reported. This paper concentrates on the fidelity of the speed measurement but also presents some results related to the accuracy of the direction measurement. Two procedures were used to compare the instruments. In one, different instruments were placed close to one another on three different deep-ocean moorings. These tests showed that the RCM11 measures consistently lower speeds than either a vector averaging current meter or a vector measuring current meter, both more traditional instruments with mechanical velocity sensors. The Aquadopp in use at the time, but since updated to address accuracy problems in low scattering environments, was biased high. A second means of testing involved comparing the appropriate velocity component of each instrument with the rate of change of pressure when they were lowered from a ship. Results from this procedure revealed no depth dependence or measurable bias in the RCM11 data, but did show biases in both the Aquadopp and Argonaut Doppler-based instruments that resulted from low signal-to-noise ratios in the clear, low scattering conditions beneath the thermocline. Improvements in the design of the latest Aquadopp have reduced this bias to a level that is not significant.
    Description: This material is based upon work supported by the National Science Foundation under Grant 9810641.
    Keywords: Currents ; Acoustic measurements ; In situ sensors
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 39 (2009): 1258-1271, doi:10.1175/2008JPO4028.1.
    Description: This paper presents a set of laboratory experiments focused on how a buoyant coastal current flowing over a sloping bottom interacts with a canyon and what controls the separation, if any, of the current from the upstream canyon bend. The results show that the separation of a buoyant coastal current depends on the current width W relative to the radius of curvature of the bathymetry ρc. The flow moved across the mouth of the canyon (i.e., separated) for W/ρc 〉 1, in agreement with previous results. The present study extends previous work by examining both slope-controlled and surface-trapped currents, and using a geometry specific to investigating buoyant current–canyon interaction. The authors find that, although bottom friction is important in setting the position of the buoyant front, the separation process driven by the inertia of the flow could overcome even the strongest bathymetric influence. Application of the laboratory results to the East Greenland Current (EGC), an Arctic-origin buoyant current that is observed to flow in two branches south of Denmark Strait, suggests that the path of the EGC is influenced by the large canyons cutting across the shelf, as the range of W/ρc in the ocean spans those observed in the laboratory. What causes the formation of a two-branched EGC structure downstream of the Kangerdlugssuaq Canyon (68°N, 32°W) is still unclear, but potential mechanisms are discussed.
    Description: This work was partially funded by NSF Grant OCE-0450658. DS also received support from the Academic Programs Office of the Woods Hole Oceanographic Institution, while CC had partial support from NSF OCE-0350891.
    Keywords: Coastal flows ; Buoyancy ; Currents ; Experimental design ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 104–120, doi:10.1175/2007JPO3686.1.
    Description: Recent studies have indicated that the North Atlantic Ocean subpolar gyre circulation undergoes significant interannual-to-decadal changes in response to variability in atmospheric forcing. There are also observations, however, suggesting that the southern limb of the subpolar gyre, namely, the eastward-flowing North Atlantic Current (NAC), may be quasi-locked to particular latitudes in the central North Atlantic by fracture zones (gaps) in the Mid-Atlantic Ridge. This could constrain the current’s ability to respond to variability in forcing. In the present study, subsurface float trajectories at 100–1000 m collected during 1997–99 and satellite-derived surface geostrophic velocities from 1992 to 2006 are used to provide an improved description of the detailed pathways of the NAC over the ridge and their relationship to bathymetry. Both the float and satellite observations indicate that in 1997–99, the northern branch of the NAC was split into two branches as it crossed the ridge, one quasi-locked to the Charlie–Gibbs Fracture Zone (CGFZ; 52°–53°N) and the other to the Faraday Fracture Zone (50°–51°N). The longer satellite time series shows, however, that this pattern did not persist outside the float sampling period and that other branching modes persisted for one or more years, including an approximately 12-month time period in 2002–03 when the strongest eastward flow over the ridge was at 49°N. Schott et al. showed how northward excursions of the NAC can temporarily block the westward flow of the Iceland–Scotland Overflow Water through the CGFZ. From the 13-yr time series of surface geostrophic velocity, it is estimated that such blocking may occur on average 6% of the time, although estimates for any given 12-month period range from 0% to 35%.
    Description: This research was supported by National Science Foundation Grants OCE-9531877 to the Woods Hole Oceanographic Institution (WHOI) and OCE-9906775 to the University of Rhode Island, by the WHOI Summer Student Fellowship Program, and by the Lawrence J. Pratt and Melinda M. Hall Endowed Fund for Interdisciplinary Research at the Woods Hole Oceanographic Institution.
    Keywords: Currents ; Topographic effects ; Interannual variability ; Forcing ; Gyres
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 1203–1221, doi:10.1175/2007JPO3768.1.
