ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Baroclinic flows  (13)
  • In situ oceanic observations
  • American Meteorological Society  (22)
  • American Chemical Society (ACS)
  • Annual Reviews
  • 2010-2014  (22)
Collection
Publisher
  • American Meteorological Society  (22)
  • American Chemical Society (ACS)
  • Annual Reviews
Years
Year
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 40 (2010): 1075-1086, doi:10.1175/2009JPO4375.1.
    Description: A quasigeostrophic, two-layer model is used to study the baroclinic circulation around a thin, meridionally elongated island. The flow is driven by either buoyancy forcing or wind stress, each of whose structure would produce an antisymmetric double-gyre flow. The ocean bottom is flat. When the island partially straddles the intergyre boundary, fluid from one gyre is forced to flow into the other. The amount of the intergyre flow depends on the island constant, that is, the value of the geostrophic streamfunction on the island in each layer. That constant is calculated in a manner similar to earlier studies and is determined by the average, along the meridional length of the island, of the interior Sverdrup solution just to the east of the island. Explicit solutions are given for both buoyancy and wind-driven flows. The presence of an island of nonzero width requires the determination of the baroclinic streamfunction on the basin’s eastern boundary. The value of the boundary term is proportional to the island’s area. This adds a generally small additional baroclinic intergyre flow. In all cases, the intergyre flow produced by the island is not related to topographic steering of the flow but rather the pressure anomaly on the island as manifested by the barotropic and baroclinic island constants. The vertical structure of the flow around the island is a function of the parameterization of the vertical mixing in the problem and, in particular, the degree to which long baroclinic Rossby waves can traverse the basin before becoming thermally damped.
    Description: This research was supported in part by NSF Grant OCE 0451086.
    Keywords: Gyres ; Baroclinic flows ; Topographic effects ; Streamfunction ; Orographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 1267-1277, doi:10.1175/2007JPO3906.1.
    Description: A two-layer quasigeostrophic model in a channel is used to study the influence of lateral displacements of regions of different sign mean potential vorticity gradient (Πy) on the growth rate and structure of linearly unstable waves. The mean state is very idealized, with a region of positive Πy in the upper layer and a region of negative Πy in the lower layer; elsewhere Πy is zero. The growth rate and structure of the model’s unstable waves are quite sensitive to the amount of overlap between the two regions. For large amounts of overlap (more than several internal deformation radii), the channel modes described by Phillips’ model are recovered. The growth rate decreases abruptly as the amount of overlap decreases below the internal deformation radius. However, unstable modes are also found for cases in which the two nonzero Πy regions are separated far apart. In these cases, the wavenumber of the unstable waves decreases such that the aspect ratio of the wave remains O(1). The waves are characterized by a large-scale barotropic component that has maximum amplitude near one boundary but extends all the way across the channel to the opposite boundary. Near the boundaries, the wave is of mixed barotropic–baroclinic structure with cross-front scales on the order of the internal deformation radius. The perturbation heat flux is concentrated near the nonzero Πy regions, but the perturbation momentum flux extends all the way across the channel. The perturbation fluxes act to reduce the isopycnal slopes near the channel boundaries and to transmit zonal momentum from the region of Πy 〉 0 to the region on the opposite side of the channel where Πy 〈 0. These nonzero perturbation momentum fluxes are found even for a mean state that has no lateral shear in the velocity field.
    Description: This work was supported by NSF Grants OPP-0421904, OCE-0423975 (MAS), and OCE- 85108600 (JP).
    Keywords: Baroclinic flows ; Barotropic flows
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 744–765, doi:10.1175/JPO-D-12-067.1.
    Description: This study investigates the coherence between ocean bottom pressure signals at the Rapid Climate Change programme (RAPID) West Atlantic Variability Experiment (WAVE) array on the western North Atlantic continental slope, including the Woods Hole Oceanographic Institution Line W. Highly coherent pressure signals propagate southwestward along the slope, at speeds in excess of 128 m s−1, consistent with expectations of barotropic Kelvin-like waves. Coherent signals are also evidenced in the smaller pressure differences relative to 1000-m depth, which are expected to be associated with depth-dependent basinwide meridional transport variations or an overturning circulation. These signals are coherent and almost in phase for all time scales from 3.6 years down to 3 months. Coherence is still seen at shorter time scales for which group delay estimates are consistent with a propagation speed of about 1 m s−1 over 990 km of continental slope but with large error bounds on the speed. This is roughly consistent with expectations for propagation of coastally trapped waves, though somewhat slower than expected. A comparison with both Eulerian currents and Lagrangian float measurements shows that the coherence is inconsistent with a propagation of signals by advection, except possibly on time scales longer than 6 months.
