ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Bacteria
  • Springer Nature
  • American Chemical Society
Collection
Keywords
Language
Years
  • 1
    facet.materialart.
    Unknown
    Springer Nature | Springer
    Publication Date: 2024-04-05
    Description: This open access book offers a comprehensive overview of the role and potential of microorganisms in the degradation and preservation of cultural materials (e.g. stone, metals, graphic documents, textiles, paintings, glass, etc.). Microorganisms are a major cause of deterioration in cultural artefacts, both in the case of outdoor monuments and archaeological finds. This book covers the microorganisms involved in biodeterioration and control methods used to reduce their impact on cultural artefacts. Additionally, the reader will learn more about how microorganisms can be used for the preservation and protection of cultural artefacts through bio-based and eco-friendly materials. New avenues for developing methods and materials for the conservation of cultural artefacts are discussed, together with concrete advances in terms of sustainability, effectiveness and toxicity, making the book essential reading for anyone interested in microbiology and the preservation of cultural heritage.
    Keywords: Microbiology ; Cultural Heritage ; Microbial Ecology ; Microbial Genetics and Genomics ; Enzymology ; Applied Microbiology ; Microbial Genetics ; Industrial Microbiology ; Open Access ; Restoration ; Conservation ; Biodeterioration ; Bioweathering ; Bioremediation ; Biocleaning ; Biotechnology ; Green Chemistry ; Fungi ; Bacteria ; Artwork ; Antimicrobial protection ; Biocides ; Microbiology (non-medical) ; Cultural studies ; Social & cultural history ; Ecological science, the Biosphere ; Genetics (non-medical) ; Biochemistry ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSG Microbiology (non-medical) ; thema EDItEUR::J Society and Social Sciences::JB Society and culture: general::JBC Cultural and media studies::JBCC Cultural studies ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSA Life sciences: general issues::PSAF Ecological science, the Biosphere ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PSB Biochemistry
    Language: English
    Format: image/jpeg
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gruen, D. S., Wolfe, J. M., & Fournier, G. P.. Paleozoic diversification of terrestrial chitin-degrading bacterial lineages. BMC Evolutionary Biology, 19, (2019): 34, doi:10.1186/s12862-019-1357-8.
    Description: Background Establishing the divergence times of groups of organisms is a major goal of evolutionary biology. This is especially challenging for microbial lineages due to the near-absence of preserved physical evidence (diagnostic body fossils or geochemical biomarkers). Horizontal gene transfer (HGT) can serve as a temporal scaffold between microbial groups and other fossil-calibrated clades, potentially improving these estimates. Specifically, HGT to or from organisms with fossil-calibrated age estimates can propagate these constraints to additional groups that lack fossils. While HGT is common between lineages, only a small subset of HGT events are potentially informative for dating microbial groups. Results Constrained by published fossil-calibrated studies of fungal evolution, molecular clock analyses show that multiple clades of Bacteria likely acquired chitinase homologs via HGT during the very late Neoproterozoic into the early Paleozoic. These results also show that, following these HGT events, recipient terrestrial bacterial clades likely diversified ~ 300–500 million years ago, consistent with established timescales of arthropod and plant terrestrialization. Conclusions We conclude that these age estimates are broadly consistent with the dispersal of chitinase genes throughout the microbial world in direct response to the evolution and ecological expansion of detrital-chitin producing groups. The convergence of multiple lines of evidence demonstrates the utility of HGT-based dating methods in microbial evolution. The pattern of inheritance of chitinase genes in multiple terrestrial bacterial lineages via HGT processes suggests that these genes, and possibly other genes encoding substrate-specific enzymes, can serve as a “standard candle” for dating microbial lineages across the Tree of Life.
    Description: This work was supported by a National Science Foundation (NSF) Graduate Research Fellowship Program Award to DSG., and Simons Collaboration on the Origins of Life Award #339603 and NSF Integrated Earth Systems Program Award #1615426 to GPF. The funding agencies for this study had no role in study design, data collection, data analysis and interpretation, or in writing the manuscript.
    Keywords: Horizontal gene transfer ; Chitinase ; Chitin ; Bacteria ; Fungi ; Arthropods
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gosselin, K. M., Nelson, R. K., Spivak, A. C., Sylva, S. P., Van Mooy, B. A. S., Aeppli, C., Sharpless, C. M., O’Neil, G. W., Arrington, E. C., Reddy, C. M., & Valentine, D. L. Production of two highly abundant 2-methyl-branched fatty acids by blooms of the globally significant marine cyanobacteria Trichodesmium erythraeum. ACS Omega, 6(35), (2021): 22803–22810, https://doi.org/10.1021/acsomega.1c03196.
    Description: The bloom-forming cyanobacteria Trichodesmium contribute up to 30% to the total fixed nitrogen in the global oceans and thereby drive substantial productivity. On an expedition in the Gulf of Mexico, we observed and sampled surface slicks, some of which included dense blooms of Trichodesmium erythraeum. These bloom samples contained abundant and atypical free fatty acids, identified here as 2-methyldecanoic acid and 2-methyldodecanoic acid. The high abundance and unusual branching pattern of these compounds suggest that they may play a specific role in this globally important organism.
    Description: This work was funded with grants from the National Science Foundation grants OCE-1333148, OCE-1333162, and OCE-1756254 and the Woods Hole Oceanographic Institution (IR&D). GCxGC analysis made possible by WHOI’s Investment in Science Fund.
    Keywords: Lipids ; Alkyls ; Bacteria ; Genetics ; Chromatography
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...