    Description: Analyses of current time series longer than 200 days from 33 sites over the Middle Atlantic Bight continental shelf reveal a consistent mean circulation pattern. The mean depth-averaged flow is equatorward, alongshelf, and increases with increasing water depth from 3 cm s−1 at the 15-m isobath to 10 cm s−1 at the 100-m isobath. The mean cross-shelf circulation exhibits a consistent cross-shelf and vertical structure. The near-surface flow is typically offshore (positive, range −3 to 6 cm s−1). The interior flow is onshore and remarkably constant (−0.2 to −1.4 cm s−1). The near-bottom flow increases linearly with increasing water depth from −1 cm s−1 (onshore) in shallow water to 4 cm s−1 (offshore) at the 250-m isobath over the slope, with the direction reversal near the 50-m isobath. A steady, two-dimensional model (no along-isobath variations in the flow) reproduces the main features of the observed circulation pattern. The depth-averaged alongshelf flow is primarily driven by an alongshelf pressure gradient (sea surface slope of 3.7 × 10−8 increasing to the north) and an opposing mean wind stress that also drives the near-surface offshore flow. The alongshelf pressure gradient accounts for both the increase in the alongshelf flow with water depth and the geostrophic balance onshore flow in the interior. The increase in the near-bottom offshore flow with water depth is due to the change in the relative magnitude of the contributions from the geostrophic onshore flow that dominates in shallow water and the offshore flow driven by the bottom stress that dominates in deeper water.
    Description: This research was funded by Ocean Sciences Division of the National Science Foundation under Grants OCE-820773, OCE-841292, and OCE-848961.
    Keywords: Ocean models ; Ocean circulation ; Continental shelf ; Currents ; In situ observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 1644-1668, doi:10.1175/2007JPO3829.1.
    Description: The mean structure and time-dependent behavior of the shelfbreak jet along the southern Beaufort Sea, and its ability to transport properties into the basin interior via eddies are explored using high-resolution mooring data and an idealized numerical model. The analysis focuses on springtime, when weakly stratified winter-transformed Pacific water is being advected out of the Chukchi Sea. When winds are weak, the observed jet is bottom trapped with a low potential vorticity core and has maximum mean velocities of O(25 cm s−1) and an eastward transport of 0.42 Sv (1 Sv ≡ 106 m3 s−1). Despite the absence of winds, the current is highly time dependent, with relative vorticity and twisting vorticity often important components of the Ertel potential vorticity. An idealized primitive equation model forced by dense, weakly stratified waters flowing off a shelf produces a mean middepth boundary current similar in structure to that observed at the mooring site. The model boundary current is also highly variable, and produces numerous strong, small anticyclonic eddies that transport the shelf water into the basin interior. Analysis of the energy conversion terms in both the mooring data and the numerical model indicates that the eddies are formed via baroclinic instability of the boundary current. The structure of the eddies in the basin interior compares well with observations from drifting ice platforms. The results suggest that eddies shed from the shelfbreak jet contribute significantly to the offshore flux of heat, salt, and other properties, and are likely important for the ventilation of the halocline in the western Arctic Ocean. Interaction with an anticyclonic basin-scale circulation, meant to represent the Beaufort gyre, enhances the offshore transport of shelf water and results in a loss of mass transport from the shelfbreak jet.
    Description: This study was supported by the National Science Foundation Office of Polar Programs under Grants 0421904 and 035268 (MS), and by the Office of Naval Research Grant N00014-02-1-0317 (RP and PF). Analysis by AJP was supported by the Office of Naval Research under Grant N00014-97-1-0135 and by the National Science Foundation under Grant OPP-9815303.
    Keywords: Arctic ; Eddies ; Transport ; Currents ; Jets
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography. 37 (2007): 2509-2533, doi:10.1175/JPO3123.1.
    Description: Twelve years of historical hydrographic data, spanning the period 1990–2001, are analyzed to examine the along-stream evolution of the western North Atlantic Ocean shelfbreak front and current, following its path between the west coast of Greenland and the Middle Atlantic Bight. Over 700 synoptic sections are used to construct a mean three-dimensional description of the summer shelfbreak front and to quantify the along-stream evolution in properties, including frontal strength and grounding position. Results show that there are actually two fronts in the northern part of the domain—a shallow front located near the shelf break and a deeper front centered in the core of Irminger Water over the upper slope. The properties of the deeper Irminger front erode gradually to the south, and the front disappears entirely near the Grand Banks of Newfoundland. The shallow shelfbreak front is identifiable throughout the domain, and its properties exhibit large variations from north to south, with the largest changes occurring near the Tail of the Grand Banks. Despite these structural changes, and large variations in topography, the foot of the shelfbreak front remains within 20 km of the shelf break. The hydrographic sections are also used to examine the evolution of the baroclinic velocity field and its associated volume transport. The baroclinic velocity structure consists of a single velocity core that is stronger and penetrates deeper where the Irminger front is present. The baroclinic volume transport decreases by equal amounts at the southern end of the Labrador Shelf and at the Tail of the Grand Banks. Overall, the results suggest that the Grand Banks is a geographically critical location in the North Atlantic shelfbreak system.
    Description: This work was supported by the National Science Foundation under Grants OCE00- 95261 (PF) and OCE-0450658 (RP).
    Keywords: Continental shelf ; Currents ; Atlantic Ocean ; Fronts ; Transport
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 39 (2009): 3162-3175, doi:10.1175/2009JPO4239.1.