    Description: This work was funded by the U.K. Natural Environment Research Council. Sofia Olhede was supported by EPSRC Grant EP/I005250/1. Initial observations at StationW(2001–04) were made possible by a grant from the G. Unger Vetlesen Foundation and support from the Woods Hole Oceanographic Institution. Since 2004, the Line W program has been supported by the U.S. National Science Foundation with supplemental contribution from WHOIs Ocean and Climate Change Institute.
    Description: 2013-10-01
    Keywords: Atlantic Ocean ; Boundary currents ; Meridional overturning circulation ; Pressure ; Waves, oceanic ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 39 (2009): 107-124, doi:10.1175/2008JPO3952.1.
    Description: In most estuarine systems it is assumed that the dominant along-channel momentum balance is between the integrated pressure gradient and bed stress. Scaling the amplitude of the estuarine circulation based on this balance has been shown to have predictive skill. However, a number of authors recently highlighted important nonlinear processes that contribute to the subtidal dynamics at leading order. In this study, a previously validated numerical model of the Hudson River estuary is used to examine the forces driving the residual estuarine circulation and to test the predictive skill of two linear scaling relationships. Results demonstrate that the nonlinear advective acceleration terms contribute to the subtidal along-channel momentum balance at leading order. The contribution of these nonlinear terms is driven largely by secondary lateral flows. Under a range of forcing conditions in the model runs, the advective acceleration terms nearly always act in concert with the baroclinic pressure gradient, reinforcing the residual circulation. Despite the strong contribution of the nonlinear advective terms to the subtidal dynamical balance, a linear scaling accurately predicts the strength of the observed residual circulation in the model. However, this result is largely fortuitous, as this scaling does not account for two processes that are fundamental to the estuarine circulation. The skill of this scaling results because of the compensatory relationship between the contribution of the advective acceleration terms and the suppression of turbulence due to density stratification. Both of these processes, neither of which is accounted for in the linear scaling, increase the residual estuarine circulation but have an opposite dependence on tidal amplitude and, consequently, strength of stratification.
    Description: This research was supported by the Beacon Institute for Rivers and Estuaries—Woods Hole Oceanographic Institution postdoctoral fellowship program, as well as NSF Grants OCE-0452054 and OCE-0451740.
    Keywords: Advection ; Estuarine circulation ; Friction ; Density currents ; Baroclinic flows
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2008. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 38 (2008): 380-399, doi:10.1175/2007JPO3728.1.
    Description: Barotropic to baroclinic conversion and attendant phenomena were recently examined at the Kaena Ridge as an aspect of the Hawaii Ocean Mixing Experiment. Two distinct mixing processes appear to be at work in the waters above the 1100-m-deep ridge crest. At middepths, above 400 m, mixing events resemble their open-ocean counterparts. There is no apparent modulation of mixing rates with the fortnightly cycle, and they are well modeled by standard open-ocean parameterizations. Nearer to the topography, there is quasi-deterministic breaking associated with each baroclinic crest passage. Large-amplitude, small-scale internal waves are triggered by tidal forcing, consistent with lee-wave formation at the ridge break. These waves have vertical wavelengths on the order of 400 m. During spring tides, the waves are nonlinear and exhibit convective instabilities on their leading edge. Dissipation rates exceed those predicted by the open-ocean parameterizations by up to a factor of 100, with the disparity increasing as the seafloor is approached. These observations are based on a set of repeated CTD and microconductivity profiles obtained from the research platform (R/P) Floating Instrument Platform (FLIP), which was trimoored over the southern edge of the ridge crest. Ocean velocity and shear were resolved to a 4-m vertical scale by a suspended Doppler sonar. Dissipation was estimated both by measuring overturn displacements and from microconductivity wavenumber spectra. The methods agreed in water deeper than 200 m, where sensor resolution limitations do not limit the turbulence estimates. At intense mixing sites new phenomena await discovery, and existing parameterizations cannot be expected to apply.
    Description: This work was funded by the National Science Foundation as a component of the Hawaii Ocean Mixing Program. Added support for FLIP was provided by the Office of Naval Research.
    Keywords: Pacific Ocean ; Topographic effects ; Internal waves ; Barotropic flows ; Baroclinic flows
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 37 (2007): 1092–1097, doi:10.1175/JPO3045.1.
    Description: The impact of the observed relationship between sea surface temperature and surface wind stress on baroclinic instability in the ocean is explored using linear theory and a nonlinear model. A simple parameterization of the influence of sea surface temperature on wind stress is used to derive a surface boundary condition for the vertical velocity at the base of the oceanic Ekman layer. This boundary condition is applied to the classic linear, quasigeostrophic stability problem for a uniformly sheared flow originally studied by Eady in the 1940s. The results demonstrate that for a wind directed from warm water toward cold water, the coupling acts to enhance the growth rate, and increase the wavelength, of the most unstable wave. Winds in the opposite sense reduce the growth rate and decrease the wavelength of the most unstable wave. For representative coupling strengths, the change in growth rate can be as large as ±O(50%). This effect is largest for shallow, strongly stratified, low-latitude flows.
    Description: This work was supported by the Office of Naval Research Grant N00014-05-1-0300.
    Keywords: Wind stress ; Instability ; Sea surface temperature ; Baroclinic flows ; Ocean dynamics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2007. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 37 (2007): 1177-1191, doi:10.1175/jpo3054.1.
    Description: The stability of baroclinic Rossby waves in large ocean basins is examined, and the quasigeostrophic (QG) results of LaCasce and Pedlosky are generalized. First, stability equations are derived for perturbations on large-scale waves, using the two-layer shallow-water system. These equations resemble the QG stability equations, except that they retain the variation of the internal deformation radius with latitude. The equations are solved numerically for different initial conditions through eigenmode calculations and time stepping. The fastest-growing eigenmodes are intensified at high latitudes, and the slower-growing modes are intensified at lower latitudes. All of the modes have meridional scales and growth times that are comparable to the deformation radius in the latitude range where the eigenmode is intensified. This is what one would expect if one had applied QG theory in latitude bands. The evolution of large-scale waves was then simulated using the Regional Ocean Modeling System primitive equation model. The results are consistent with the theoretical predictions, with deformation-scale perturbations growing at rates inversely proportional to the local deformation radius. The waves succumb to the perturbations at the mid- to high latitudes, but are able to cross the basin at low latitudes before doing so. Also, the barotropic waves produced by the instability propagate faster than the baroclinic long-wave speed, which may explain the discrepancy in speeds noted by Chelton and Schlax.
    Description: PEI was supported by a postdoctoral grant from the Norwegian Research Council, JHL was supported under the Norwegian NOCLIM II program, and JP was partly supported by NSF OCE 0451086.
    Keywords: Rossby waves ; Ocean models ; Barotropic flows ; Baroclinic flows
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2011. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 41 (2011): 2168–2186, doi:10.1175/JPO-D-11-08.1.
    Description: This paper studies the interaction of an Antarctic Circumpolar Current (ACC)–like wind-driven channel flow with a continental slope and a flat-bottomed bay-shaped shelf near the channel’s southern boundary. Interaction between the model ACC and the topography in the second layer induces local changes of the potential vorticity (PV) flux, which further causes the formation of a first-layer PV front near the base of the topography. Located between the ACC and the first-layer slope, the newly formed PV front is constantly perturbed by the ACC and in turn forces the first-layer slope with its own variability in an intermittent but persistent way. The volume transport of the slope water across the first-layer slope edge is mostly directly driven by eddies and meanders of the new front, and its magnitude is similar to the maximum Ekman transport in the channel. Near the bay’s opening, the effect of the topographic waves, excited by offshore variability, dominates the cross-isobath exchange and induces a mean clockwise shelf circulation. The waves’ propagation is only toward the west and tends to be blocked by the bay’s western boundary in the narrow-shelf region. The ensuing wave–coast interaction amplifies the wave amplitude and the cross-shelf transport. Because the interaction only occurs near the western boundary, the shelf water in the west of the bay is more readily carried offshore than that in the east and the mean shelf circulation is also intensified along the bay’s western boundary.
    Description: Y. Zhang acknowledges the support of the MIT-WHOI Joint Program in Physical Oceanography and NSF OCE-9901654 and OCE- 0451086. J. Pedlosky acknowledges the support of NSF OCE-9901654 and OCE-0451086.
    Keywords: Baroclinic flows ; Eddies ; Fronts ; Mass fluxes/transport ; Mesoscale processes ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2012. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 42 (2012): 1083–1098, doi:10.1175/JPO-D-11-015.1.
    Description: Here, the response of a coastally trapped buoyant plume to downwelling-favorable wind forcing is explored using a simplified two-dimensional numerical model and a prognostic theory for the resulting width, depth, and density anomaly and along-shelf transport of the plume. Consistent with the numerical simulations, the analytical model shows that the wind causes mixing of the plume water and that the forced cross-shelf circulation can also generate significant deepening and surface narrowing, as well as increased along-shelf transport. The response is due to a combination of the purely advective process that leads to the steepening of the isopycnals and the entrainment of ambient water into the plume. The advective component depends on the initial plume geometry: plumes that have a large fraction of their total width in contact with the bottom (“bottom trapped”) suffer relatively small depth and width changes compared to plumes that have a large fraction of their total width detached from the bottom (“surface trapped”). Key theoretical parameters are Wγ/Wα, the ratio of the width of the plume detached from the bottom to the width of the plume in contact with it, and the ratio of the wind-generated mixed layer δe to the initial plume depth hp, which determines the amount of water initially entrained into the plume. The model results also show that the cross-shelf circulation can be strongly influenced by the wind-driven response in combination with the geostrophic shear of the plume. The continuous entrainment into the plume, as well as transient events, is also discussed.