    Description: This study analyzes anisotropic properties of the material transport by eddies and eddy-driven zonal jets in a general circulation model of the North Atlantic through the analysis of Lagrangian particle trajectories. Spreading rates—defined here as half the rate of change in the particle dispersion—in the zonal direction systematically exceed the meridional rates by an order of magnitude. Area-averaged values for the upper-ocean zonal and meridional spreading rates are approximately 8100 and 1400 m2 s−1, respectively, and in the deep ocean they are 2400 and 200 m2 s−1. The results demonstrate that this anisotropy is mainly due to the action of the transient eddies and not to the shear dispersion associated with the time-mean jets. This property is consistent with the fact that eddies in this study have zonally elongated shapes. With the exception of the upper-ocean subpolar gyre, eddies also cause the superdiffusive zonal spreading, significant variations in the spreading rate in the vertical and meridional directions, and the difference between the westward and eastward spreading.
    Description: Funding for IK was provided by NSF Grants OCE 0346178, 0749722, and 0842834. Funding for PB was provided by NSF Grants OCE 0344094 and OCE 0725796 and by the research grant from the Newton Trust of the University of Cambridge. For JP the acknowledgement is to NSF OCE-0451086.
    Keywords: Eddies ; Transport ; Currents ; North Atlantic Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 37 (2007): 2563-2569, doi:10.1175/JPO3134.1.
    Description: Along the Taiwan Strait (〈100 m in depth) a northeastward flow persists in all seasons despite the annually averaged wind stress that is strongly southwestward. The forcing mechanism of this countercurrent is examined by using a simple ocean model. The results from a suite of experiments demonstrate that it is the Kuroshio that plays the deciding role for setting the flow direction along the Taiwan Strait. The momentum balance along the strait is mainly between the wind stress, friction, and pressure gradient. Since both wind stress and friction act against the northward flow, it is most likely the pressure gradient that forces the northward flow, as noted in some previous studies. What remains unknown is why there is a considerable pressure difference between the southern and northern strait. The Kuroshio flows along the east coast of Taiwan, and thus the western boundary current layer dynamics applies there. Integrating the momentum equation along Taiwan’s east coast shows that there must be a pressure difference between the southern and the northern tip of Taiwan to counter a considerable friction exerted by the mighty Kuroshio. This same pressure difference is also felt on the other side of the island where it forces the northward flow through Taiwan Strait. The model shows that the local wind stress acts to dampen this northward flow. This mechanism can be illustrated by an integral constraint for flow around an island.
    Description: This study has been supported by National Science Foundation through Grant OCE-0351055.
    Keywords: Ocean circulation ; Wind ; Currents
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 23 (2010): 3249-3281, doi:10.1175/2010JCLI3343.1.
    Description: Ocean–atmosphere interaction over the Northern Hemisphere western boundary current (WBC) regions (i.e., the Gulf Stream, Kuroshio, Oyashio, and their extensions) is reviewed with an emphasis on their role in basin-scale climate variability. SST anomalies exhibit considerable variance on interannual to decadal time scales in these regions. Low-frequency SST variability is primarily driven by basin-scale wind stress curl variability via the oceanic Rossby wave adjustment of the gyre-scale circulation that modulates the latitude and strength of the WBC-related oceanic fronts. Rectification of the variability by mesoscale eddies, reemergence of the anomalies from the preceding winter, and tropical remote forcing also play important roles in driving and maintaining the low-frequency variability in these regions. In the Gulf Stream region, interaction with the deep western boundary current also likely influences the low-frequency variability. Surface heat fluxes damp the low-frequency SST anomalies over the WBC regions; thus, heat fluxes originate with heat anomalies in the ocean and have the potential to drive the overlying atmospheric circulation. While recent observational studies demonstrate a local atmospheric boundary layer response to WBC changes, the latter’s influence on the large-scale atmospheric circulation is still unclear. Nevertheless, heat and moisture fluxes from the WBCs into the atmosphere influence the mean state of the atmospheric circulation, including anchoring the latitude of the storm tracks to the WBCs. Furthermore, many climate models suggest that the large-scale atmospheric response to SST anomalies driven by ocean dynamics in WBC regions can be important in generating decadal climate variability. As a step toward bridging climate model results and observations, the degree of realism of the WBC in current climate model simulations is assessed. Finally, outstanding issues concerning ocean–atmosphere interaction in WBC regions and its impact on climate variability are discussed.
    Description: Funding for LT was provided by the NASA-sponsored Ocean Surface Topography Science Team, under Contract 1267196 with the University of Washington, administered by the Jet Propulsion Laboratory. HN was supported in part by the Grant-in-Aid 18204044 by the Japan Society for Promotion for Science (JSPS) and the Global Environment Research Fund (S-5) of the Japanese Ministry of Environment. YK was supported by the Kerr Endowed Fund and Penzance Endowed Fund.
    Keywords: Currents ; Sea surface temperature ; Anomalies ; Large-scale motions ; Oceanic mixed layer ; Northern Hemisphere
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...