    Description: This work has been supported by FONDECYT Grant 1070501. S. Lentz received support by theNational Science Foundation GrantOCE-0751554. C. Moffat had additional support from the National Science Foundation Office of Polar Programs through U.S. Southern Ocean GLOBEC Grants OPP 99-10092 and 06- 23223.
    Description: 2013-01-01
    Keywords: Baroclinic flows ; Boundary currents ; Coastal flows ; Upwelling/downwelling ; Wind ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 30 (2013): 1576–1582, doi:10.1175/JTECH-D-12-00204.1.
    Description: Onset's HOBO U22 Water Temp Pros are small, reliable, relatively inexpensive, self-contained temperature loggers that are widely used in studies of oceans, lakes, and streams. An in-house temperature bath calibration of 158 Temp Pros indicated root-mean-square (RMS) errors ranging from 0.01° to 0.14°C, with one value of 0.23°C, consistent with the factory specifications. Application of a quadratic calibration correction substantially reduced the RMS error to less than 0.009°C in all cases. The primary correction was a bias error typically between −0.1° and 0.15°C. Comparison of water temperature measurements from Temp Pros and more accurate temperature loggers during two oceanographic studies indicates that calibrated Temp Pros have an RMS error of ~0.02°C throughout the water column at night and beneath the surface layer influenced by penetrating solar radiation during the day. Larger RMS errors (up to 0.08°C) are observed near the surface during the day due to solar heating of the black Temp Pro housing. Errors due to solar heating are significantly reduced by wrapping the housing with white electrical tape.
    Description: This work is based on research supported by Awards USA 00002 and KSA 00011 made by King Abdullah University of Science and Technology (KAUST) and by the Ocean Sciences Division of the National Science Foundation under Grant OCE- 0548961.
    Description: 2014-01-01
    Keywords: In situ oceanic observations ; Instrumentation/sensors
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2009. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 39 (2009): 387-403, doi:10.1175/2008JPO3934.1.
    Description: Marginal sea overflows and the overlying upper ocean are coupled in the vertical by two distinct mechanisms—by an interfacial mass flux from the upper ocean to the overflow layer that accompanies entrainment and by a divergent eddy flux associated with baroclinic instability. Because both mechanisms tend to be localized in space, the resulting upper ocean circulation can be characterized as a β plume for which the relevant background potential vorticity is set by the slope of the topography, that is, a topographic β plume. The entrainment-driven topographic β plume consists of a single gyre that is aligned along isobaths. The circulation is cyclonic within the upper ocean (water columns are stretched). The transport within one branch of the topographic β plume may exceed the entrainment flux by a factor of 2 or more. Overflows are likely to be baroclinically unstable, especially near the strait. This creates eddy variability in both the upper ocean and overflow layers and a flux of momentum and energy in the vertical. In the time mean, the eddies accompanying baroclinic instability set up a double-gyre circulation in the upper ocean, an eddy-driven topographic β plume. In regions where baroclinic instability is growing, the momentum flux from the overflow into the upper ocean acts as a drag on the overflow and causes the overflow to descend the slope at a steeper angle than what would arise from bottom friction alone. Numerical model experiments suggest that the Faroe Bank Channel overflow should be the most prominent example of an eddy-driven topographic β plume and that the resulting upper-layer transport should be comparable to that of the overflow. The overflow-layer eddies that accompany baroclinic instability are analogous to those observed in moored array data. In contrast, the upper layer of the Mediterranean overflow is likely to be dominated more by an entrainment-driven topographic β plume. The difference arises because entrainment occurs at a much shallower location for the Mediterranean case and the background potential vorticity gradient of the upper ocean is much larger.
    Description: SK’s support during the time of his Ph.D. research in the MIT/WHOI Joint Program was provided by the National Science Foundation through Grant OCE04-24741. JP and JY have also received support from the Climate Process Team on Gravity Current Entrainment, NSF Grant OCE-0611530. JY has also been supported by NSF Grant OCE-0351055.
    Keywords: Baroclinic flows ; Mass fluxes/transport ; Entrainment ; Topographic effects ; Potential vorticity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 766–789, doi:10.1175/JPO-D-12-0141.1.
    Description: Nonlinear energy transfers from the semidiurnal internal tide to high-mode, near-diurnal motions are documented near Kaena Ridge, Hawaii, an energetic generation site for the baroclinic tide. Data were collected aboard the Research Floating Instrument Platform (FLIP) over a 35-day period during the fall of 2002, as part of the Hawaii Ocean Mixing Experiment (HOME) Nearfield program. Energy transfer terms for a PSI resonant interaction at midlatitude are identified and compared to those for near-inertial PSI close to the M2 critical latitude. Bispectral techniques are used to demonstrate significant energy transfers in the Nearfield, between the low-mode M2 internal tide and subharmonic waves with frequencies near M2/2 and vertical wavelengths of O(120 m). A novel prefilter is used to test the PSI wavenumber resonance condition, which requires the subharmonic waves to propagate in opposite vertical directions. Depth–time maps of the interactions, formed by directly estimating the energy transfer terms, show that energy is transferred predominantly from the tide to subharmonic waves, but numerous reverse energy transfers are also found. A net forward energy transfer rate of 2 × 10−9 W kg−1 is found below 400 m. The suggestion is that the HOME observations of energy transfer from the tide to subharmonic waves represent a first step in the open-ocean energy cascade. Observed PSI transfer rates could account for a small but significant fraction of the turbulent dissipation of the tide within 60 km of Kaena Ridge. Further extrapolation suggests that integrated PSI energy transfers equatorward of the M2 critical latitude may be comparable to PSI energy transfers previously observed near 28.8°N.
    Description: This work was supported by the National Science Foundation and the Office of Naval Research.
    Description: 2013-10-01
    Keywords: Diapycnal mixing ; Energy transport ; Internal waves ; Nonlinear dynamics ; Topographic effects ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 222–230, doi:10.1175/JPO-D-12-099.1.
    Description: Observations with fine horizontal resolution are used to identify the horizontal scales of variability over the Middle Atlantic Bight (MAB) shelf break and continental rise. Spray gliders collected observations along two alongshelf transects over the continental rise in March–April 2006 and along 16 cross-shelf transects over the shelf break and continental rise during July–October 2007. Horizontal resolution varied from 1 km or finer over the shelf to 6 km in deep water. These observations allow horizontal thermohaline variability offshore of the MAB shelf break to be examined for the first time. Structure functions of temperature and salinity, the mean square difference between observations separated by specified distances, reveal the horizontal spatial scales in the region. Exponential (e-folding) scales of temperature and salinity increase from 8–13 km near the shelf break to about 30 km over the continental rise. Just offshore of the shelf break, alongshelf structure functions exhibit periodicity with a 40–50-km wavelength that matches the wavelength of shelfbreak frontal meanders. Farther offshore, alongshelf structure functions suggest a dominant wavelength of 175–250 km, but these scales are only marginally resolved by the available observations. Examination of structure functions of along-isopycnal salinity (i.e., spice) suggests that interleaving of shelf and slope water masses contributes most of the horizontal variability near the MAB shelf break, but heaving of isopycnals is the primary source of horizontal variability over the continental rise.
    Description: Glider observations in March–April 2006 were supported by the National Science Foundation through Grant OCE-0220769. Glider observations in July–October 2007 were supported by a grant from Raytheon. RET was supported by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Cooperative Institute for the North Atlantic Region. GGG was supported by the National Science Foundation under Grant OCE-1129125.
    Description: 2013-07-01
    Keywords: Continental shelf/slope ; North Atlantic Ocean ; Fronts ; In situ oceanic observations ; Profilers, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 1398–1406, doi:10.1175/JPO-D-13-028.1.
    Description: An adiabatic, inertial, and quasigeostrophic model is used to discuss the interaction of surface Ekman transport with an island. The theory extends the recent work of Spall and Pedlosky to include an analytical and nonlinear model for the interaction. The presence of an island that interrupts a uniform Ekman layer transport raises interesting questions about the resulting circulation. The consequential upwelling around the island can lead to a local intake of fluid from the geostrophic region beneath the Ekman layer or to a more complex flow around the island in which the fluid entering the Ekman layer on one portion of the island's perimeter is replaced by a flow along the island's boundary from a downwelling region located elsewhere on the island. This becomes especially pertinent when the flow is quasigeostrophic and adiabatic. The oncoming geostrophic flow that balances the offshore Ekman flux is largely diverted around the island, and the Ekman flux is fed by a transfer of fluid from the western to the eastern side of the island. As opposed to the linear, dissipative model described earlier, this transfer takes place even in the absence of a topographic skirt around the island. The principal effect of topography in the inertial model is to introduce an asymmetry between the circulation on the northern and southern sides of the island. The quasigeostrophic model allows a simple solution to the model problem with topography and yet the resulting three-dimensional circulation is surprisingly complex with streamlines connecting each side of the island.
    Description: This research was supported in part by NSF Grant OCE Grant 0925061.
    Keywords: Baroclinic flows ; Large-scale motions ; Nonlinear dynamics ; Ocean circulation ; Ocean dynamics ; Topographic effects
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 427–444, doi:10.1175/JPO-D-13-070.1.
    Description: Between 25 September 2007 and 28 September 2009, a heavily instrumented mooring was deployed in the Labrador Sea, offshore of the location where warm-core, anticyclonic Irminger rings are formed. The 2-year time series offers insight into the vertical and horizontal structure of newly formed Irminger rings and their heat and salt transport into the interior basin. In 2 years, 12 Irminger rings passed by the mooring. Of these, 11 had distinct properties, while 1 anticyclone likely passed the mooring twice. Eddy radii (11–35 km) were estimated using the dynamic height signal of the anticyclones (8–18 cm) together with the observed velocities. The anticyclones show a seasonal cycle in core properties when observed (1.9°C in temperature and 0.07 in salinity at middepth) that has not been described before. The temperature and salinity are highest in fall and lowest in spring. Cold, fresh caps, suggested to be an important source of freshwater, were seen in spring but were almost nonexistent in fall. The heat and freshwater contributions by the Irminger rings show a large spread (from 12 to 108 MJ m−2 and from −0.5 to −4.7 cm, respectively) for two reasons. First, the large range of radii leads to large differences in transported volume. Second, the seasonal cycle leads to changes in heat and salt content per unit volume. This implies that estimates of heat and freshwater transport by eddies should take the distribution of eddy properties into account in order to accurately assess their contribution to the restratification.
    Description: This work was supported by the U.S. National Science Foundation and the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Devonshire Foundation.
    Description: 2014-08-01
    Keywords: Geographic location/entity ; North Atlantic Ocean ; Circulation/ Dynamics ; Mesoscale processes ; Atm/Ocean Structure/ Phenomena ; Anticyclones ; Boundary currents ; Observational techniques and algorithms ; In situ oceanic observations ; Variability ; Seasonal cycle
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2010. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 40 (2010): 1851-1865, doi:10.1175/2010JPO4217.1.
    Description: Motivated by the fact that time-dependent currents are ubiquitous in the ocean, this work studies the two-layer Phillips model on the beta plane with baroclinic shear flows that are steady, periodic, or aperiodic in time to understand their nonlinear evolution better. When a linearly unstable basic state is slightly perturbed, the primary wave grows exponentially until nonlinear advection adjusts the growth. Even though for long time scales these nearly two-dimensional motions predominantly cascade energy to large scales, for relatively short times the wave–mean flow and wave–wave interactions cascade energy to smaller horizontal length scales. The authors demonstrate that the manner through which these mechanisms excite the harmonics depends significantly on the characteristics of the basic state. Time-dependent basic states can excite harmonics very rapidly in comparison to steady basic states. Moreover, in all the simulations of aperiodic baroclinic shear flows, the barotropic component of the primary wave continues to grow after the adjustment by the nonlinearities. Furthermore, the authors find that the correction to the zonal mean flow can be much larger when the basic state is aperiodic compared to the periodic or steady limits. Finally, even though time-dependent baroclinic shear on an f plane is linearly stable, the authors show that perturbations can grow algebraically in the linear regime because of the erratic variations in the aperiodic flow. Subsequently, baroclinicity adjusts the growing wave and creates a final state that is more energetic than the nonlinear adjustment of any of the unstable steady baroclinic shears that are considered.
    Description: FJP was supported by NSERC and JP was supported by NSF OCE 0925061 during the research and writing of this manuscript.
    Keywords: Baroclinic flows ; Shear structure/flows
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 30 (2013): 2465–2477, doi:10.1175/JTECH-D-13-00032.1.
    Description: Seven current meters representing four models on a stiffly buoyed mooring were placed for an 11-month deployment to intercompare their velocity measurements: two vector-measuring current meters (VMCMs), two Aanderaa recording current meter (RCM) 11s, two Aanderaa SEAGUARDs, and a Nortek Aquadopp. The current meters were placed 6-m apart from each other at about 4000-m depth in an area of Drake Passage expected to have strong currents, nearly independent of depth near the bottom. Two high-current events occurred in bursts of semidiurnal pulses lasting several days, one with peak speeds up to 67 cm s−1 and the other above 35 cm s−1. The current-speed measurements all agreed within 7% of the median value when vector averaged over simultaneous time intervals. The VMCMs, chosen as the reference measurements, were found to measure the median of the mean-current magnitudes. The RCM11 and SEAGUARD current speeds agreed within 2% of the median at higher speeds (35–67 cm s−1), whereas in lower speed ranges (0–35 cm s−1) the vector-averaged speeds for the RCM11 and SEAGUARD were 4%–5% lower and 3%–5% higher than the median, respectively. The shorter-record Aquadopp current speeds were about 6% higher than the VMCMs over the range (0–40 cm s−1) encountered.
    Description: This work was supported by U.S. National Science Foundation Grants ANT-0635437 and ANT-0636493.
    Description: 2014-04-01
    Keywords: Currents ; Acoustic measurements/effects ; In situ oceanic observations ; Instrumentation/sensors
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 834-849, doi:10.1175/JPO-D-13-0179.1.
    Description: A hydrostatic numerical model with alongshore-uniform barotropic M2 tidal boundary forcing and idealized shelfbreak canyon bathymetries is used to study internal-tide generation and onshore propagation. A control simulation with Mid-Atlantic Bight representative bathymetry is supported by other simulations that serve to identify specific processes. The canyons and adjacent slopes are transcritical in steepness with respect to M2 internal wave characteristics. Although the various canyons are symmetrical in structure, barotropic-to-baroclinic energy conversion rates Cυ are typically asymmetrical within them. The resulting onshore-propagating internal waves are the strongest along beams in the horizontal plane, with the stronger beam in the control simulation lying on the side with higher Cυ. Analysis of the simulation results suggests that the cross-canyon asymmetrical Cυ distributions are caused by multiple-scattering effects on one canyon side slope, because the phase variation in the spatially distributed internal-tide sources, governed by variations in the orientation of the bathymetry gradient vector, allows resonant internal-tide generation. A less complex, semianalytical, modal internal wave propagation model with sources placed along the critical-slope locus (where the M2 internal wave characteristic is tangent to the seabed) and variable source phasing is used to diagnose the physics of the horizontal beams of onshore internal wave radiation. Model analysis explains how the cross-canyon phase and amplitude variations in the locally generated internal tides affect parameters of the internal-tide beams. Under the assumption that strong internal tides on continental shelves evolve to include nonlinear wave trains, the asymmetrical internal-tide generation and beam radiation effects may lead to nonlinear internal waves and enhanced mixing occurring preferentially on one side of shelfbreak canyons, in the absence of other influencing factors.
    Description: All three authors were supported by Office of Naval Research (ONR) Grant N00014-11-1-0701. WGZ was additionally supported by the National Science Foundation (NSF) Grant OCE-1154575, and TFD was additionally supported by NSF Grant OCE-1060430.
    Description: 2014-09-01
    Keywords: Circulation/ Dynamics ; Baroclinic flows ; Internal waves ; Ocean circulation ; Topographic effects ; Waves, oceanic ; Models and modeling ; Numerical analysis/modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 1466–1492, doi:10.1175/JPO-D-12-0154.1.
    Description: Simultaneous full-depth microstructure measurements of turbulence and finestructure measurements of velocity and density are analyzed to investigate the relationship between turbulence and the internal wave field in the Antarctic Circumpolar Current. These data reveal a systematic near-bottom overprediction of the turbulent kinetic energy dissipation rate by finescale parameterization methods in select locations. Sites of near-bottom overprediction are typically characterized by large near-bottom flow speeds and elevated topographic roughness. Further, lower-than-average shear-to-strain ratios indicative of a less near-inertial wave field, rotary spectra suggesting a predominance of upward internal wave energy propagation, and enhanced narrowband variance at vertical wavelengths on the order of 100 m are found at these locations. Finally, finescale overprediction is typically associated with elevated Froude numbers based on the near-bottom shear of the background flow, and a background flow with a systematic backing tendency. Agreement of microstructure- and finestructure-based estimates within the expected uncertainty of the parameterization away from these special sites, the reproducibility of the overprediction signal across various parameterization implementations, and an absence of indications of atypical instrument noise at sites of parameterization overprediction, all suggest that physics not encapsulated by the parameterization play a role in the fate of bottom-generated waves at these locations. Several plausible underpinning mechanisms based on the limited available evidence are discussed that offer guidance for future studies.
    Description: The SOFine project is funded by the United Kingdom’s Natural Environmental Research Council (NERC) (Grant NE/G001510/1). SW acknowledges the support of anARCDiscovery Early CareerResearchAward (Grant DE120102927), as well as the Grantham Institute for Climate Change, Imperial College London, and the ARC Centre of Excellence for Climate System Science (Grant CE110001028). ACNG acknowledges the support of a NERC Advanced Research Fellowship (Grant NE/C517633/1).KLP acknowledges support fromWoods Hole Oceanographic Institution bridge support funds.
    Description: 2014-11-01
    Keywords: Circulation/ Dynamics ; Diapycnal mixing ; Internal waves ; Small scale processes ; Turbulence ; Observational techniques and algorithms ; In situ oceanic observations ; Profilers, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 43 (2013): 2475–2489, doi:10.1175/JPO-D-13-057.1.
    Description: Data from three midlatitude, month-long surveys are examined for evidence of enhanced vertical mixing associated with the transition layer (TL), here defined as the strongly stratified layer that exists between the well mixed layer and the thermocline below. In each survey, microstructure estimates of turbulent dissipation were collected concurrently with fine-structure stratification and shear. Survey-wide averages are formed in a “TL coordinate” zTL, which is referenced around the depth of maximum stratification for each profile. Averaged profiles show characteristic TL structures such as peaks in stratification N2 and shear variance S2, which fall off steeply above zTL = 0 and more gradually below. Turbulent dissipation rates ɛ are 5–10 times larger than those found in the upper thermocline (TC). The gradient Richardson number Ri = N2/S2 becomes unstable (Ri 〈 0.25) within ~10 m of the TL upper boundary, suggesting that shear instability is active in the TL for zTL 〉 0. Ri is stable for zTL ≤ 0. Turbulent dissipation is found to scale exponentially with depth for zTL ≤ 0, but the decay scales are different for the TL and upper TC: ɛ scales well with either N2 or S2. Owing to the strong correlation between S2 and N2, existing TC scalings of the form ɛ ~ |S|p|N|q overpredict variations in ɛ. The scale dependence of shear variance is not found to significantly affect the scalings of ɛ versus N2 and S2 for zTL ≤ 0. However, the onset of unstable Ri at the top of the TL is sensitively dependent to the resolution of the shears.
    Description: This work was funded by NSF Grant OCE-0968787 as part of a Climate Process Team for internal wave-driven mixing.
    Keywords: Atm/Ocean Structure/ Phenomena ; Diapycnal mixing ; Mixed layer ; Thermocline ; Physical Meteorology and Climatology ; Heat budgets/fluxes ; Observational techniques and algorithms ; In situ oceanic observations ; Profilers, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 1595–1604, doi:10.1175/JPO-D-13-0140.1.
    Description: Autonomous underwater vehicle (AUV) surveys of temperature, salinity, and velocity in the upper 10 m of the ocean were carried out in low-wind conditions near the North Atlantic surface salinity maximum as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) project. Starting from a well-mixed state, the development, deepening, and decay of a warm salty diurnal surface layer was observed at 〈1-h resolution. The evaporation rate deduced from the freshwater anomaly of the layer corroborates measurements at a nearby flux mooring. Profiles within a few hundred meters of the stationary research vessel showed evidence of mixing, highlighting the effectiveness of AUVs for collecting uncontaminated time series of near-surface thermohaline structure. A two-dimensional horizontal subsurface survey within the diurnal warm layer revealed coherent warm and cool bands, which are interpreted as internal waves on the diurnal thermocline.
    Description: NASA supported this work under Grant NNX11AE82G.
    Description: 2014-12-01
    Keywords: Atm/Ocean Structure/ Phenomena ; Surface layer ; Observational techniques and algorithms ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 44 (2014): 319–342, doi:10.1175/JPO-D-13-095.1.
    Description: The California Undercurrent (CUC), a poleward-flowing feature over the continental slope, is a key transport pathway along the west coast of North America and an important component of regional upwelling dynamics. This study examines the poleward undercurrent and alongshore pressure gradients in the northern California Current System (CCS), where local wind stress forcing is relatively weak. The dynamics of the undercurrent are compared in the primitive equation Navy Coastal Ocean Model and a linear coastal trapped wave model. Both models are validated using hydrographic data and current-meter observations in the core of the undercurrent in the northern CCS. In the linear model, variability in the predominantly equatorward wind stress along the U.S. West Coast produces episodic reversals to poleward flow over the northern CCS slope during summer. However, reproducing the persistence of the undercurrent during late summer requires additional incoming energy from sea level variability applied south of the region of the strongest wind forcing. The relative importance of the barotropic and baroclinic components of the modeled alongshore pressure gradient changes with latitude. In contrast to the southern and central portions of the CCS, the baroclinic component of the alongshore pressure gradient provides the primary poleward force at CUC depths over the northern CCS slope. At time scales from weeks to months, the alongshore pressure gradient force is primarily balanced by the Coriolis force associated with onshore flow.
    Description: This work was supported by grants to B. Hickey from the Coastal Ocean Program of the National Oceanic and Atmospheric Administration (NOAA) (NA17OP2789 and NA09NOS4780180) and the National Science Foundation (NSF) (OCE0234587 and OCE0942675) as part of the Ecology of Harmful Algal Blooms Pacific Northwest (ECOHAB PNW) and Pacific Northwest Toxin (PNWTOX) projects. I. Shulman was supported by the Naval Research Laboratory.
    Description: 2014-07-01
    Keywords: Geographic location/entity ; Continental shelf/slope ; Circulation/ Dynamics ; Baroclinic flows ; Coastal flows ; Models and modeling ; Model evaluation/performance ; Variability ; Intraseasonal variability ; Seasonal variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...